RESEARCH

Open Access

Double sequence spaces over *n*-normed spaces defined by a sequence of Orlicz functions

Abdullah Alotaibi¹, Mohammad Mursaleen^{2*} and Sunil K Sharma³

*Correspondence: mursaleenm@gmail.com ²Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India Full list of author information is available at the end of the article

Abstract

In the present paper we introduce double sequence space $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ defined by a sequence of Orlicz functions over *n*-normed space. We examine some of its topological properties and establish some inclusion relations. **MSC:** 40A05; 46A45

Keywords: double sequence spaces; paranormed space; Orlicz function; *n*-normed space

1 Introduction and preliminaries

The initial works on double sequences is found in Bromwich [1]. Later on, it was studied by Hardy [2], Moricz [3], Moricz and Rhoades [4], Başarır and Sonalcan [5] and many others. Hardy [2] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser [6] in her PhD thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [7] have recently introduced the statistical convergence which was further studied in locally solid Riesz spaces [8]. Nextly, Mursaleen [9] and Mursaleen and Savas [10] have defined the almost regularity and almost strong regularity of matrices for double sequences and applied these matrices to establish core theorems and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{k,l})$ into one whose core is a subset of the *M*-core of *x*. More recently, Altay and Başar [11] have defined the spaces \mathcal{BS} , $\mathcal{BS}(t)$, \mathcal{CS}_p , \mathcal{CS}_{bp} , \mathcal{CS}_r and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces \mathcal{M}_u , $\mathcal{M}_u(t)$, \mathcal{C}_p , \mathcal{C}_{bp} , \mathcal{C}_r and \mathcal{L}_u , respectively and also examined some properties of these sequence spaces and determined the α -duals of the spaces \mathcal{BS} , \mathcal{BV} , \mathcal{CS}_{bp} and the $\beta(\nu)$ -duals of the spaces CS_{bp} and CS_r of double series. Recently Başar and Sever [12] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Now, recently Raj and Sharma [13] have introduced entire double sequence spaces. By the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a double sequence $x = (x_{k,l})$ has Pringsheim limit *L* (denoted by *P*-lim x = L) provided that given $\epsilon > 0$ there exists $n \in N$ such that $|x_{k,l} - L| < \epsilon$ whenever k, l > n, see [14]. The double

©2014 Alotaibi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. sequence $x = (x_{k,l})$ is bounded if there exists a positive number M such that $|x_{k,l}| < M$ for all k and l.

Throughout this paper, \mathbb{N} and \mathbb{C} denote the set of positive integers and complex numbers, respectively. A complex double sequence is a function x from $N \times \mathbb{N}$ into \mathbb{C} and briefly denoted by $\{x_{k,l}\}$. If for all $\epsilon > 0$, there is $n_{\epsilon} \in \mathbb{N}$ such that $|x_{k,l} - a| < \epsilon$ where $k > n_{\epsilon}$ and $l > n_{\epsilon}$, then a double sequence $\{x_{k,l}\}$ is said to be convergent to $a \in \mathbb{C}$. A real double sequence $\{x_{k,l}\}$ is non-decreasing, if $x_{k,l} \leq x_{p,q}$ for (k,l) < (p,q). A double series is infinite sum $\sum_{k,l=1}^{\infty} x_{k,l}$ and its convergence implies the convergence of partial sums sequence $\{S_{n,m}\}$, where $S_{n,m} = \sum_{k=1}^{m} \sum_{l=1}^{n} x_{k,l}$ (see [15]). For recent development on double sequences, we refer to [16–20] and [21–23].

A double sequence space *E* is said to be solid if $\{x_{k,l}y_{k,l}\} \in E$ for all double sequences $\{y_{k,l}\}$ of scalars such that $|y_{k,l}| < 1$ for all $k, l \in N$ whenever $\{x_{k,l}\} \in E$.

