Skip to main content

Double sequence spaces over n-normed spaces defined by a sequence of Orlicz functions

Abstract

In the present paper we introduce double sequence space m 2 (M,A,ϕ,p,,,) defined by a sequence of Orlicz functions over n-normed space. We examine some of its topological properties and establish some inclusion relations.

MSC:40A05, 46A45.

1 Introduction and preliminaries

The initial works on double sequences is found in Bromwich [1]. Later on, it was studied by Hardy [2], Moricz [3], Moricz and Rhoades [4], Başarır and Sonalcan [5] and many others. Hardy [2] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser [6] in her PhD thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [7] have recently introduced the statistical convergence which was further studied in locally solid Riesz spaces [8]. Nextly, Mursaleen [9] and Mursaleen and Savas [10] have defined the almost regularity and almost strong regularity of matrices for double sequences and applied these matrices to establish core theorems and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences x=( x k , l ) into one whose core is a subset of the M-core of x. More recently, Altay and Başar [11] have defined the spaces BS, BS(t), C S p , C S b p , C S r and BV of double sequences consisting of all double series whose sequence of partial sums are in the spaces M u , M u (t), C p , C b p , C r and L u , respectively and also examined some properties of these sequence spaces and determined the α-duals of the spaces BS, BV, C S b p and the β(v)-duals of the spaces C S b p and C S r of double series. Recently Başar and Sever [12] have introduced the Banach space L q of double sequences corresponding to the well known space q of single sequences and examined some properties of the space  L q . Now, recently Raj and Sharma [13] have introduced entire double sequence spaces. By the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a double sequence x=( x k , l ) has Pringsheim limit L (denoted by P-limx=L) provided that given ϵ>0 there exists nN such that | x k , l L|<ϵ whenever k,l>n, see [14]. The double sequence x=( x k , l ) is bounded if there exists a positive number M such that | x k , l |<M for all k and l.

Throughout this paper, and denote the set of positive integers and complex numbers, respectively. A complex double sequence is a function x from N×N into and briefly denoted by { x k , l }. If for all ϵ>0, there is n ϵ N such that | x k , l a|<ϵ where k> n ϵ and l> n ϵ , then a double sequence { x k , l } is said to be convergent to aC. A real double sequence { x k , l } is non-decreasing, if x k , l x p , q for (k,l)<(p,q). A double series is infinite sum k , l = 1 x k , l and its convergence implies the convergence of partial sums sequence { S n , m }, where S n , m = k = 1 m l = 1 n x k , l (see [15]). For recent development on double sequences, we refer to [1620] and [2123].

A double sequence space E is said to be solid if { x k , l y k , l }E for all double sequences { y k , l } of scalars such that | y k , l |<1 for all k,lN whenever { x k , l }E.

Let x={ x k , l } be a double sequence. A set S(x) is defined by

S(x)= { { X π 1 ( k ) , π 2 ( k ) } : π 1  and  π 2  are permutation of  N } .

If S(x)E for all xE, then E is said to be symmetric. Now let P s be a family of subsets σ having at most elements s in . Also P s , t denotes the class of subsets σ= σ 1 × σ 2 in N×N such that the element numbers of σ 1 and σ 2 are at most s and t, respectively. Besides { ϕ k , l } is taken as a non-decreasing double sequence of the positive real numbers such that

k ϕ k + 1 , l ( k + 1 ) ϕ k , l , l ϕ k , l + 1 ( l + 1 ) ϕ k , l .

An Orlicz function M:[0,)[0,) is a continuous, non-decreasing, and convex function such that M(0)=0, M(x)>0 for x>0 and M(x) as x.

Lindenstrauss and Tzafriri [24] used the idea of Orlicz function to define the following sequence space:

M = { x w : k = 1 M ( | x k | ρ ) < } ,

which is called an Orlicz sequence space. Also M is a Banach space with the norm

x=inf { ρ > 0 : k = 1 M ( | x k | ρ ) 1 } .

Also, it was shown that every Orlicz sequence space M contains a subspace isomorphic to p (p1). The Δ 2 -condition is equivalent to M(Lx)LM(x), for all L with 0<L<1. An Orlicz function M can always be represented in the following integral form:

M(x)= 0 x η(t)dt,

where η, known as the kernel of M, is right differentiable for t0, η(0)=0, η(t)>0, η is non-decreasing and η(t) as t.

