# Set-valued mappings in partially ordered fuzzy metric spaces

- Zahra Sadeghi
^{1}, - S Mansour Vaezpour
^{2}Email author, - Choonkil Park
^{3}Email author, - Reza Saadati
^{4}and - Calogero Vetro
^{5}

**2014**:157

https://doi.org/10.1186/1029-242X-2014-157

© Sadeghi et al.; licensee Springer. 2014

**Received: **14 November 2013

**Accepted: **1 April 2014

**Published: **6 May 2014

## Abstract

In this paper, we provide coincidence point and fixed point theorems satisfying an implicit relation, which extends and generalizes the result of Gregori and Sapena, for set-valued mappings in complete partially ordered fuzzy metric spaces. Also we prove a fixed point theorem for set-valued mappings on complete partially ordered fuzzy metric spaces which generalizes results of Mihet and Tirado.

**MSC:**54E40, 54E35, 54H25.

### Keywords

fixed point coincidence point set-valued mapping partially ordered set fuzzy metric space## 1 Preliminaries

The concept of fuzzy metric space was introduced by Kramosil and Michalek [1] and the modified concept by George and Veeramani [2] (for other modifications see [3, 4]). Furthermore, the fixed point theory in this kind of spaces has been intensively studied (see [5–14]).

The applications of fixed point theorems are remarkable in different disciplines of mathematics, engineering, and economics in dealing with problems in approximation theory, game theory, and many others (see [15] and references therein).

In 2004 Rodríguez-López and Romaguera [16] introduced the Hausdorff fuzzy metric of a given fuzzy metric space in the sense of George and Veeramani on the set of non-empty compact subsets.

Some fixed point results for set-valued mappings on fuzzy metric space can be found in [17, 18] and references therein.

The aim of this paper is to prove a coincidence point and fixed point theorem on a partially ordered fuzzy metric space satisfying an implicit relation and another fixed point theorem. Our result substantially generalizes and extends the result of Gregori and Sapena [8] and results of Miheţ [19] and Tirado [20] and also the result of Latif and Beg [21] for set-valued mappings in complete partially ordered fuzzy metric spaces. Implicit relations have been considered by several authors in connection with solving nonlinear functional equations (see [22–25]).

For the sake of completeness, we briefly recall some basic concepts used in the following.

**Definition 1.1** [26]

*t*-norm if it satisfies the following conditions:

- (1)
∗ is associative and commutative,

- (2)
∗ is continuous,

- (3)
$a\ast 1=a$ for all $a\in [0,1]$,

- (4)
$a\ast b\le c\ast d$ whenever $a\le c$ and $b\le d$, for each $a,b,c,d\in [0,1]$.

The three basic continuous *t*-norms are: (i) The minimum *t*-norm is defined by $a\ast b=min\{a,b\}$. (ii) The product *t*-norm is defined by $a\ast b=ab$. (iii) The Łukasiewicz *t*-norm is defined by $a\ast b=max\{a+b-1,0\}$.

**Definition 1.2**[27, 28]

- (i)A
*t*-norm ∗ is said to be Hadžić-type*t*-norm, if the family ${\{{\ast}^{n}\}}_{n\ge 0}$ of its iterates defined for each $s\in [0,1]$ by ${\ast}^{0}(s)=1$, ${\ast}^{n}(s)=({\ast}^{n-1}(s))\ast s$, for all $n\ge 0$, are equi-continuous at $s=1$, that is, given $\lambda >0$, there exists $\eta (\lambda )\in (0,1)$ such that for all $n\ge 0$$1\ge s>\eta (\lambda )\phantom{\rule{1em}{0ex}}\Rightarrow \phantom{\rule{1em}{0ex}}{\ast}^{n}(s)>1-\lambda .$

*t*-norm ∗, defined by $a\ast b=min\{a,b\}$ is a trivial example of the

*t*-norm of Hadžić-type, but there are other

*t*-norms of Hadžić-type (see [27]).

- (ii)
If ∗ be a

*t*-norm and ${\{{x}_{n}\}}_{n\ge 1}$ is a sequence of numbers in $[0,1]$, one defines recurrently ${\ast}_{i=1}^{n}{x}_{i}$ by ${\ast}_{i=1}^{1}{x}_{i}={x}_{1}$ and ${\ast}_{i=1}^{n}{x}_{i}=\ast ({\ast}_{i=1}^{n-1}{x}_{i},{x}_{n})$, $\mathrm{\forall}n\ge 2$. ${\ast}_{i=1}^{\mathrm{\infty}}{x}_{i}$ is defined as ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=1}^{n}{x}_{i}$ and ${\ast}_{i=n}^{\mathrm{\infty}}{x}_{i}$ as ${\ast}_{i=1}^{\mathrm{\infty}}{x}_{n+i}$.

If $q\in (0,1)$ is given, we say that the *t*-norm is geometrically convergent (*g*-convergent) if ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}(1-{q}^{i})=1$.