Let $x = \{x_{k,l}\}$ be a double sequence. A set S(x) is defined by

$$S(x) = \{ \{ X_{\pi_1(k),\pi_2(k)} \} : \pi_1 \text{ and } \pi_2 \text{ are permutation of } \mathbb{N} \}.$$

If $S(x) \subseteq E$ for all $x \in E$, then E is said to be symmetric. Now let \mathcal{P}_s be a family of subsets σ having at most elements s in \mathbb{N} . Also $\mathcal{P}_{s,t}$ denotes the class of subsets $\sigma = \sigma_1 \times \sigma_2$ in $\mathbb{N} \times \mathbb{N}$ such that the element numbers of σ_1 and σ_2 are at most s and t, respectively. Besides $\{\phi_{k,l}\}$ is taken as a non-decreasing double sequence of the positive real numbers such that

$$k\phi_{k+1,l} \le (k+1)\phi_{k,l},$$
$$l\phi_{k,l+1} \le (l+1)\phi_{k,l}.$$

An Orlicz function $M : [0, \infty) \to [0, \infty)$ is a continuous, non-decreasing, and convex function such that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

Lindenstrauss and Tzafriri [24] used the idea of Orlicz function to define the following sequence space:

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\},\,$$

which is called an Orlicz sequence space. Also ℓ_M is a Banach space with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

Also, it was shown that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p ($p \ge 1$). The Δ_2 -condition is equivalent to $M(Lx) \le LM(x)$, for all L with 0 < L < 1. An Orlicz function M can always be represented in the following integral form:

$$M(x)=\int_0^x \eta(t)\,dt,$$

where η , known as the kernel of M, is right differentiable for $t \ge 0$, $\eta(0) = 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

For further reading on Orlicz spaces, we refer to [25–29].

Let *X* be a linear metric space. A function $p: X \to \mathbb{R}$ is called a paranorm if

- (1) $p(x) \ge 0$ for all $x \in X$,
- (2) p(-x) = p(x) for all $x \in X$,
- (3) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$,
- (4) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm *p* for which p(x) = 0 implies x = 0 is called a total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30], Theorem 10.4.2, p.183).

The concept of 2-normed spaces was initially developed by Gähler [31] in the mid-1960s, while that of *n*-normed spaces one can see in Misiak [32]. Since then, many others have studied this concept and obtained various results; see Gunawan [33, 34] and Gunawan and Mashadi [35] and references therein. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is the field of real or complex numbers of dimension d, where $d \ge n \ge 2$. A real valued function $\|\cdot, \ldots, \cdot\|$ on X^n satisfying the following four conditions:

- (1) $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in *X*;
- (2) $||x_1, x_2, ..., x_n||$ is invariant under permutation;
- (3) $\|\alpha x_1, x_2, \dots, x_n\| = |\alpha| \|x_1, x_2, \dots, x_n\|$ for any $\alpha \in \mathbb{K}$, and
- (4) $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called a *n*-norm on *X*, and the pair $(X, \|\cdot, \dots, \cdot\|)$ is called a *n*-normed space over the field \mathbb{K} . For example, we may take $X = \mathbb{R}^n$ being equipped with the Euclidean *n*-norm $\|x_1, x_2, \dots, x_n\|_E$, the volume of the *n*-dimensional parallelepiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

 $||x_1, x_2, \ldots, x_n||_E = |\det(x_{ij})|,$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n. Let $(X, \|\cdot, ..., \cdot\|)$ be a *n*-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, ..., a_n\}$ be linearly independent set in *X*. Then the function $\|\cdot, ..., \cdot\|_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \dots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \dots, x_{n-1}, a_i|| : i = 1, 2, \dots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \ldots, a_n\}$.

A sequence (x_k) in a *n*-normed space $(X, \|\cdot, \dots, \cdot\|)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} \|x_k - L, z_1, \dots, z_{n-1}\| = 0 \quad \text{for every } z_1, \dots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, \|\cdot, \dots, \cdot\|)$ is said to be Cauchy if

$$\lim_{\substack{k \to \infty \\ p \to \infty}} \|x_k - x_p, z_1, \dots, z_{n-1}\| = 0 \quad \text{for every } z_1, \dots, z_{n-1} \in X.$$

If every Cauchy sequence in *X* converges to some $L \in X$, then *X* is said to be complete with respect to the *n*-norm. Any complete *n*-normed space is said to be *n*-Banach space.

$$m(\phi) = \left\{ x = (x_k) \in w : \|x\|_{m(\phi)} = \sup_{s \ge 1, \sigma \in \mathcal{P}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \right\},$$

which was further studied in [37, 38] and [39]. Recently, Duyar and Oğur [40] introduced the sequence space $m^2(M, A, \phi, p)$ and studied some of its properties.