For further reading on Orlicz spaces, we refer to [2529].

Let X be a linear metric space. A function p:XR is called a paranorm if

  1. (1)

    p(x)0 for all xX,

  2. (2)

    p(x)=p(x) for all xX,

  3. (3)

    p(x+y)p(x)+p(y) for all x,yX,

  4. (4)

    if ( λ n ) is a sequence of scalars with λ n λ as n and ( x n ) is a sequence of vectors with p( x n x)0 as n, then p( λ n x n λx)0 as n.

A paranorm p for which p(x)=0 implies x=0 is called a total paranorm and the pair (X,p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30], Theorem 10.4.2, p.183).

The concept of 2-normed spaces was initially developed by Gähler [31] in the mid-1960s, while that of n-normed spaces one can see in Misiak [32]. Since then, many others have studied this concept and obtained various results; see Gunawan [33, 34] and Gunawan and Mashadi [35] and references therein. Let nN and X be a linear space over the field , where is the field of real or complex numbers of dimension d, where dn2. A real valued function ,, on X n satisfying the following four conditions:

  1. (1)

    x 1 , x 2 ,, x n =0 if and only if x 1 , x 2 ,, x n are linearly dependent in X;

  2. (2)

    x 1 , x 2 ,, x n is invariant under permutation;

  3. (3)

    α x 1 , x 2 ,, x n =|α| x 1 , x 2 ,, x n for any αK, and

  4. (4)

    x+ x , x 2 ,, x n x, x 2 ,, x n + x , x 2 ,, x n

is called a n-norm on X, and the pair (X,,,) is called a n-normed space over the field . For example, we may take X= R n being equipped with the Euclidean n-norm x 1 , x 2 , , x n E , the volume of the n-dimensional parallelepiped spanned by the vectors x 1 , x 2 ,, x n which may be given explicitly by the formula

x 1 , x 2 , , x n E =|det( x i j )|,

where x i =( x i 1 , x i 2 ,, x i n ) R n for each i=1,2,,n. Let (X,,,) be a n-normed space of dimension dn2 and { a 1 , a 2 ,, a n } be linearly independent set in X. Then the function , , on X n 1 defined by

x 1 , x 2 , , x n 1 =max { x 1 , x 2 , , x n 1 , a i : i = 1 , 2 , , n }

defines an (n1)-norm on X with respect to { a 1 , a 2 ,, a n }.

A sequence ( x k ) in a n-normed space (X,,,) is said to converge to some LX if

lim k x k L, z 1 ,, z n 1 =0for every  z 1 ,, z n 1 X.

A sequence ( x k ) in a n-normed space (X,,,) is said to be Cauchy if

lim k p x k x p , z 1 ,, z n 1 =0for every  z 1 ,, z n 1 X.

If every Cauchy sequence in X converges to some LX, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

The space m(ϕ) was introduced by Sargent [36]:

m(ϕ)= { x = ( x k ) w : x m ( ϕ ) = sup s 1 , σ P s 1 ϕ s k σ | x k | < } ,

which was further studied in [37, 38] and [39]. Recently, Duyar and Oǧur [40] introduced the sequence space m 2 (M,A,ϕ,p) and studied some of its properties.

Let A=( a i j k l ) be an infinite double matrix of complex numbers, M=( M k , l ) be a sequence of Orlicz functions, and p=( p k , l ) be a bounded double sequence of positive real numbers. In the present paper we define the following sequence space:

m 2 ( M , A , ϕ , p , , , ) = { x = ( x k , l ) w 2 ( X ) : sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <  for some  ρ > 0 } ,

where A(x)=( A i j (x)) if A i j (x)= k , l = 1 a i j k l x k , l converges for each (i,j)N×N.

If p=( p i j )=1, we have

m 2 ( M , A , ϕ , , , ) = { x = ( x k , l ) w 2 ( X ) : sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <  for some  ρ > 0 } .

The following inequality will be used throughout the paper:

| a + b | p i j max ( 1 , 2 H 1 ) ( | a | p i j + | b | p i j ) ,
(1.1)

where a,bC and H=sup{ p i j :(i,j)N×N}.