The Łukasiewicz *t*-norm and *t*-norms of Hadžić-type are examples of *g*-convergent *t*-norms. Other examples be found in [28]. Also note that if the *t*-norm ∗ is *g*-convergent, then ${sup}_{t<1}t\ast t=1$.

**Proposition 1.3** [28]

- (i)
*For*$a\ast b\ge max\{a+b-1,0\}$*the following implication holds*:$\underset{n\to \mathrm{\infty}}{lim}\underset{i=1}{\overset{\mathrm{\infty}}{\ast}}{x}_{n+i}=1\phantom{\rule{1em}{0ex}}\iff \phantom{\rule{1em}{0ex}}\sum _{n=1}^{\mathrm{\infty}}(1-{x}_{n})<\mathrm{\infty}.$ - (ii)
*If*∗*is of Hadžić*-*type*,*then*${lim}_{n\to \mathrm{\infty}}{\ast}_{i=1}^{\mathrm{\infty}}{x}_{n+i}=1$,*for every sequence*${\{{x}_{n}\}}_{n\in \mathbb{N}}$*in*$[0,1]$*such that*${lim}_{n\to \mathrm{\infty}}{x}_{n}=1$.

**Definition 1.4** [2]

A 3-tuple $(X,M,\ast )$ is called a fuzzy metric space if *X* is an arbitrary non-empty set, ∗ is a continuous *t*-norm and *M* is a fuzzy set on ${X}^{2}\times (0,\mathrm{\infty})$, satisfying the following conditions for each $x,y,z\in X$ and $t,s>0$:

(FM-1) $M(x,y,t)>0$,

(FM-2) $M(x,y,t)=1$ for all $t>0$ if and only if $x=y$,

(FM-3) $M(x,y,t)=M(y,x,t)$,

(FM-4) $M(x,z,t+s)\ge M(x,y,t)\ast M(y,z,s)$,

(FM-5) $M(x,y,\cdot ):(0,\mathrm{\infty})\to [0,1]$ is continuous.

**Definition 1.5** [2]

Let $(X,M,\ast )$ be a fuzzy metric space. A sequence $\{{x}_{n}\}$ in *X* is called a Cauchy sequence, if, for each $\u03f5\in (0,1)$ and $t>0$, there exists ${n}_{0}\in \mathbb{N}$ such that $M({x}_{n},{x}_{m},t)>1-\u03f5$ for all $n,m\ge {n}_{0}$. A sequence $\{{x}_{n}\}$ in a fuzzy metric space $(X,M,\ast )$ is said to be convergent to $x\in X$ if ${lim}_{n\to \mathrm{\infty}}M({x}_{n},x,t)=1$ for all $t>0$. A 3-tuple $(X,M,\ast )$ is complete if every Cauchy sequence is convergent in *X*.

**Lemma 1.6** [7]

*Let* $(X,M,\ast )$ *be a fuzzy metric space*. *Then* $M(x,y,t)$ *is non*-*decreasing with respect to* *t* *for all* $x,y\in X$.

**Definition 1.7** [16]

*M*is said to be continuous on ${X}^{2}\times (0,\mathrm{\infty})$, if

**Lemma 1.8** [16]

*Let* $(X,M,\ast )$ *be a fuzzy metric space*. *Then* *M* *is continuous function on* ${X}^{2}\times (0,\mathrm{\infty})$.

**Definition 1.9** [6]

*M*is triangular if it satisfies the condition

for every $x,y,z\in X$ and every $t>0$.

**Example 1.10** [2]

Then $(X,{M}_{d},\ast )$ is a fuzzy metric space. We call the fuzzy metric ${M}_{d}$ induced by the metric *d* the standard fuzzy metric. Note that every standard fuzzy metric is triangular.

**Definition 1.11** Let $(X,M,\ast )$ is a fuzzy metric space and $t>0$. (i): A subset $A\subseteq X$ is said to be closed if for each convergent sequence $\{{x}_{n}\}$ with ${x}_{n}\in A$ and ${x}_{n}\to x$ as $n\to \mathrm{\infty}$, we have $x\in A$.

(ii): $A\subseteq X$ is said to be compact if each sequence in *A* has a convergent subsequence.

Throughout the article, let $\mathcal{P}(X)$, $\mathcal{C}(X)$, and $\mathcal{K}(X)$ denote the set of all non-empty subsets, the set of all non-empty closed subsets, and the set of all non-empty compact subsets of *X*, respectively.

**Definition 1.12** Let *X* be a non-empty set. A point $x\in X$ is called a coincidence point of the mappings $F:X\to \mathcal{P}(X)$ and $f:X\to X$ if $fx\in Fx$. Point $x\in X$ is called a fixed point of the mappings $F:X\to \mathcal{P}(X)$ if $fx\in Fx$.

**Theorem 1.13** [16]

*Let*$(X,M,\ast )$

*be a fuzzy metric space*.

*For each*$A,B\in \mathcal{K}(X)$

*and*$t>0$

*define*

*where* $M(a,B,t):=sup\{M(a,b,t):b\in B\}$. *Then the* 3-*tuple* $(\mathcal{K}(X),{H}_{M},\ast )$ *is a fuzzy metric space*.