Let $A = (a_{ijkl})$ be an infinite double matrix of complex numbers, $\mathcal{M} = (M_{k,l})$ be a sequence of Orlicz functions, and $p = (p_{k,l})$ be a bounded double sequence of positive real numbers. In the present paper we define the following sequence space:

$$m^{2}(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$$

$$= \left\{ x = (x_{k,l}) \in w^{2}(X) : \sup\left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \ge (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} < \infty \text{ for some } \rho > 0 \right\},$$

where $A(x) = (A_{ij}(x))$ if $A_{ij}(x) = \sum_{k,l=1}^{\infty} a_{ijkl} x_{k,l}$ converges for each $(i,j) \in \mathbb{N} \times \mathbb{N}$. If $p = (p_{ij}) = 1$, we have

$$m^{2}(\mathcal{M}, A, \phi, \|\cdot, \dots, \cdot\|)$$

$$= \left\{ x = (x_{k,l}) \in w^{2}(X) : \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) : (s,t) \ge (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} < \infty \text{ for some } \rho > 0 \right\}.$$

The following inequality will be used throughout the paper:

$$|a+b|^{p_{ij}} \le \max(1, 2^{H-1}) (|a|^{p_{ij}} + |b|^{p_{ij}}), \tag{1.1}$$

where $a, b \in \mathbb{C}$ and $H = \sup\{p_{ij} : (i, j) \in \mathbb{N} \times \mathbb{N}\}.$

We examine some topological properties of $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ and establish some inclusion relations.

2 Main results

Theorem 2.1 Let $\mathcal{M} = (\mathcal{M}_{k,l})$ be a sequence of Orlicz functions and $p = (p_{k,l})$ be a bounded sequence of positive real numbers, then the space $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ is linear space over the field of complex number \mathbb{C} .

Proof Let $x = (x_{k,l}), y = (y_{k,l}) \in m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(x)}{\rho_1},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<\infty$$

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(y)}{\rho_2},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<\infty.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since \mathcal{M} is a non-decreasing and convex function, we have

$$\begin{split} &\sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{A_{ij}(\alpha x + \beta y)}{\rho_{3}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \\ &\leq \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{\alpha a_{ijkl} x_{k,l} + \beta a_{ijkl} y_{k,l}}{\rho_{3}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \\ &\leq \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{\alpha a_{ijkl} x_{k,l}}{2|\alpha|\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| + \left\| \frac{\beta a_{ijkl} y_{k,l}}{2|\beta|\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \\ &= \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{a_{ijkl} x_{k,l}}{2\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| + \left\| \frac{a_{ijkl} y_{k,l}}{2\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \\ &\leq \max(1, 2^{H-1}) \bigg(\sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{a_{ijkl} y_{k,l}}{2\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \\ &+ \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \bigg(\left\| \frac{a_{ijkl} y_{k,l}}{2\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \bigg)^{p_{ij}} \bigg). \end{split}$$

Thus, we have

$$\begin{split} \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(\alpha x + \beta y)}{\rho_{3}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) &\geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &\leq \max(1, 2^{H-1}) \left\{ \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{a_{ijkl} x_{k,l}}{2\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) &\geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &+ \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} M_{k,l} \left(\left\| \frac{a_{ijkl} y_{k,l}}{2\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) &\geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \right\}. \end{split}$$

This proves that $\alpha x + \beta y \in m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$. Hence $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ is a linear space. This completes the proof of the theorem.

Theorem 2.2 $\mathcal{M} = (M_{k,l})$ be a sequence of Orlicz functions and $p = (p_{k,l})$ be a bounded sequence of positive real numbers, then the space $m^2(\mathcal{M}, A, \phi, p, \|\cdot, ..., \cdot\|)$ is a paranormed

and

space with the paranorm defined by

$$g(x) = \inf \left\{ \rho^{\frac{p_{qr}}{H}} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_1} \sum_{j \in \sigma_2} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_1, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \ge (1,1), \sigma_1 \times \sigma_2 \in \mathcal{P}_{s,t} \right\} \le 1 \right]^{1/H}, q \in \mathbb{N}, r \in \mathbb{N} \right\}.$$

