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1 Introduction and preliminaries
The initial works on double sequences is found in Bromwich []. Later on, it was studied
by Hardy [], Moricz [], Moricz and Rhoades [], Başarır and Sonalcan [] andmany oth-
ers. Hardy [] introduced the notion of regular convergence for double sequences. Quite
recently, Zeltser [] in her PhD thesis has essentially studied both the theory of topologi-
cal double sequence spaces and the theory of summability of double sequences.Mursaleen
and Edely [] have recently introduced the statistical convergence which was further stud-
ied in locally solid Riesz spaces []. Nextly, Mursaleen [] and Mursaleen and Savas []
have defined the almost regularity and almost strong regularity of matrices for double se-
quences and applied thesematrices to establish core theorems and introduced theM-core
for double sequences and determined those four dimensional matrices transforming ev-
ery bounded double sequences x = (xk,l) into one whose core is a subset of theM-core of x.
More recently, Altay and Başar [] have defined the spaces BS , BS(t), CSp, CSbp, CSr and
BV of double sequences consisting of all double series whose sequence of partial sums are
in the spaces Mu, Mu(t), Cp, Cbp, Cr and Lu, respectively and also examined some prop-
erties of these sequence spaces and determined the α-duals of the spaces BS , BV , CSbp

and the β(v)-duals of the spaces CSbp and CSr of double series. Recently Başar and Sever
[] have introduced the Banach space Lq of double sequences corresponding to the well
known space �q of single sequences and examined some properties of the space Lq. Now,
recently Raj and Sharma [] have introduced entire double sequence spaces. By the con-
vergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a
double sequence x = (xk,l) has Pringsheim limit L (denoted by P-limx = L) provided that
given ε >  there exists n ∈N such that |xk,l –L| < ε whenever k, l > n, see []. The double
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sequence x = (xk,l) is bounded if there exists a positive number M such that |xk,l| <M for
all k and l.
Throughout this paper, N and C denote the set of positive integers and complex num-

bers, respectively. A complex double sequence is a function x from N × N into C and
briefly denoted by {xk,l}. If for all ε > , there is nε ∈ N such that |xk,l – a| < ε where k > nε

and l > nε , then a double sequence {xk,l} is said to be convergent to a ∈C. A real double se-
quence {xk,l} is non-decreasing, if xk,l ≤ xp,q for (k, l) < (p,q). A double series is infinite sum∑∞

k,l= xk,l and its convergence implies the convergence of partial sums sequence {Sn,m},
where Sn,m =

∑m
k=

∑n
l= xk,l (see []). For recent development on double sequences, we

refer to [–] and [–].
A double sequence space E is said to be solid if {xk,lyk,l} ∈ E for all double sequences

{yk,l} of scalars such that |yk,l| <  for all k, l ∈N whenever {xk,l} ∈ E.
Let x = {xk,l} be a double sequence. A set S(x) is defined by

S(x) =
{{Xπ(k),π(k)} : π and π are permutation of N

}
.

If S(x)⊆ E for all x ∈ E, then E is said to be symmetric. Now let Ps be a family of subsets σ

having at most elements s in N. Also Ps,t denotes the class of subsets σ = σ × σ in N×N

such that the element numbers of σ and σ are at most s and t, respectively. Besides {φk,l}
is taken as a non-decreasing double sequence of the positive real numbers such that

kφk+,l ≤ (k + )φk,l,

lφk,l+ ≤ (l + )φk,l.

AnOrlicz functionM : [,∞)→ [,∞) is a continuous, non-decreasing, and convex func-
tion such thatM() = ,M(x) >  for x >  andM(x)→ ∞ as x → ∞.
Lindenstrauss and Tzafriri [] used the idea of Orlicz function to define the following

sequence space:

�M =

{
x ∈ w :

∞∑
k=

M
( |xk|

ρ

)
< ∞

}
,

which is called an Orlicz sequence space. Also �M is a Banach space with the norm

‖x‖ = inf

{
ρ >  :

∞∑
k=

M
( |xk|

ρ

)
≤ 

}
.