The fuzzy metric $({H}_{M},\ast )$ will be called the Hausdorff fuzzy metric of $(M,\ast )$ on $\mathcal{K}(X)$.

**Lemma 1.14** [16]

*Let*$(X,M,\ast )$

*be a fuzzy metric space*.

*Then*,

*for each*$a\in X$, $B\in \mathcal{K}(X)$

*and*$t>0$,

*there is*${b}_{0}\in B$

*such that*

## 2 Main results

Throughout this section, ∗ denotes a continuous *t*-norm and
the set of all continuous real-valued mappings $T:{[0,1]}^{6}\to R$ satisfying the following properties:

${\mathcal{T}}_{1}$: $T({t}_{1},{t}_{2},\dots ,{t}_{6})$ is non-increasing in ${t}_{2},\dots ,{t}_{6}$.

where $u,v,w:(0,\mathrm{\infty})\to [0,1]$ are non-decreasing functions with $u(t),v(t),w(t)\in (0,1]$, then $w(kt)\ge v(t)$.

implies $w(kt)\ge v(t)$.

Now we give our main result.

**Theorem 2.1**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with Hadžić*-

*type*

*t*-

*norm*∗

*such that*$M(x,y,t)\to 1$

*as*$t\to \mathrm{\infty}$,

*for all*$x,y\in X$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values and*$f:X\to X$

*a mapping such that*$f(X)$

*is closed and for some*$T\in \mathcal{T}$

*and all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$F(X)\subseteq f(X)$,

- (ii)
$fy\in F(x)$

*implies*$x\u2aafy$, - (iii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to y=fx$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *and* *f* *have a coincidence point*, *that is*, *there exists* $x\in X$ *such that* $fx\in F(x)$.

*Proof*Let $t>0$ be fixed and ${x}_{0}\in X$. By using (i) and (ii), there exists ${x}_{1}\in X$ such that ${x}_{0}\u2aaf{x}_{1}$ and ${y}_{0}=f{x}_{1}\in F{x}_{0}$. Now from (i), (ii), and by Lemma 1.14, for ${x}_{1}\in X$ there is ${x}_{2}\in X$ such that ${x}_{1}\u2aaf{x}_{2}$ and ${y}_{1}=f{x}_{2}\in F{x}_{1}$ with

*X*with ${x}_{n}\u2aaf{x}_{n+1}$ such that, for $n\ge 0$, ${y}_{n}=f{x}_{n+1}\in F{x}_{n}$, and

*t*-norm of Hadžić-type, and there exists $\eta \in (0,1)$ such that for all $m>n$,

*X*is complete, there exists some $y\in X$ such that

*n*. Thus from (2.1), we have

*T*, and from Lemma 1.8, we get

It follows that $M(y,F\overline{x},t)=1$ for each $t>0$. Now since $F\overline{x}$ is closed (note that $F\overline{x}$ is compact), we get $f\overline{x}=y\in F\overline{x}$, thus $\overline{x}$ is a coincidence point of *F* and *f*. The proof is complete. □

**Remark 2.2**In Theorem 2.1, we proved that the sequence ${y}_{n}$ is Cauchy; one can replace the condition ‘∗ is Hadžić-type

*t*-norm and $M(x,y,t)\to 1$ as $t\to \mathrm{\infty}$, for all $x,y\in X$’ with the following: ‘${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}M(x,y,t{h}^{i})=1$ for each $h>1$’. To see this, choose some $q>1$ and $n\in \mathbb{N}$ such that $kq<1$ and ${\sum}_{i={n}_{1}}^{\mathrm{\infty}}\frac{1}{{q}^{i}}\le 1$. Then from (FM-4) and (2.5), for every $m>n\ge {n}_{1}$, we have

Thus, $\{{y}_{n}\}$ is a Cauchy sequence. Then we have the following theorem.

**Theorem 2.3**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space and suppose for each*$h>1$, ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}M(x,y,t{h}^{i})=1$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values and*$f:X\to X$

*a mapping such that*$f(X)$

*is closed and for some*$T\in \mathcal{T}$

*and all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$F(X)\subseteq f(X)$,

- (ii)
$fy\in F(x)$

*implies*$x\u2aafy$, - (iii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to y=fx$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *and* *f* *have a coincidence point*, *that is*, *there exists* $x\in X$ *such that* $fx\in F(x)$.

If in Theorem 2.1 and 2.3 we put $T({u}_{1},\dots ,{u}_{6}):=\frac{{u}_{1}(kt)}{{u}_{2}(t)}$, where $k\in (0,1)$, then we have the following corollaries.