Proof It is clear that g(x) = g(-x) and g(x) = 0 if x = 0. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_{1}}\sum_{j\in\sigma_{2}}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(x)}{\rho_{1}},z_{1},\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_{1}\times\sigma_{2}\in\mathcal{P}_{s,t}\right\}<1$$

and

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(y)}{\rho_2},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<1.$$

Then, by using Minkowski's inequality, we have

$$\begin{split} \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x+y)}{\rho_{1}+\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) &\geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &\leq \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho_{1}+\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right) \\ &+ \left\| \frac{A_{ij}(y)}{\rho_{1}+\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &\leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}} \right)^{h} \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &+ \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \right)^{h} \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(y)}{\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\}, \end{split}$$

where $h = \inf p_{ij}$. This shows that $g(x + y) \le g(x) + g(y)$. Using this triangle inequality we can write

$$g(\lambda^n x^n - \lambda x) \leq g(\lambda^n x^n - \lambda^n x) + g(\lambda^n x - \lambda x).$$

Thus we have

$$\begin{split} g(\lambda^{n}x^{n} - \lambda^{n}x) \\ &= \inf \left\{ \rho_{n}^{\frac{p_{qr}}{H}} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(\lambda^{n}x^{n} - \lambda^{n}x)}{\rho_{n}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \geq (1,1), \sigma_{1}\sigma_{2} \in \mathcal{P}_{s,t} \right\} \leq 1 \right]^{1/H} \leq 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &= \inf \left\{ \rho_{n}^{p_{qr}/H} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x^{n} - x)}{(\rho_{n}/|\lambda^{n}|)}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \leq 1 \right]^{1/H} \leq 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &= \inf \left\{ (\lambda^{n}\rho_{n})^{p_{qr}/H} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x^{n} - x)}{\rho_{n}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \right]^{1/H} \leq 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &\leq \max \{ |\lambda^{n}|^{h/H}, |\lambda^{n}| \} \times \inf \left\{ (|\lambda^{n}|\rho_{n})^{p_{qr}/H} : \\ &\left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x^{n} - x)}{\rho_{n}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \right]^{1/H} \leq 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &= \max \{ |\lambda^{n}|^{h/H}, |\lambda^{n}| \} \cdot g(x^{n} - x). \end{split}$$

Thus

$$\begin{split} g(\lambda^{n}x - \lambda x) \\ &= \inf \left\{ \rho_{n}^{p_{qr}/H} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}((\lambda^{n} - \lambda)x)}{\rho_{n}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \ge (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \right]^{1/H} \le 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &= \inf \left\{ \rho_{n}^{p_{qr}/H} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho_{n}/|\lambda^{n} - \lambda|}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \\ &(s,t) \ge (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \right]^{1/H} \le 1, q \in \mathbb{N}, r \in \mathbb{N} \right\} \\ &= \inf \left\{ \left(\left| \lambda^{n} - \lambda \right| \rho_{n} \right)^{p_{qr}/H} : \left[\sup \left\{ \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l} \left(\left\| \frac{A_{ij}(x)}{\rho_{n}}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} : \right. \end{split}$$

$$(s,t) \ge (1,1), \sigma_1 \times \sigma_2 \in \mathcal{P}_{s,t} \left\{ \left| \lambda^n - \lambda \right|^{h/H}, \left| \lambda^n - \lambda \right| \right\} g(x).$$

Hence $g(\lambda^n x^n - \lambda x) \to 0$ where $\lambda^n \to \lambda$ and $x^n \to x$ as $n \to \infty$. This proves that $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$ is a paranormed space with the paranorm defined by g. This completes the proof of the theorem.

Theorem 2.3 Let ϕ and ψ be two double sequences then $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \ldots, \cdot\|) \subseteq m^2(\mathcal{M}, A, \psi, p, \|\cdot, \ldots, \cdot\|)$ if and only if $\sup_{(s,t)>(1,1)}(\phi_{s,t}/\psi_{s,t}) < \infty$.

Proof Let $K = \sup_{(s,t)\geq(1,1)}(\phi_{s,t}/\psi_{s,t}) < \infty$. Then $\phi_{s,t} \leq K \cdot \psi_{s,t}$ for all $(s,t) \geq (1,1)$. If $x = \{x_{k,l}\} \in m^2(\mathcal{M}, A, \phi, p, \|, \dots, \cdot\|)$, then

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(x)}{\rho},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}$$

 $<\infty$ for some $\rho > 0$.