We examine some topological properties of m 2 (M,A,ϕ,p,,,) and establish some inclusion relations.

2 Main results

Theorem 2.1 Let M=( M k , l ) be a sequence of Orlicz functions and p=( p k , l ) be a bounded sequence of positive real numbers, then the space m 2 (M,A,ϕ,p,,,) is linear space over the field of complex number .

Proof Let x=( x k , l ),y=( y k , l ) m 2 (M,A,ϕ,p,,,) and α,βC. Then there exist positive numbers ρ 1 and ρ 2 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

Let ρ 3 =max(2|α| ρ 1 ,2|β| ρ 2 ). Since is a non-decreasing and convex function, we have

i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( α x + β y ) ρ 3 , z 1 , , z n 1 ) p i j i σ 1 j σ 2 k , l = 1 M k , l ( α a i j k l x k , l + β a i j k l y k , l ρ 3 , z 1 , , z n 1 ) p i j i σ 1 j σ 2 k , l = 1 M k , l ( α a i j k l x k , l 2 | α | ρ 1 , z 1 , , z n 1 + β a i j k l y k , l 2 | β | ρ 2 , z 1 , , z n 1 ) p i j = i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 + a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j max ( 1 , 2 H 1 ) ( i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 ) p i j + i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j ) .

Thus, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( α x + β y ) ρ 3 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } max ( 1 , 2 H 1 ) { sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } + sup { 1 ϕ s , t i σ 1 j σ 2 M k , l ( a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } } .

This proves that αx+βy m 2 (M,A,ϕ,p,,,). Hence m 2 (M,A,ϕ,p,,,) is a linear space. This completes the proof of the theorem. □

Theorem 2.2 M=( M k , l ) be a sequence of Orlicz functions and p=( p k , l ) be a bounded sequence of positive real numbers, then the space m 2 (M,A,ϕ,p,,,) is a paranormed space with the paranorm defined by

g ( x ) = inf { ρ p q r H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } 1 ] 1 / H , q N , r N } .

Proof It is clear that g(x)=g(x) and g(x)=0 if x=0. Then there exist positive numbers ρ 1 and ρ 2 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <1

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <1.

Then, by using Minkowski’s inequality, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x + y ) ρ 1 + ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 + ρ 2 , z 1 , , z n 1 + A i j ( y ) ρ 1 + ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ( ρ 1 ρ 1 + ρ 2 ) h { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } + ( ρ 2 ρ 1 + ρ 2 ) h { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ,

where h=inf p i j . This shows that g(x+y)g(x)+g(y). Using this triangle inequality we can write

g ( λ n x n λ x ) g ( λ n x n λ n x ) +g ( λ n x λ x ) .

Thus we have

g ( λ n x n λ n x ) = inf { ρ n p q r H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( λ n x n λ n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 σ 2 P s , t } 1 ] 1 / H 1 , q N , r N } = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ( ρ n / | λ n | ) , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } 1 ] 1 / H 1 , q N , r N } = inf { ( λ n ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } max { | λ n | h / H , | λ n | } × inf { ( | λ n | ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = max { | λ n | h / H , | λ n | } g ( x n x ) .

Thus

g ( λ n x λ x ) = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( ( λ n λ ) x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ n / | λ n λ | , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = inf { ( | λ n λ | ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } max { | λ n λ | h / H , | λ n λ | } g ( x ) .

Hence g( λ n x n λx)0 where λ n λ and x n x as n. This proves that m 2 (M,A,ϕ,p,,,) is a paranormed space with the paranorm defined by g. This completes the proof of the theorem. □

Theorem 2.3 Let ϕ and ψ be two double sequences then m 2 (M,A,ϕ,p,,,) m 2 (M,A,ψ,p,,,) if and only if sup ( s , t ) ( 1 , 1 ) ( ϕ s , t / ψ s , t )<.

Proof Let K= sup ( s , t ) ( 1 , 1 ) ( ϕ s , t / ψ s , t )<. Then ϕ s , t K ψ s , t for all (s,t)(1,1). If x={ x k , l } m 2 (M,A,ϕ,p,,,), then

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < for some  ρ > 0 .

Thus

sup { 1 K ψ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < for some  ρ > 0 ,

and hence x={ x k , l } m 2 (M,A,ψ,p,,,). This shows that

m 2 ( M , A , ϕ , p , , , ) m 2 ( M , A , ψ , p , , , ) .