**Corollary 2.4**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with Hadžić*-

*type*

*t*-

*norm*∗

*such that*$M(x,y,t)\to 1$

*as*$t\to \mathrm{\infty}$,

*for all*$x,y\in X$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values and*$f:X\to X$

*a mapping such that*$f(X)$

*be closed and for all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$F(X)\subseteq f(X)$,

- (ii)
$fy\in F(x)$

*implies*$x\u2aafy$, - (iii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to y=fx$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then there exists* $x\in X$ *such that* $fx\in F(x)$.

**Corollary 2.5**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space and suppose for each*$h>1$, ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}M(x,y,t{h}^{i})=1$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values and*$f:X\to X$

*a mapping such that*$f(X)$

*be closed and for all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$F(X)\subseteq f(X)$,

- (ii)
$fy\in F(x)$

*implies*$x\u2aafy$, - (iii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to y=fx$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then there exists* $x\in X$ *such that* $fx\in F(x)$.

Putting $f=I$ (the identity mapping) in Corollary 2.4 and 2.5, we get the following corollaries.

**Corollary 2.6**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with Hadžić*-

*type*

*t*-

*norm*∗

*such that*$M(x,y,t)\to 1$

*as*$t\to \mathrm{\infty}$,

*for some*${x}_{0}\in X$

*and*${x}_{1}\in F{x}_{0}$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values for all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$y\in F(x)$

*implies*$x\u2aafy$, - (ii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to x$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *has a fixed point*.

**Corollary 2.7**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space and suppose for each*$h>1$, ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}M(x,y,t{h}^{i})=1$

*for some*${x}_{0}\in X$

*and*${x}_{1}\in F{x}_{0}$.

*Let*⪯

*be a partial order defined on*

*X*.

*Let*$F:X\to \mathcal{K}(X)$

*be a set*-

*valued mapping with non*-

*empty compact values for all comparable elements*$x,y\in X$,

*and*$t>0$,

*we have*

*Also suppose that the following conditions are satisfied*:

- (i)
$y\in F(x)$

*implies*$x\u2aafy$, - (ii)
*if*${y}_{n}\in F({x}_{n})$*is a sequence such that*${y}_{n}\to x$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *has a fixed point*.

**Remark 2.8** Note that we assumed the implicit relation (2.1) only for the comparable elements of the partially ordered fuzzy metric space.

**Remark 2.9** Corollary 2.7 improves and generalizes the mentioned result of Gregori and Sapena (see Theorem 4.8 of [8]) for set-valued mappings in complete partially ordered fuzzy metric spaces.

In continuation, in the spirit of Miheţ [19], we introduce the notion of a set-valued fuzzy order *ψ*-contraction of $(\u03f5,\lambda )$-type mappings and give a fixed point theorem in partially ordered fuzzy metric spaces.

**Definition 2.10**Let $(X,M,\ast )$ be a fuzzy metric space and $\psi :(0,1)\to (0,1)$. A mapping $F:X\to \mathcal{C}(X)$ is a set-valued fuzzy order

*ψ*-contraction of $(\u03f5,\lambda )$-type if the following implication holds:

for every $\u03f5>0$, $\lambda \in (0,1)$ and all comparable elements $x,y\in X$.

If $\psi (t)=\alpha t$ $(t\in (0,1))$ for some $\alpha \in (0,1)$, then *F* will be called a set-valued fuzzy order *α*-contraction of $(\u03f5,\lambda )$-type.

*ψ*-contraction of $(\u03f5,\lambda )$-type satisfies the relation

for all comparable elements $x,y\in X$ and $t>0$. Indeed, if for some comparable $x,y\in X$ and $t>0$ there exists $p\in Fx$ such that for all $q\in Fy$, we have $M(p,q,t)<M(x,y,t)$; then there is $\lambda \in (0,1)$ such that $M(p,q,t)<1-\lambda <M(x,y,t)$, that is, $M(x,y,t)>1-\lambda $ and $M(p,q,t)<1-\lambda <1-\psi (\lambda )$, which is a contradiction.

**Example 2.11**Let $(X,M,\ast )$ be a fuzzy metric space. Let $F:Y\to \mathcal{C}(Y)$ be a set-valued mapping, where $Y\in \mathcal{C}(X)$. If there is $\alpha \in (0,1)$ such that

*F*is a set-valued fuzzy order

*α*-contraction of $(\u03f5,\lambda )$-type. Indeed, if $M(x,y,\u03f5)>1-\lambda $, then for every comparable elements $x,y\in X$ and some $\alpha \in (0,1)$, we have

thus $M(p,q,\u03f5)>1-\alpha \lambda $.

Now we state our main theorem.

**Theorem 2.12**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with*${sup}_{t<1}t\ast t=1$. $Y\in \mathcal{C}(X)$

*and*$F:Y\to \mathcal{C}(Y)$

*be a set*-

*valued fuzzy order*

*ψ*-

*contraction of*$(\u03f5,\lambda )$-

*type*,

*where*${lim}_{n\to \mathrm{\infty}}{\psi}^{(n)}(t)=0$

*for all*$t\in (0,1)$.

*Let ‘*⪯

*’ be a partial order defined on*

*X*,

*and*${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}(1-{\psi}^{(i)}(\xi ))=1$

*for all*$\xi \in (0,1)$.