Thus

$$\sup\left\{\frac{1}{K\psi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(x)}{\rho},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}$$

<\infty for some \(\rho\) > 0,

and hence $x = \{x_{k,l}\} \in m^2(\mathcal{M}, A, \psi, p, \|\cdot, \dots, \cdot\|)$. This shows that

$$m^2(\mathcal{M}, A, \phi, p, \|\cdot, \ldots, \cdot\|) \subseteq m^2(\mathcal{M}, A, \psi, p, \|\cdot, \ldots, \cdot\|).$$

Conversely, let $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|) \subseteq m^2(\mathcal{M}, A, \psi, p, \|\cdot, \dots, \cdot\|)$ and $\alpha_{s,t} = \frac{\phi_{s,t}}{\psi_{s,t}}$ for all $(s, t) \ge (1, 1)$, and suppose $\sup_{(s,t)\ge (1,1)} \alpha_{s,t} = \infty$. Then there exists a subsequence $\{\alpha_{s_i,t_i}\}$ of $\{\alpha_{s,t}\}$ such that $\lim_{i\to\infty} \alpha_{s_i,t_i} = \infty$. If $x = \{x_{k,l}\} \in m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$, then we have

$$\begin{split} \sup \left\{ \frac{1}{\psi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l}^{\infty} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{P_{ij}} : (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &= \sup \left\{ \alpha_{s,t} \frac{1}{\phi_{s,t}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l}^{\infty} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{P_{ij}} : (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} \\ &\geq \left\{ \sup_{m \geq 1} \alpha_{s_{m},t_{m}} \right\} \sup \left\{ \frac{1}{\phi_{s_{m},t_{m}}} \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M_{k,l}^{\infty} \left(\left\| \frac{A_{ij}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{P_{ij}} : (s,t) \geq (1,1), \sigma_{1} \times \sigma_{2} \in \mathcal{P}_{s,t} \right\} = \infty. \end{split}$$

This is a contradiction as $x = \{x_{k,l}\} \notin m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$. This completes the proof of the theorem.

Corollary 2.4 Let ϕ and ψ be two double sequences then $m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|) = m^2(\mathcal{M}, A, \psi, p, \|\cdot, \dots, \cdot\|)$ if and only if $\sup_{(s,t)>(1,1)} \alpha_{s,t} < \infty$ and $\sup_{(s,t)>(1,1)} \alpha_{s,t}^{-1} < \infty$.

Proof It is easy to prove so we omit the details.

Theorem 2.5 Let $\mathcal{M} = (M_{k,l})$, $\mathcal{M}' = (M'_{k,l})$ and $\mathcal{M}'' = (M''_{k,l})$ be sequences of Orlicz functions satisfying Δ_2 -condition. Then

- (i) $m^2(\mathcal{M},\phi, \|\cdot,\ldots,\cdot\|) \subseteq m^2(\mathcal{M} \circ \mathcal{M}',\phi, \|\cdot,\ldots,\cdot\|),$
- (ii) $m^2(\mathcal{M}', A, \phi, p, \|\cdot, \dots, \cdot\|) \cap m^2(\mathcal{M}'', A, \phi, p, \|\cdot, \dots, \cdot\|) \subseteq m^2(\mathcal{M}' + \mathcal{M}'', A, \phi, p, \|\cdot, \dots, \cdot\|).$

Proof (i) Let $x = \{x_{k,l}\} \in m^2(\mathcal{M}, A, \phi, p, \|\cdot, \dots, \cdot\|)$. Then there exists $\rho > 0$ such that

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}\left(\left\|\frac{A_{ij}(x)}{\rho},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<\infty.$$

By the continuity of \mathcal{M} , we can take a number δ with $0 < \delta < 1$ such that $M_{k,l}(t) < \epsilon$, whenever $0 \le t < \delta$, for arbitrary $0 < \epsilon < 1$. Now let

$$y_{i,j} = \left(\left\| \frac{A_{i,j}(x)}{\rho}, z_1, \ldots, z_{n-1} \right\| \right).$$