Also, it was shown that every Orlicz sequence space �M contains a subspace isomorphic
to �p (p ≥ ). The 
-condition is equivalent to M(Lx) ≤ LM(x), for all L with  < L < .
An Orlicz functionM can always be represented in the following integral form:

M(x) =
∫ x


η(t)dt,

where η, known as the kernel of M, is right differentiable for t ≥ , η() = , η(t) > , η is
non-decreasing and η(t)→ ∞ as t → ∞.
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For further reading on Orlicz spaces, we refer to [–].
Let X be a linear metric space. A function p : X →R is called a paranorm if
() p(x) ≥  for all x ∈ X ,
() p(–x) = p(x) for all x ∈ X ,
() p(x + y) ≤ p(x) + p(y) for all x, y ∈ X ,
() if (λn) is a sequence of scalars with λn → λ as n→ ∞ and (xn) is a sequence of

vectors with p(xn – x)→  as n→ ∞, then p(λnxn – λx)→  as n→ ∞.
A paranorm p for which p(x) =  implies x =  is called a total paranorm and the pair

(X,p) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm (see [], Theorem .., p.).
The concept of -normed spaceswas initially developed byGähler [] in themid-s,

while that of n-normed spaces one can see in Misiak []. Since then, many others have
studied this concept and obtained various results; see Gunawan [, ] and Gunawan
and Mashadi [] and references therein. Let n ∈ N and X be a linear space over the field
K, whereK is the field of real or complex numbers of dimension d, where d ≥ n≥ . A real
valued function ‖·, . . . , ·‖ on Xn satisfying the following four conditions:
() ‖x,x, . . . ,xn‖ =  if and only if x,x, . . . ,xn are linearly dependent in X ;
() ‖x,x, . . . ,xn‖ is invariant under permutation;
() ‖αx,x, . . . ,xn‖ = |α|‖x,x, . . . ,xn‖ for any α ∈K, and
() ‖x + x′,x, . . . ,xn‖ ≤ ‖x,x, . . . ,xn‖ + ‖x′,x, . . . ,xn‖

is called a n-norm on X, and the pair (X,‖·, . . . , ·‖) is called a n-normed space over the
field K. For example, we may take X = R

n being equipped with the Euclidean n-norm
‖x,x, . . . ,xn‖E , the volume of the n-dimensional parallelepiped spanned by the vectors
x,x, . . . ,xn which may be given explicitly by the formula

‖x,x, . . . ,xn‖E =
∣∣det(xij)∣∣,

where xi = (xi,xi, . . . ,xin) ∈ R
n for each i = , , . . . ,n. Let (X,‖·, . . . , ·‖) be a n-normed

space of dimension d ≥ n ≥  and {a,a, . . . ,an} be linearly independent set in X. Then
the function ‖·, . . . , ·‖∞ on Xn– defined by

‖x,x, . . . ,xn–‖∞ =max
{‖x,x, . . . ,xn–,ai‖ : i = , , . . . ,n

}

defines an (n – )-norm on X with respect to {a,a, . . . ,an}.
A sequence (xk) in a n-normed space (X,‖·, . . . , ·‖) is said to converge to some L ∈ X if

lim
k→∞

‖xk – L, z, . . . , zn–‖ =  for every z, . . . , zn– ∈ X.

A sequence (xk) in a n-normed space (X,‖·, . . . , ·‖) is said to be Cauchy if

lim
k→∞
p→∞

‖xk – xp, z, . . . , zn–‖ =  for every z, . . . , zn– ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.
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The spacem(φ) was introduced by Sargent []:

m(φ) =
{
x = (xk) ∈ w : ‖x‖m(φ) = sup

s≥,σ∈Ps


φs

∑
k∈σ

|xk| < ∞
}
,

which was further studied in [, ] and []. Recently, Duyar and Oǧur [] introduced
the sequence spacem(M,A,φ,p) and studied some of its properties.
Let A = (aijkl) be an infinite double matrix of complex numbers, M = (Mk,l) be a se-

quence of Orlicz functions, and p = (pk,l) be a bounded double sequence of positive real
numbers. In the present paper we define the following sequence space:

m(M,A,φ,p,‖·, . . . , ·‖)
=

{
x = (xk,l) ∈ w(X) : sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞ for some ρ > 

}
,

where A(x) = (Aij(x)) if Aij(x) =
∑∞

k,l= aijklxk,l converges for each (i, j) ∈N×N.
If p = (pij) = , we have

m(M,A,φ,‖·, . . . , ·‖)
=

{
x = (xk,l) ∈ w(X) : sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)
:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞ for some ρ > 

}
.

The following inequality will be used throughout the paper:

|a + b|pij ≤max
(
, H–)(|a|pij + |b|pij), (.)

where a,b ∈C and H = sup{pij : (i, j) ∈N×N}.
We examine some topological properties ofm(M,A,φ,p,‖·, . . . , ·‖) and establish some

inclusion relations.