*Suppose that there exist*${x}_{0}\in Y$

*and*${x}_{1}\in F{x}_{0}$

*such that*$M({x}_{0},{x}_{1},{0}_{+})>0$

*and the following two conditions hold*:

- (i)
$y\in F(x)$

*implies*$x\u2aafy$, - (ii)
*if*${x}_{n}$*is a sequence with*${x}_{n+1}\in F{x}_{n}$*and*${x}_{n}\to x$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *has a fixed point*.

*Proof*Since there exist ${x}_{0}\in Y$ and ${x}_{1}\in F{x}_{0}$ such that $M({x}_{0},{x}_{1},{0}_{+})>0$, we have ${x}_{0}\u2aaf{x}_{1}$ with $M({x}_{0},{x}_{1},{0}_{+})>0$. We may suppose that $M({x}_{0},{x}_{1},{0}_{+})<1$. For, if we assume the contrary, then $M({x}_{0},{x}_{1},t)=1$ for all $t>0$, that is, ${x}_{0}={x}_{1}\in F{x}_{0}$ and we have finished the proof. Therefore, for some ${\delta}_{1}\in (0,1)$ and every $t>0$, $\delta \in ({\delta}_{1},1)$, we have

*F*is a set-valued fuzzy order

*ψ*-contraction of $(\u03f5,\lambda )$-type mapping, there exists ${x}_{2}\in F{x}_{1}$ with ${x}_{1}\u2aaf{x}_{2}$ such that $M({x}_{1},{x}_{2},t)>1-\psi (\delta )$. Repeating this argument, we get a sequence $\{{x}_{n}\}$ in

*Y*such that ${x}_{n+1}\in F{x}_{n}$ with ${x}_{n}\u2aaf{x}_{n+1}$ and such that

This shows that $\{{x}_{n}\}$ is a Cauchy sequence. Since *X* is complete, $\{{x}_{n}\}$ converges to some $\overline{x}\in X$, that is, ${lim}_{n\to \mathrm{\infty}}M({x}_{n},\overline{x},t)=1$. Now we prove that $\overline{x}\in F\overline{x}$. But $F\overline{x}=\overline{F\overline{x}}$; then it is enough to show that for every ${\u03f5}^{\prime}>0$ and ${\lambda}^{\prime}\in (0,1)$ there exists $z\in F\overline{x}$ such that $M(\overline{x},z,{\u03f5}^{\prime})>1-{\lambda}^{\prime}$.

Now put ${\lambda}_{3}=min\{{\lambda}_{1},{\lambda}_{2}\}$. We prove that there exists $\mu \in (0,1)$ such that $\psi (\mu )<{\lambda}_{3}$. For, if $\psi (t)\ge {\lambda}_{3}$ for every $t\in (0,1)$, then ${\psi}^{n}(t)\ge {\lambda}_{3}$ for every $n\in \mathbb{N}$ and every $t\in (0,1)$, therefore ${\ast}_{i=n}^{\mathrm{\infty}}(1-{\psi}^{(i)}(\xi ))\le {\ast}_{i=n}^{\mathrm{\infty}}(1-{\lambda}_{3})\le 1-{\lambda}_{3}$ for all $n\in \mathbb{N}$, which means that $1={lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}(1-{\psi}^{(i)}(\xi ))\le 1-{\lambda}_{3}<1$, and this is a contradiction.

Hence $\overline{x}\in F\overline{x}=\overline{F\overline{x}}$, consequently $\overline{x}$ is a fixed point of *F*. The theorem is proved. □

**Corollary 2.13**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with Lukasiewicz*

*t*-

*norm and ‘*⪯

*’ be a partial order defined on*

*X*.

*Let*$Y\in \mathcal{C}(X)$

*and*$F:Y\to \mathcal{C}(Y)$

*be a set*-

*valued mapping with the property that there is*$\alpha \in (0,1)$

*such that*

*for all comparable elements*$x,y\in X$

*and*$t>0$,

*and the following conditions hold*:

- (i)
$y\in F(x)$

*implies*$x\u2aafy$, - (ii)
*if*${x}_{n}$*is a sequence with*${x}_{n+1}\in F{x}_{n}$*and*${x}_{n}\to x$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *has a fixed point*.

*Proof*By using Definition 1.2, ${sup}_{t<1}t\ast t=1$. Also, from Example 2.11 it follows that

*F*is a set-valued fuzzy order

*ψ*-contraction of $(\u03f5,\lambda )$-type with $\psi (t)=\alpha t$. Since, for all $\lambda \in (0,1)$, ${\sum}_{i=1}^{\mathrm{\infty}}{\psi}^{(i)}(\lambda )={\sum}_{i=1}^{\mathrm{\infty}}{\alpha}^{i}\lambda <\mathrm{\infty}$, from Proposition 1.3, we have ${lim}_{n\to \mathrm{\infty}}{\ast}_{i=n}^{\mathrm{\infty}}(1-{\psi}^{(i)}(\lambda ))=1$. Next, since

for all comparable elements $x,y\in X$ and $t>0$, there exist ${x}_{0}\in Y$ and ${x}_{1}\in F{x}_{0}$ such that $M({x}_{0},{x}_{1},{0}_{+})>0$. Consequently, by the preceding theorem, *F* has a fixed point. □

**Corollary 2.14**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space with a continuous*

*g*-

*convergent*

*t*-

*norm and ‘*⪯

*’ be a partial order defined on*

*X*.