Thus we have

$$\sum_{i \in \sigma_1} \sum_{j \in \sigma_2} \sum_{k,l=1}^{\infty} M_{k,l}(y_{i,j})^{p_{i,j}} = \sum_{y_{i,j} \le \delta} \sum_{k,l=1}^{\infty} M_{k,l}(y_{i,j})^{p_{i,j}} + \sum_{y_{i,j} > \delta} \sum_{k,l=1}^{\infty} M_{k,l}(y_{i,j})^{p_{i,j}}.$$

By the properties of the Orlicz function we have

$$\sum_{y_{i,j} \le \infty} \sum_{k,l=1}^{\infty} M_{k,l}(y_{i,j})^{p_{i,j}} \le \max\left\{1, M_{k,l}(1)^H\right\} \sum_{y_{i,j} \le \infty} (y_{i,j})^{p_{i,j}}.$$

Again, we have

$$M_{k,l}(y_{i,j}) < M_{k,l}\left(1 + \frac{y_{i,j}}{\delta}\right) < \frac{1}{2}M_{k,l}(2) + \frac{1}{2}M_{k,l}\left(\frac{2y_{i,j}}{\delta}\right)$$

for $y_{i,j} > \delta$. If \mathcal{M} satisfies the Δ_2 -condition, then we have

$$M_{k,l}(y_{i,j}) < \frac{1}{2}T\frac{y_{i,j}}{\delta}M_{k,l}(2) + \frac{1}{2}T\frac{y_{i,j}}{\delta}M_{k,l}(2),$$

and so

$$\sum_{y_{i,j}>\delta} M_{k,l}(y_{i,j})^{p_{i,j}} \leq \max\left(1, \left(\frac{T}{\delta}M_{k,l}(2)\right)^H\right) \sum_{y_{i,j}>\delta} y_{i,j}.$$

Hence, we have

Thus, we have $x = \{x_{k,l}\} \in m^2(\mathcal{M} \circ \mathcal{M}', \phi, \|\cdot, \dots, \cdot\|)$ and hence $m^2(\mathcal{M}, \phi, \|\cdot, \dots, \cdot\|) \subseteq m^2(\mathcal{M} \circ \mathcal{M}', \phi, \|\cdot, \dots, \cdot\|)$.

(ii) Let $x = \{x_{k,l}\} \in m^2(\mathcal{M}', A, \phi, p, \|\cdot, \dots, \cdot\|) \cap m^2(\mathcal{M}'', A, \phi, p, \|\cdot, \dots, \cdot\|)$. Then there exists a $\rho > 0$ such that

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M'_{k,l}\left(\left\|\frac{A_{i,j}(x)}{\rho},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<\infty$$

and

$$\sup\left\{\frac{1}{\phi_{s,t}}\sum_{i\in\sigma_1}\sum_{j\in\sigma_2}\sum_{k,l=1}^{\infty}M_{k,l}''\left(\left\|\frac{A_{i,j}(x)}{\rho},z_1,\ldots,z_{n-1}\right\|\right)^{p_{ij}}:(s,t)\geq(1,1),\sigma_1\times\sigma_2\in\mathcal{P}_{s,t}\right\}<\infty.$$

By the inequality, we have

$$\begin{split} &\sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} (M'_{k,l} + M''_{k,l}) \left(\left\| \frac{A_{i,j}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} \\ &\leq \max(1, 2^{H-1}) \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M'_{k,l} \left(\left\| \frac{A_{i,j}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}} \\ &+ \max(1, 2^{H-1}) \sum_{i \in \sigma_{1}} \sum_{j \in \sigma_{2}} \sum_{k,l=1}^{\infty} M''_{k,l} \left(\left\| \frac{A_{i,j}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right)^{p_{ij}}. \end{split}$$

Hence

$$m^{2}(\mathcal{M}', A, \phi, p, \|\cdot, \ldots, \cdot\|) \cap m^{2}(\mathcal{M}'', A, \phi, p, \|\cdot, \ldots, \cdot\|)$$
$$\subseteq m^{2}(\mathcal{M}' + \mathcal{M}'', A, \phi, p, \|\cdot, \ldots, \cdot\|).$$

This completes the proof of the theorem.