Conversely, let m 2 (M,A,ϕ,p,,,) m 2 (M,A,ψ,p,,,) and α s , t = ϕ s , t ψ s , t for all (s,t)(1,1), and suppose sup ( s , t ) ( 1 , 1 ) α s , t =. Then there exists a subsequence { α s i , t i } of { α s , t } such that lim i α s i , t i =. If x={ x k , l } m 2 (M,A,ϕ,p,,,), then we have

sup { 1 ψ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } = sup { α s , t 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } { sup m 1 α s m , t m } sup { 1 ϕ s m , t m i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } = .

This is a contradiction as x={ x k , l } m 2 (M,A,ϕ,p,,,). This completes the proof of the theorem. □

Corollary 2.4 Let ϕ and ψ be two double sequences then m 2 (M,A,ϕ,p,,,)= m 2 (M,A,ψ,p,,,) if and only if sup ( s , t ) ( 1 , 1 ) α s , t < and sup ( s , t ) ( 1 , 1 ) α s , t 1 <.

Proof It is easy to prove so we omit the details. □

Theorem 2.5 Let M=( M k , l ), M =( M k , l ) and M =( M k , l ′′ ) be sequences of Orlicz functions satisfying Δ 2 -condition. Then

  1. (i)

    m 2 (M,ϕ,,,) m 2 (M M ,ϕ,,,),

  2. (ii)

    m 2 ( M ,A,ϕ,p,,,) m 2 ( M ,A,ϕ,p,,,) m 2 ( M + M ,A,ϕ,p,,,).

Proof (i) Let x={ x k , l } m 2 (M,A,ϕ,p,,,). Then there exists ρ>0 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

By the continuity of , we can take a number δ with 0<δ<1 such that M k , l (t)<ϵ, whenever 0t<δ, for arbitrary 0<ϵ<1. Now let

y i , j = ( A i , j ( x ) ρ , z 1 , , z n 1 ) .

Thus we have

i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i , j = y i , j δ k , l = 1 M k , l ( y i , j ) p i , j + y i , j > δ k , l = 1 M k , l ( y i , j ) p i , j .

By the properties of the Orlicz function we have

y i , j k , l = 1 M k , l ( y i , j ) p i , j max { 1 , M k , l ( 1 ) H } y i , j ( y i , j ) p i , j .

Again, we have

M k , l ( y i , j )< M k , l ( 1 + y i , j δ ) < 1 2 M k , l (2)+ 1 2 M k , l ( 2 y i , j δ )

for y i , j >δ. If satisfies the Δ 2 -condition, then we have

M k , l ( y i , j )< 1 2 T y i , j δ M k , l (2)+ 1 2 T y i , j δ M k , l (2),

and so

y i , j > δ M k , l ( y i , j ) p i , j max ( 1 , ( T δ M k , l ( 2 ) ) H ) y i , j > δ y i , j .

Hence, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < max { 1 , M k , l ( 1 ) H } sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < + max ( 1 , ( T δ M k , l ( 2 ) ) H ) × sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < .

Thus, we have x={ x k , l } m 2 (M M ,ϕ,,,) and hence m 2 (M,ϕ,,,) m 2 (M M ,ϕ,,,).

  1. (ii)

    Let x={ x k , l } m 2 ( M ,A,ϕ,p,,,) m 2 ( M ,A,ϕ,p,,,). Then there exists a ρ>0 such that

    sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ′′ ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

By the inequality, we have

i σ 1 j σ 2 k , l = 1 ( M k , l + M k , l ′′ ) ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j max ( 1 , 2 H 1 ) i σ 1 j σ 2 k , l = 1 M k , l ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j + max ( 1 , 2 H 1 ) i σ 1 j σ 2 k , l = 1 M k , l ′′ ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j .

Hence

m 2 ( M , A , ϕ , p , , , ) m 2 ( M , A , ϕ , p , , , ) m 2 ( M + M , A , ϕ , p , , , ) .

This completes the proof of the theorem. □

Theorem 2.6 The sequence space m 2 (M,ϕ,p,,,) is solid.