*Let*$Y\in \mathcal{C}(X)$

*and*$F:Y\to \mathcal{C}(Y)$

*be a set*-

*valued fuzzy order*

*α*-

*contraction of*$(\u03f5,\lambda )$-

*type*.

*If there exist*${x}_{0}\in Y$

*and*${x}_{1}\in F{x}_{0}$

*such that*$M({x}_{0},{x}_{1},{0}_{+})>0$

*and the following two conditions hold*:

- (i)
$y\in F(x)$

*implies*$x\u2aafy$, - (ii)
*if*${x}_{n}$*is a sequence with*${x}_{n+1}\in F{x}_{n}$*and*${x}_{n}\to x$,*then*${x}_{n}\u2aafx$*for all**n*.

*Then* *F* *has a fixed point*.

Theorem 2.12 and Corollary 2.13 are, respectively, generalizations of the theorems of Mihet [19] and Tirado [20] to the set-valued case in partial ordered fuzzy metric spaces.

Now we introduce a definition and, by using it, we shall state fixed and common fixed point theorems in the partially ordered fuzzy metric space. Our results generalize and extend Theorems 4.1 and 4.2 of [21] to set-valued mappings in complete partially ordered fuzzy metric spaces.

**Definition 2.15**Let

*Y*be a non-empty subset of fuzzy metric space $(X,M,\ast )$. Mapping $F:Y\to \mathcal{P}(X)$ is called fuzzy order

*K*-set-valued mapping, if for all $x\in Y$, ${u}_{x}\in Fx$, there exists ${u}_{y}\in Fy$ with ${u}_{x}\u2aaf{u}_{y}$ such that

for every $t>0$ and $y\in Y$ with $x\u2aafy$ and some $k\in (0,\frac{1}{2})$.

**Theorem 2.16** *Let* $(X,M,\ast )$ *be a complete fuzzy metric space*, *with* *M* *triangular*, *and ‘*⪯*’ a partial order on* *X*. *Let* $Y\in \mathcal{C}(X)$ *and* $F:Y\to \mathcal{C}(Y)$ *be a fuzzy order* *K*-*set*-*valued mapping*. *Also let there for some* ${x}_{0}\in Y$ *exist* ${x}_{1}\in F{x}_{0}$ *with* ${x}_{0}\u2aaf{x}_{1}$, *and the following condition is satisfied*:

*If* ${x}_{n}\to x$ *is a sequence in* *Y* *whose consecutive terms are comparable*, *then* ${x}_{n}\u2aafx$, *for all n*.

*Then* *F* *has a fixed point in* *X*.

*Proof*By the hypothesis, for ${x}_{0}\in Y$ there exists ${x}_{1}\in F{x}_{0}$ such that ${x}_{0}\u2aaf{x}_{1}$. Now because

*F*is a fuzzy order

*K*-set-valued mapping, there exists ${x}_{2}\in F{x}_{1}$ such that ${x}_{1}\u2aaf{x}_{2}$ and

*M*is triangular, we have for all $m>n$

*X*is complete, it converges to a point $x\in X$. But

*Y*is closed, thus $x\in Y$ and also by using the hypothesis ${x}_{n}\u2aafx$. Now we show that $x\in Fx$. From ${x}_{n}\in F{x}_{n-1}$, and ${x}_{n-1}\u2aafx$ for all

*n*, since

*F*is a fuzzy order

*K*-set-valued mapping, there exists ${u}_{n}\in Fx$ such that ${x}_{n}\u2aaf{u}_{n}$, and

*M*is triangular, by using (2.22), we get

and so, letting $n\to \mathrm{\infty}$, ${u}_{n}\to x$. Consequently, since *Fx* is closed, we have $x\in Fx$. Then *F* has a fixed point. □

From the above theorem we can immediately obtain the following generalization for getting a common fixed point.

**Theorem 2.17**

*Let*$(X,M,\ast )$

*be a complete fuzzy metric space*,

*with*

*M*

*triangular*,

*and ‘*⪯

*’ a partial order on*

*X*.