Theorem 2.6 The sequence space $m^2(\mathcal{M}, \phi, p, \|\cdot, \dots, \cdot\|)$ is solid.

Proof Let $\alpha = \{\alpha_{k,l}\}$ be a double sequence of scalars such that $|\alpha_{k,l}| \le 1$ and $y = \{y_{k,l}\} \in m^2(\mathcal{M}, \phi, p, \|\cdot, \dots, \cdot\|)$. Then we have

$$\begin{split} \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{k \in \sigma_1} \sum_{l \in \sigma_2} M_{k,l} \left(\left\| \frac{\alpha_{k,l} x_{k,l}}{\rho}, z_1, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \ge (1,1), \sigma_1 \times \sigma_2 \in \mathcal{P}_{s,t} \right\} \\ &\le \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{k \in \sigma_1} \sum_{l \in \sigma_2} M_{k,l} \left(\left\| \frac{\alpha_{k,l} y_{k,l}}{\rho}, z_1, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \ge (1,1), \sigma_1 \times \sigma_2 \in \mathcal{P}_{s,t} \right\} \\ &\le \sup \left\{ \frac{1}{\phi_{s,t}} \sum_{k \in \sigma_1} \sum_{l \in \sigma_2} M_{k,l} \left(\left\| \frac{y_{k,l}}{\rho}, z_1, \dots, z_{n-1} \right\| \right)^{p_{ij}} : (s,t) \ge (1,1), \sigma_1 \times \sigma_2 \in \mathcal{P}_{s,t} \right\}. \end{split}$$

This implies that $\{\alpha_{k,l}y_{k,l}\} \in m^2(\mathcal{M}, \phi, p, \|\cdot, \dots, \cdot\|)$. This proves that the space $m^2(\mathcal{M}, \phi, p, \|\cdot, \dots, \cdot\|)$ is a solid.

Corollary 2.7 The sequence space $m^2(\mathcal{M}, \phi, p, \|\cdot, \dots, \cdot\|)$ is monotone.

Proof It is trivial so we omit the details.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Faculty of Science, King Abdulaziz University, PO. Box 80203, Jeddah, 21589, Saudi Arabia. ²Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India. ³Department of Mathematics, Model Institute of Engineering and Technology, Kot Bhalwal, JK 181122, India.

Received: 21 February 2014 Accepted: 9 May 2014 Published: 29 May 2014

References

- 1. Bromwich, TJ: An Introduction to the Theory of Infinite Series. Macmillan Co., New York (1965)
- 2. Hardy, GH: On the convergence of certain multiple series. Proc. Camb. Philos. Soc. 19, 86-95 (1917)
- 3. Moricz, F: Extension of the spaces c and c_0 from single to double sequences. Acta Math. Hung. 57, 129-136 (1991)
- 4. Moricz, F, Rhoades, BE: Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Philos. Soc. **104**, 283-294 (1988)
- 5. Başarır, M, Sonalcan, O: On some double sequence spaces. J. Indian Acad. Math. 21, 193-200 (1999)
- 6. Zeltser, M: Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods. Diss. Math. Univ. Tartu, vol. 25. Tartu University Press, Tartu (2001)
- 7. Mursaleen, M, Edely, OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 288(1), 223-231 (2003)
- Mohiuddine, SA, Alotaibi, A, Mursaleen, M: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012, Article ID 719729 (2012). doi:10.1155/2012/719729
- Mursaleen, M: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 293(2), 523-531 (2004)
- 10. Mursaleen, M, Savas, E: Almost regular matrices for double sequences. Studia Sci. Math. Hung. 40, 205-212 (2003)
- 11. Altay, B, Başar, F: Some new spaces of double sequences. J. Math. Anal. Appl. 309, 70-90 (2005)
- 12. Başar, F, Sever, Y: The space \mathcal{L}_q of double sequences. Math. J. Okayama Univ. **51**, 149-157 (2009)
- 13. Raj, K, Sharma, SK: Some multiplier double sequence spaces. Acta Math. Vietnam. 37, 391-406 (2012)
- 14. Pringsheim, A: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53, 289-321 (1900)
- 15. Limaye, BV, Zeltser, M: On the Pringsheim convergence of double series. Proc. Est. Acad. Sci. 58, 108-121 (2009)
- Cakan, C, Altay, B, Mursaleen, M: The σ-convergence and σ-core of double sequences. Appl. Math. Lett. 19, 1122-1128 (2006)
- 17. Mursaleen, M, Mohiuddine, SA: Double σ -multiplicative matrices. J. Math. Anal. Appl. 327, 991-996 (2007)
- 18. Mursaleen, M, Mohiuddine, SA: Regularly σ -conservative and σ -coercive four dimensional matrices. Comput. Math. Appl. 56, 1580-1586 (2008)
- Mursaleen, M, Mohiuddine, SA: On σ-conservative and boundedly σ-conservative four dimensional matrices. Comput. Math. Appl. 59, 880-885 (2010)