2 Main results
Theorem . LetM = (Mk,l) be a sequence of Orlicz functions and p = (pk,l) be a bounded
sequence of positive real numbers, then the space m(M,A,φ,p,‖·, . . . , ·‖) is linear space
over the field of complex number C.

Proof Let x = (xk,l), y = (yk,l) ∈m(M,A,φ,p,‖·, . . . , ·‖) and α,β ∈C. Then there exist pos-
itive numbers ρ and ρ such that

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}
< ∞
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and

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(y)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞.

Let ρ =max(|α|ρ, |β|ρ). SinceM is a non-decreasing and convex function, we have

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(αx + βy)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

≤
∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥αaijklxk,l + βaijklyk,l
ρ

, z, . . . , zn–
∥∥∥∥
)pij

≤
∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥αaijklxk,l
|α|ρ

, z, . . . , zn–
∥∥∥∥ +

∥∥∥∥βaijklyk,l
|β|ρ

, z, . . . , zn–
∥∥∥∥
)pij

=
∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥aijklxk,lρ
, z, . . . , zn–

∥∥∥∥ +
∥∥∥∥aijklyk,lρ

, z, . . . , zn–
∥∥∥∥
)pij

≤max
(
, H–)(∑

i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥aijklxk,lρ
, z, . . . , zn–

∥∥∥∥
)pij

+
∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥aijklyk,lρ
, z, . . . , zn–

∥∥∥∥
)pij

)
.

Thus, we have

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(αx + βy)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

≤max
(
, H–){sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥aijklxk,lρ
, z, . . . , zn–

∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

+ sup

{


φs,t

∑
i∈σ

∑
j∈σ

Mk,l

(∥∥∥∥aijklyk,lρ
, z, . . . , zn–

∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}}
.

This proves that αx + βy ∈ m(M,A,φ,p,‖·, . . . , ·‖). Hence m(M,A,φ,p,‖·, . . . , ·‖) is a
linear space. This completes the proof of the theorem. �

Theorem . M = (Mk,l) be a sequence of Orlicz functions and p = (pk,l) be a bounded
sequence of positive real numbers, then the space m(M,A,φ,p,‖·, . . . , ·‖) is a paranormed
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space with the paranorm defined by

g(x) = inf

{
ρ

pqr
H :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
≤ 

]/H

,q ∈N, r ∈N

}
.

Proof It is clear that g(x) = g(–x) and g(x) =  if x = . Then there exist positive numbers
ρ and ρ such that

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}
< 

and

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(y)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}
< .

Then, by using Minkowski’s inequality, we have

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x + y)
ρ + ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

≤ sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥ Aij(x)
ρ + ρ

, z, . . . , zn–
∥∥∥∥

+
∥∥∥∥ Aij(y)
ρ + ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}

≤
(

ρ

ρ + ρ

)h
{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

+
(

ρ

ρ + ρ

)h
{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(y)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
,

where h = infpij. This shows that g(x + y) ≤ g(x) + g(y). Using this triangle inequality we
can write

g
(
λnxn – λx

) ≤ g
(
λnxn – λnx

)
+ g

(
λnx – λx

)
.
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Thus we have

g
(
λnxn – λnx

)
= inf

{
ρ

pqr
H

n :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(λnxn – λnx)
ρn

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σσ ∈Ps,t

}
≤ 

]/H

≤ ,q ∈N, r ∈N

}

= inf

{
ρ
pqr/H
n :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(xn – x)
(ρn/|λn|) , z, . . . , zn–

∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
≤ 

]/H

≤ ,q ∈ N, r ∈ N

}

= inf

{(
λnρn

)pqr/H :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(xn – x)
ρn

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}]/H

≤ ,q ∈N, r ∈ N

}

≤max
{∣∣λn∣∣h/H , ∣∣λn∣∣} × inf

{(∣∣λn∣∣ρn
)pqr/H :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(xn – x)
ρn

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}]/H

≤ ,q ∈N, r ∈ N

}

=max
{∣∣λn∣∣h/H , ∣∣λn∣∣} · g(xn – x

)
.

Thus

g
(
λnx – λx

)
= inf

{
ρ
pqr/H
n :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij((λn – λ)x)
ρn

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}]/H

≤ ,q ∈N, r ∈ N

}

= inf

{
ρ
pqr/H
n :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥ Aij(x)
ρn/|λn – λ| , z, . . . , zn–

∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}]/H

≤ ,q ∈N, r ∈ N

}

= inf

{(∣∣λn – λ
∣∣ρn

)pqr/H :

[
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρn

, z, . . . , zn–
∥∥∥∥
)pij

:

http://www.journalofinequalitiesandapplications.com/content/2014/1/216
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(s, t)≥ (, ),σ × σ ∈Ps,t

}]/H

≤ ,q ∈N, r ∈ N

}

≤max
{∣∣λn – λ

∣∣h/H , ∣∣λn – λ
∣∣}g(x).