*Let*$Y\in \mathcal{C}(X)$

*and*,

*for every*$n\in \mathbb{N}$, ${F}_{n}:Y\to \mathcal{C}(Y)$

*be a sequence of mappings such that*,

*for every two mappings*${F}_{i}$, ${F}_{j}$

*and for all*$x\in Y$, ${u}_{x}\in {F}_{i}(x)$,

*there exists*${u}_{y}\in {F}_{j}(y)$

*with*${u}_{x}\u2aaf{u}_{y}$

*such that*

*for every* $t>0$ *and* $y\in Y$ *with* $x\u2aafy$ *and some* $k\in (0,\frac{1}{2})$. *Also let there exist*, *for some* ${x}_{0}\in Y$, ${x}_{1}\in {F}_{1}{x}_{0}$ *with* ${x}_{0}\u2aaf{x}_{1}$, *and the following condition be satisfied*:

*If* ${x}_{n}\to x$ *is a sequence in* *Y* *whose consecutive terms are comparable*, *then* ${x}_{n}\u2aafx$, *for all n*.

*Then there exists* $x\in Y$ *such that* $x\in \bigcap {F}_{n}x$, *that is*, $\{{F}_{n}\}$ *has a common fixed point*.

*Proof*We can find ${x}_{2}\in {F}_{2}{x}_{1}$ such that ${x}_{1}\u2aaf{x}_{2}$ and that

*X*it follows that $\{{x}_{n}\}$ converges to some $x\in X$. Furthermore, $x\in Y$ and ${x}_{n}\u2aafx$. Now suppose that ${F}_{N}$ is any arbitrary member of ${F}_{n}$. Since ${x}_{n}\in {F}_{n}{x}_{n-1}$, ${x}_{n-1}\u2aafx$ for all

*n*, and by the hypothesis, there exists ${u}_{n}\in {F}_{N}x$ such that ${x}_{n}\u2aaf{u}_{n}$, and

Next by the letting $n\to \mathrm{\infty}$, we get ${u}_{n}\to x$, and then $x\in {F}_{N}x$. As ${F}_{N}$ is an arbitrary member of ${F}_{n}$, $x\in \bigcap {F}_{n}x$, and *x* is a common fixed point of $\{{F}_{n}\}$. The theorem is proved. □

**Example 2.18** Let $X=[0,\mathrm{\infty})$ with *t*-norm defined $a\ast b=min\{a,b\}$ for all $a,b\in [0,1]$ and $M(x,y,t)=\frac{t}{t+\mid x-y\mid}$, for all $x,y\in X$ and $t>0$. Then $(X,M,\ast )$ is a complete fuzzy metric space. Let the natural ordering ≤ of the numbers as the partial ordering ⪯. Define $Y=[0,1]$ and $F:Y\to \mathcal{C}(Y)$ as $Fx=\{z,\frac{x}{5}\}$ for each $0\le x<\frac{1}{2}$, and $\{z,\frac{x}{4}\}$ for each $\frac{1}{2}\le x\le 1$, where $z\in Y$ is an arbitrary. If $x,y\in Y$ such that $x\u2aafy$ and ${u}_{x}=z\in Fx$, then there exists ${u}_{y}=z\in Fy$ such that ${u}_{x}\u2aaf{u}_{y}$ and (2.18) is satisfied. Thus *F* is a fuzzy order *K*-set-valued mapping. But if ${u}_{x}\ne z\in Fx$, then three cases arise.

Hence *F* is a fuzzy order *K*-set-valued mapping with $k=\frac{4}{9}<\frac{1}{2}$. Moreover, there exists ${x}_{0}=0$ (or ${x}_{0}=z$) with ${x}_{1}=0$ (${x}_{1}=z$) such that ${x}_{0}\u2aaf{x}_{1}$. Thus all the hypotheses of Theorem 2.16 are satisfied and $x=0$ (or $x=z$) is the fixed point of *F*.

## Declarations

### Acknowledgements

The authors would like to thank the referees for giving useful suggestions and comments for the improvement of this paper.