- 20. Mursaleen, M, Mohiuddine, SA: Convergence Methods for Double Sequences and Applications. Springer, Berlin (2014)
- 21. Mohiuddine, SA, Alotaibi, A: Some spaces of double sequences obtained through invariant mean and related concepts. Abstr. Appl. Anal. **2013**, Article ID 507950 (2013)
- 22. Mohiuddine, SA, Raj, K, Alotaibi, A: Some paranormed double difference sequence spaces for Orlicz functions and bounded-regular matrices. Abstr. Appl. Anal. 2014, Article ID 419064 (2014)
- 23. Sharma, SK, Raj, K, Sharma, AK: Some new double sequence spaces over *n*-normed space. Int. J. Appl. Math. 25, 255-269 (2012)
- 24. Lindenstrauss, J, Tzafriri, L: On Orlicz sequence spaces. Isr. J. Math. 10, 345-355 (1971)
- 25. Musielak, J: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034 (1983)
- 26. Maligranda, L: Orlicz Spaces and Interpolation. Seminars in Mathematics, vol. 5. Polish Academy of Science, Warsaw (1989)
- Raj, K, Sharma, SK: Some multiplier sequence spaces defined by a Musielak-Orlicz function in *n*-normed spaces. N.Z. J. Math. 42, 45-56 (2012)
- 28. Raj, K, Sharma, SK: Some double sequence spaces defined by a sequence of Orlicz function. J. Math. Anal. 3, 12-20 (2012)
- Raj, K, Sharma, SK: Some generalized difference double sequence spaces defined by a sequence of Orlicz-function. CUBO 14, 167-189 (2012)
- 30. Wilansky, A: Summability Through Functional Analysis. North-Holland Math. Stud., vol. 85 (1984)
- 31. Gähler, S: Lineare 2-normierte Räume. Math. Nachr. 28, 1-43 (1965)
- 32. Misiak, A: n-Inner product spaces. Math. Nachr. 140, 299-319 (1989)
- 33. Gunawan, H: On *n*-inner product, *n*-norms, and the Cauchy-Schwartz inequality. Sci. Math. Jpn. 5, 47-54 (2001)
- 34. Gunawan, H: The space of *p*-summable sequence and its natural *n*-norm. Bull. Aust. Math. Soc. 64, 137-147 (2001)
- 35. Gunawan, H, Mashadi, M: On n-normed spaces. Int. J. Math. Math. Sci. 27, 631-639 (2001)
- 36. Sargent, WLC: Some sequence spaces related to the l_p spaces. J. Lond. Math. Soc. **35**, 161-171 (1960)
- Malkowsky, E, Mursaleen, M: Matrix transformations between FK-spaces and the sequence spaces m(φ) and n(φ).
 J. Math. Anal. Appl. 196, 659-665 (1995)
- 38. Tripathy, BC, Sen, M: On a new class of sequences related to the space I_{ρ} . Tamkang J. Math. **33**, 167-171 (2002)
- 39. Mursaleen, M: On some geometric properties of a sequence space related to ℓ_p . Bull. Aust. Math. Soc. **67**, 343-347 (2003)
- 40. Duyar, C, Oğur, O: On a new space *m*²(*M*,*A*,*φ*,*p*) of double sequences. J. Funct. Spaces Appl. **2013**, Article ID 509613 (2013)

10.1186/1029-242X-2014-216

Cite this article as: Alotaibi et al.: **Double sequence spaces over** *n***-normed spaces defined by a sequence of Orlicz functions**. *Journal of Inequalities and Applications* **2014**, **2014**:216

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com