Proof Let α={ α k , l } be a double sequence of scalars such that | α k , l |1 and y={ y k , l } m 2 (M,ϕ,p,,,). Then we have

sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( α k , l x k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( α k , l y k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( y k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } .

This implies that { α k , l y k , l } m 2 (M,ϕ,p,,,). This proves that the space m 2 (M,ϕ,p,,,) is a solid. □

Corollary 2.7 The sequence space m 2 (M,ϕ,p,,,) is monotone.

Proof It is trivial so we omit the details. □

References

  1. Bromwich TJ: An Introduction to the Theory of Infinite Series. Macmillan Co., New York; 1965.

    MATH  Google Scholar 

  2. Hardy GH: On the convergence of certain multiple series. Proc. Camb. Philos. Soc. 1917, 19: 86–95.

    Google Scholar 

  3. Moricz F: Extension of the spaces c and c 0 from single to double sequences. Acta Math. Hung. 1991, 57: 129–136. 10.1007/BF01903811

    Article  MathSciNet  MATH  Google Scholar 

  4. Moricz F, Rhoades BE: Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Philos. Soc. 1988, 104: 283–294. 10.1017/S0305004100065464

    Article  MathSciNet  MATH  Google Scholar 

  5. Başarır M, Sonalcan O: On some double sequence spaces. J. Indian Acad. Math. 1999, 21: 193–200.

    MathSciNet  MATH  Google Scholar 

  6. Zeltser M Diss. Math. Univ. Tartu 25. In Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods. Tartu University Press, Tartu; 2001.

    Google Scholar 

  7. Mursaleen M, Edely OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 2003,288(1):223–231. 10.1016/j.jmaa.2003.08.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Mohiuddine SA, Alotaibi A, Mursaleen M: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 719729 10.1155/2012/719729

    Google Scholar 

  9. Mursaleen M: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 2004,293(2):523–531. 10.1016/j.jmaa.2004.01.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Mursaleen M, Savas E: Almost regular matrices for double sequences. Studia Sci. Math. Hung. 2003, 40: 205–212.

    MathSciNet  MATH  Google Scholar 

  11. Altay B, Başar F: Some new spaces of double sequences. J. Math. Anal. Appl. 2005, 309: 70–90. 10.1016/j.jmaa.2004.12.020

    Article  MathSciNet  MATH  Google Scholar 

  12. Başar F, Sever Y: The space q L of double sequences. Math. J. Okayama Univ. 2009, 51: 149–157.

    MathSciNet  MATH  Google Scholar 

  13. Raj K, Sharma SK: Some multiplier double sequence spaces. Acta Math. Vietnam. 2012, 37: 391–406.

    MathSciNet  MATH  Google Scholar 

  14. Pringsheim A: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 1900, 53: 289–321. 10.1007/BF01448977

    Article  MathSciNet  Google Scholar 

  15. Limaye BV, Zeltser M: On the Pringsheim convergence of double series. Proc. Est. Acad. Sci. 2009, 58: 108–121. 10.3176/proc.2009.2.03

    Article  MathSciNet  MATH  Google Scholar 

  16. Cakan C, Altay B, Mursaleen M: The σ -convergence and σ -core of double sequences. Appl. Math. Lett. 2006, 19: 1122–1128. 10.1016/j.aml.2005.12.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Mursaleen M, Mohiuddine SA: Double σ -multiplicative matrices. J. Math. Anal. Appl. 2007, 327: 991–996. 10.1016/j.jmaa.2006.04.081

    Article  MathSciNet  MATH  Google Scholar 

  18. Mursaleen M, Mohiuddine SA: Regularly σ -conservative and σ -coercive four dimensional matrices. Comput. Math. Appl. 2008, 56: 1580–1586. 10.1016/j.camwa.2008.03.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Mursaleen M, Mohiuddine SA: On σ -conservative and boundedly σ -conservative four dimensional matrices. Comput. Math. Appl. 2010, 59: 880–885. 10.1016/j.camwa.2009.10.006

    Article  MathSciNet  MATH  Google Scholar 

  20. Mursaleen M, Mohiuddine SA: Convergence Methods for Double Sequences and Applications. Springer, Berlin; 2014.

    Book  MATH  Google Scholar 

  21. Mohiuddine SA, Alotaibi A: Some spaces of double sequences obtained through invariant mean and related concepts. Abstr. Appl. Anal. 2013., 2013: Article ID 507950

    Google Scholar 

  22. Mohiuddine SA, Raj K, Alotaibi A: Some paranormed double difference sequence spaces for Orlicz functions and bounded-regular matrices. Abstr. Appl. Anal. 2014., 2014: Article ID 419064

    Google Scholar 

  23. Sharma SK, Raj K, Sharma AK: Some new double sequence spaces over n -normed space. Int. J. Appl. Math. 2012, 25: 255–269.