Hence g(λnxn – λx) →  where λn → λ and xn → x as n → ∞. This proves that
m(M,A,φ,p,‖·, . . . , ·‖) is a paranormed space with the paranorm defined by g . This com-
pletes the proof of the theorem. �

Theorem . Let φ and ψ be two double sequences then m(M,A,φ,p,‖·, . . . , ·‖) ⊆
m(M,A,ψ ,p,‖·, . . . , ·‖) if and only if sup(s,t)≥(,)(φs,t/ψs,t) < ∞.

Proof Let K = sup(s,t)≥(,)(φs,t/ψs,t) < ∞. Then φs,t ≤ K · ψs,t for all (s, t) ≥ (, ). If x =
{xk,l} ∈m(M,A,φ,p,‖·, . . . , ·‖), then

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}

< ∞ for some ρ > .

Thus

sup

{


Kψs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}

< ∞ for some ρ > ,

and hence x = {xk,l} ∈m(M,A,ψ ,p,‖·, . . . , ·‖). This shows that

m(M,A,φ,p,‖·, . . . , ·‖) ⊆m(M,A,ψ ,p,‖·, . . . , ·‖).
Conversely, let m(M,A,φ,p,‖·, . . . , ·‖) ⊆ m(M,A,ψ ,p,‖·, . . . , ·‖) and αs,t = φs,t

ψs,t
for all

(s, t) ≥ (, ), and suppose sup(s,t)≥(,) αs,t = ∞. Then there exists a subsequence {αsi ,ti} of
{αs,t} such that limi→∞ αsi ,ti =∞. If x = {xk,l} ∈m(M,A,φ,p,‖·, . . . , ·‖), then we have

sup

{


ψs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

M∞
k,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}

= sup

{
αs,t


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

M∞
k,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

≥
{
sup
m≥

αsm ,tm

}
sup

{


φsm ,tm

∑
i∈σ

∑
j∈σ

∞∑
k,l=

M∞
k,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}
=∞.
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This is a contradiction as x = {xk,l} /∈m(M,A,φ,p,‖·, . . . , ·‖). This completes the proof of
the theorem. �

Corollary . Let φ and ψ be two double sequences then m(M,A,φ,p,‖·, . . . , ·‖) =
m(M,A,ψ ,p,‖·, . . . , ·‖) if and only if sup(s,t)≥(,) αs,t < ∞ and sup(s,t)≥(,) α

–
s,t < ∞.

Proof It is easy to prove so we omit the details. �

Theorem . Let M = (Mk,l), M′ = (M′
k,l) and M′′ = (M′′

k,l) be sequences of Orlicz func-
tions satisfying 
-condition. Then

(i) m(M,φ,‖·, . . . , ·‖) ⊆m(M ◦M′,φ,‖·, . . . , ·‖),
(ii) m(M′,A,φ,p,‖·, . . . , ·‖)∩m(M′′,A,φ,p,‖·, . . . , ·‖)⊆

m(M′ +M′′,A,φ,p,‖·, . . . , ·‖).

Proof (i) Let x = {xk,l} ∈m(M,A,φ,p,‖·, . . . , ·‖). Then there exists ρ >  such that

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}
< ∞.

By the continuity ofM, we can take a number δ with  < δ <  such thatMk,l(t) < ε, when-
ever  ≤ t < δ, for arbitrary  < ε < . Now let

yi,j =
(∥∥∥∥Ai,j(x)

ρ
, z, . . . , zn–

∥∥∥∥
)
.

Thus we have

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l(yi,j)pi,j =
∑
yi,j≤δ

∞∑
k,l=

Mk,l(yi,j)pi,j +
∑
yi,j>δ

∞∑
k,l=

Mk,l(yi,j)pi,j .

By the properties of the Orlicz function we have

∑
yi,j≤∞

∞∑
k,l=

Mk,l(yi,j)pi,j ≤max
{
,Mk,l()H

} ∑
yi,j≤∞

(yi,j)pi,j .