## Authors’ Affiliations

## References

- Kramosil I, Michalek J:
**Fuzzy metric and statistical metric spaces.***Kybernetika*1975,**11:**336–344.MathSciNetMATHGoogle Scholar - George A, Veeramani P:
**On some results in fuzzy metric spaces.***Fuzzy Sets Syst.*1994,**64:**395–399. 10.1016/0165-0114(94)90162-7MathSciNetView ArticleMATHGoogle Scholar - Deng Z:
**Fuzzy pseudometric spaces.***J. Math. Anal. Appl.*1982,**86:**74–95. 10.1016/0022-247X(82)90255-4MathSciNetView ArticleGoogle Scholar - Kaleva O, Seikkala S:
**On fuzzy metric spaces.***Fuzzy Sets Syst.*1984,**12:**215–229. 10.1016/0165-0114(84)90069-1MathSciNetView ArticleMATHGoogle Scholar - Ćirić L:
**Some new results for Banach contractions and Edelestein contractive mappings on fuzzy metric spaces.***Chaos Solitons Fractals*2009,**42:**146–154. 10.1016/j.chaos.2008.11.010MathSciNetView ArticleMATHGoogle Scholar - Di Bari C, Vetro C:
**Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space.***J. Fuzzy Math.*2005,**13:**973–982.MathSciNetMATHGoogle Scholar - Grabiec M:
**Fixed points in fuzzy metric spaces.***Fuzzy Sets Syst.*1988,**27:**385–389. 10.1016/0165-0114(88)90064-4MathSciNetView ArticleMATHGoogle Scholar - Gregori V, Sapena A:
**On fixed point theorems in fuzzy metric spaces.***Fuzzy Sets Syst.*2002,**125:**245–252. 10.1016/S0165-0114(00)00088-9MathSciNetView ArticleMATHGoogle Scholar - Miheţ D:
**A Banach contraction theorem in fuzzy metric spaces.***Fuzzy Sets Syst.*2004,**144:**431–439. 10.1016/S0165-0114(03)00305-1View ArticleMathSciNetMATHGoogle Scholar - Miheţ D:
**Multivalued generalizations of probabilistic contractions.***J. Math. Anal. Appl.*2005,**304:**464–472. 10.1016/j.jmaa.2004.09.034MathSciNetView ArticleMATHGoogle Scholar - Miheţ D:
**On the existence and the uniqueness of fixed points of Sehgal contractions.***Fuzzy Sets Syst.*2005,**156:**135–141. 10.1016/j.fss.2005.05.024View ArticleMathSciNetMATHGoogle Scholar - Saadati R, Park JH:
**On the intuitionistic fuzzy topological spaces.***Chaos Solitons Fractals*2006,**27**(2):331–344. 10.1016/j.chaos.2005.03.019MathSciNetView ArticleMATHGoogle Scholar - Saadati R, Razani A, Adibi H:
**A common fixed point theorem in**L**-fuzzy metric spaces.***Chaos Solitons Fractals*2007,**33**(2):358–363. 10.1016/j.chaos.2006.01.023MathSciNetView ArticleGoogle Scholar - Sedghi S, Altun I, Shobe N:
**Coupled fixed point theorems for contractions in fuzzy metric spaces.***Nonlinear Anal., Theory Methods Appl.*2010,**72**(3–4):1298–1304. 10.1016/j.na.2009.08.018MathSciNetView ArticleMATHGoogle Scholar - Pathak HK, Hussain N:
**Common fixed points for Banach pairs with applications.***Nonlinear Anal.*2008,**69:**2788–2802. 10.1016/j.na.2007.08.051MathSciNetView ArticleMATHGoogle Scholar - Rodríguez-López J, Romaguera S:
**The Hausdorff fuzzy metric on compact sets.***Fuzzy Sets Syst.*2004,**147:**273–283. 10.1016/j.fss.2003.09.007View ArticleMathSciNetMATHGoogle Scholar - Hadžić O, Pap E:
**Fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces.***Fuzzy Sets Syst.*2002,**127:**333–344. 10.1016/S0165-0114(01)00144-0View ArticleMathSciNetMATHGoogle Scholar - Kiani F, Amini-Harandi A:
**Fixed point and endpoint theorems for set-valued fuzzy contraction maps in fuzzy metric spaces.***Fixed Point Theory Appl.*2011.,**2011:**Article ID 94Google Scholar - Miheţ D:
**A class of contractions in fuzzy metric spaces.***Fuzzy Sets Syst.*2010,**161:**1131–1137. 10.1016/j.fss.2009.09.018View ArticleMathSciNetMATHGoogle Scholar - Tirado P:
**Contraction mappings in fuzzy quasi-metric spaces and**$[0,1]$-fuzzy posets.*VII Iberoamerican Cont. on Topology and Its Applications*Valencia, Spain 2008, 25–28.Google Scholar - Latif A, Beg I:
**Geometric fixed points for single and multivalued mappings.***Demonstr. Math.*1997,**30**(4):791–800.MathSciNetMATHGoogle Scholar - Altun I, Turkoglu D:
**Some fixed point theorems on fuzzy metric spaces with implicit relations.***Commun. Korean Math. Soc.*2008,**23**(1):111–124. 10.4134/CKMS.2008.23.1.111MathSciNetView ArticleMATHGoogle Scholar - Beg I, Butt AR:
**Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces.***Nonlinear Anal.*2009,**71:**3699–3704. 10.1016/j.na.2009.02.027MathSciNetView ArticleMATHGoogle Scholar - Popa V:
**A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation.***Demonstr. Math.*2000,**33:**159–164.MathSciNetMATHGoogle Scholar - Sedghi S, Rao KPR, Shobe N:
**A general common fixed point theorem for multimaps satisfying an implicit relation on fuzzy metric spaces.***Filomat*2008,**22**(1):1–11. 10.2298/FIL0801001SMathSciNetView ArticleMATHGoogle Scholar - Schweizer B, Sklar A:
**Statistical metric spaces.***Pac. J. Math.*1960,**10:**314–334.MATHGoogle Scholar - Hadžić O, Pap E:
*Fixed Point Theory in Probabilistic Metric Space*. Kluwer Academic, Dordrecht; 2001.MATHGoogle Scholar - Hadžić O, Pap E, Budinčević M:
**Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces.***Kybernetika*2002,**38**(3):363–381.MathSciNetMATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.