    MathSciNet  MATH  Google Scholar 

  24. Lindenstrauss J, Tzafriri L: On Orlicz sequence spaces. Isr. J. Math. 1971, 10: 345–355.

    Article  MathSciNet  MATH  Google Scholar 

  25. Musielak J Lecture Notes in Mathematics 1034. Orlicz Spaces and Modular Spaces 1983.

    Google Scholar 

  26. Maligranda L Seminars in Mathematics 5. In Orlicz Spaces and Interpolation. Polish Academy of Science, Warsaw; 1989.

    Google Scholar 

  27. Raj K, Sharma SK: Some multiplier sequence spaces defined by a Musielak-Orlicz function in n -normed spaces. N.Z. J. Math. 2012, 42: 45–56.

    MathSciNet  MATH  Google Scholar 

  28. Raj K, Sharma SK: Some double sequence spaces defined by a sequence of Orlicz function. J. Math. Anal. 2012, 3: 12–20.

    MathSciNet  MATH  Google Scholar 

  29. Raj K, Sharma SK: Some generalized difference double sequence spaces defined by a sequence of Orlicz-function. CUBO 2012, 14: 167–189. 10.4067/S0719-06462012000300011

    Article  MathSciNet  MATH  Google Scholar 

  30. Wilansky A North-Holland Math. Stud. 85. Summability Through Functional Analysis 1984.

    Google Scholar 

  31. Gähler S: Lineare 2-normierte Räume. Math. Nachr. 1965, 28: 1–43.

    Article  MATH  Google Scholar 

  32. Misiak A: n -Inner product spaces. Math. Nachr. 1989, 140: 299–319. 10.1002/mana.19891400121

    Article  MathSciNet  MATH  Google Scholar 

  33. Gunawan H: On n -inner product, n -norms, and the Cauchy-Schwartz inequality. Sci. Math. Jpn. 2001, 5: 47–54.

    Google Scholar 

  34. Gunawan H: The space of p -summable sequence and its natural n -norm. Bull. Aust. Math. Soc. 2001, 64: 137–147. 10.1017/S0004972700019754

    Article  MathSciNet  MATH  Google Scholar 

  35. Gunawan H, Mashadi M: On n -normed spaces. Int. J. Math. Math. Sci. 2001, 27: 631–639. 10.1155/S0161171201010675

    Article  MathSciNet  MATH  Google Scholar 

  36. Sargent WLC: Some sequence spaces related to the p l spaces. J. Lond. Math. Soc. 1960, 35: 161–171.

    Article  MathSciNet  MATH  Google Scholar 

  37. Malkowsky E, Mursaleen M: Matrix transformations between FK-spaces and the sequence spaces m(ϕ) and n(ϕ). J. Math. Anal. Appl. 1995, 196: 659–665. 10.1006/jmaa.1995.1432

    Article  MathSciNet  MATH  Google Scholar 

  38. Tripathy BC, Sen M: On a new class of sequences related to the space p l . Tamkang J. Math. 2002, 33: 167–171.

    MathSciNet  MATH  Google Scholar 

  39. Mursaleen M: On some geometric properties of a sequence space related to p . Bull. Aust. Math. Soc. 2003, 67: 343–347. 10.1017/S0004972700033803

    Article  MathSciNet  MATH  Google Scholar 

  40. Duyar C, Oǧur O: On a new space m 2 (M,A,ϕ,p) of double sequences. J. Funct. Spaces Appl. 2013., 2013: Article ID 509613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mursaleen.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, A., Mursaleen, M. & Sharma, S.K. Double sequence spaces over n-normed spaces defined by a sequence of Orlicz functions. J Inequal Appl 2014, 216 (2014). https://doi.org/10.1186/1029-242X-2014-216

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-216

Keywords