Again, we have

Mk,l(yi,j) <Mk,l

(
 +

yi,j
δ

)
<


Mk,l() +



Mk,l

(
yi,j
δ

)

for yi,j > δ. IfM satisfies the 
-condition, then we have

Mk,l(yi,j) <


T
yi,j
δ
Mk,l() +



T
yi,j
δ
Mk,l(),

and so

∑
yi,j>δ

Mk,l(yi,j)pi,j ≤max

(
,

(
T
δ
Mk,l()

)H) ∑
yi,j>δ

yi,j.
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Hence, we have

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l

(
M′

k,l

(∥∥∥∥Aij(x)
ρ

, z, . . . , zn–
∥∥∥∥
))pij

:

(s, t)≥ (, ),σ × σ ∈Ps,t

}

< ∞

≤max
{
,Mk,l()H

}
sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l(yi,j)pij : (s, t)≥ (, ),σ × σ ∈Ps,t

}

< ∞ +max

(
,

(
T
δ
Mk,l()

)H)

× sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

Mk,l(yi,j)pij : (s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞.

Thus, we have x = {xk,l} ∈ m(M ◦ M′,φ,‖·, . . . , ·‖) and hence m(M,φ,‖·, . . . , ·‖) ⊆
m(M ◦M′,φ,‖·, . . . , ·‖).
(ii) Let x = {xk,l} ∈m(M′,A,φ,p,‖·, . . . , ·‖)∩m(M′′,A,φ,p,‖·, . . . , ·‖). Then there exists

a ρ >  such that

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

M′
k,l

(∥∥∥∥Ai,j(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞

and

sup

{


φs,t

∑
i∈σ

∑
j∈σ

∞∑
k,l=

M′′
k,l

(∥∥∥∥Ai,j(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}
< ∞.

By the inequality, we have

∑
i∈σ

∑
j∈σ

∞∑
k,l=

(
M′

k,l +M′′
k,l

)(∥∥∥∥Ai,j(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

≤max
(
, H–)∑

i∈σ

∑
j∈σ

∞∑
k,l=

M′
k,l

(∥∥∥∥Ai,j(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

+max
(
, H–)∑

i∈σ

∑
j∈σ

∞∑
k,l=

M′′
k,l

(∥∥∥∥Ai,j(x)
ρ

, z, . . . , zn–
∥∥∥∥
)pij

.

Hence

m(M′,A,φ,p,‖·, . . . , ·‖) ∩m(M′′,A,φ,p,‖·, . . . , ·‖)
⊆ m(M′ +M′′,A,φ,p,‖·, . . . , ·‖).

This completes the proof of the theorem. �
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Theorem . The sequence space m(M,φ,p,‖·, . . . , ·‖) is solid.

Proof Let α = {αk,l} be a double sequence of scalars such that |αk,l| ≤  and y = {yk,l} ∈
m(M,φ,p,‖·, . . . , ·‖). Then we have

sup

{


φs,t

∑
k∈σ

∑
l∈σ

Mk,l

(∥∥∥∥αk,lxk,l
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}

≤ sup

{


φs,t

∑
k∈σ

∑
l∈σ

Mk,l

(∥∥∥∥αk,lyk,l
ρ

, z, . . . , zn–
∥∥∥∥
)pij

: (s, t) ≥ (, ),σ × σ ∈Ps,t

}

≤ sup

{


φs,t

∑
k∈σ

∑
l∈σ

Mk,l

(∥∥∥∥yk,lρ
, z, . . . , zn–

∥∥∥∥
)pij

: (s, t)≥ (, ),σ × σ ∈Ps,t

}
.

This implies that {αk,lyk,l} ∈ m(M,φ,p,‖·, . . . , ·‖). This proves that the spacem(M,φ,p,
‖·, . . . , ·‖) is a solid. �

Corollary . The sequence space m(M,φ,p,‖·, . . . , ·‖) is monotone.

Proof It is trivial so we omit the details. �
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5. Başarır, M, Sonalcan, O: On some double sequence spaces. J. Indian Acad. Math. 21, 193-200 (1999)
6. Zeltser, M: Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods. Diss. Math. Univ. Tartu,

vol. 25. Tartu University Press, Tartu (2001)
7. Mursaleen, M, Edely, OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 288(1), 223-231 (2003)
8. Mohiuddine, SA, Alotaibi, A, Mursaleen, M: Statistical convergence of double sequences in locally solid Riesz spaces.

Abstr. Appl. Anal. 2012, Article ID 719729 (2012). doi:10.1155/2012/719729
9. Mursaleen, M: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 293(2),

523-531 (2004)
10. Mursaleen, M, Savas, E: Almost regular matrices for double sequences. Studia Sci. Math. Hung. 40, 205-212 (2003)
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