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Abstract
In this paper, we provide coincidence point and fixed point theorems satisfying an
implicit relation, which extends and generalizes the result of Gregori and Sapena, for
set-valued mappings in complete partially ordered fuzzy metric spaces. Also we
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fuzzy metric spaces which generalizes results of Mihet and Tirado.
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1 Preliminaries
The concept of fuzzy metric space was introduced by Kramosil and Michalek [] and the
modified concept by George and Veeramani [] (for other modifications see [, ]). Fur-
thermore, the fixed point theory in this kind of spaces has been intensively studied (see
[–]).
The applications of fixed point theorems are remarkable in different disciplines ofmath-

ematics, engineering, and economics in dealing with problems in approximation theory,
game theory, and many others (see [] and references therein).
In Rodríguez-López andRomaguera [] introduced theHausdorff fuzzymetric of

a given fuzzy metric space in the sense of George and Veeramani on the set of non-empty
compact subsets.
Some fixed point results for set-valued mappings on fuzzy metric space can be found in

[, ] and references therein.
The aim of this paper is to prove a coincidence point and fixed point theorem on a

partially ordered fuzzy metric space satisfying an implicit relation and another fixed point
theorem.Our result substantially generalizes and extends the result of Gregori and Sapena
[] and results of Miheţ [] and Tirado [] and also the result of Latif and Beg [] for
set-valued mappings in complete partially ordered fuzzy metric spaces. Implicit relations
have been considered by several authors in connection with solving nonlinear functional
equations (see [–]).
For the sake of completeness, we briefly recall some basic concepts used in the following.

Definition . [] A binary operation ∗ : [, ] × [, ] → [, ] is called a continuous
t-norm if it satisfies the following conditions:

() ∗ is associative and commutative,
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() ∗ is continuous,
() a ∗  = a for all a ∈ [, ],
() a ∗ b≤ c ∗ d whenever a≤ c and b ≤ d, for each a,b, c,d ∈ [, ].

The three basic continuous t-norms are: (i) The minimum t-norm is defined by a ∗ b =
min{a,b}. (ii) The product t-norm is defined by a ∗ b = ab. (iii) The Łukasiewicz t-norm is
defined by a ∗ b =max{a + b – , }.

Definition . [, ] (i) A t-norm ∗ is said to be Hadžić-type t-norm, if the family
{∗n}n≥ of its iterates defined for each s ∈ [, ] by ∗(s) = , ∗n(s) = (∗n–(s)) ∗ s, for all
n ≥ , are equi-continuous at s = , that is, given λ > , there exists η(λ) ∈ (, ) such that
for all n ≥ 

≥ s > η(λ) ⇒ ∗n(s) >  – λ.

The t-norm ∗, defined by a ∗ b =min{a,b} is a trivial example of the t-norm of Hadžić-
type, but there are other t-norms of Hadžić-type (see []).
(ii) If ∗ be a t-norm and {xn}n≥ is a sequence of numbers in [, ], one defines recurrently

∗n
i=xi by ∗

i=xi = x and ∗n
i=xi = ∗(∗n–

i= xi,xn), ∀n≥ . ∗∞
i=xi is defined as limn→∞ ∗n

i=xi and
∗∞
i=nxi as ∗∞

i=xn+i.

If q ∈ (, ) is given, we say that the t-norm is geometrically convergent (g-convergent)
if limn→∞ ∗∞

i=n( – qi) = .
The Łukasiewicz t-norm and t-norms of Hadžić-type are examples of g-convergent t-

norms. Other examples be found in []. Also note that if the t-norm ∗ is g-convergent,
then supt< t ∗ t = .

Proposition . []
(i) For a ∗ b ≥max{a + b – , } the following implication holds:

lim
n→∞

∞∗
i=

xn+i =  ⇔
∞∑
n=

( – xn) < ∞.

(ii) If ∗ is of Hadžić-type, then limn→∞ ∗∞
i=xn+i = , for every sequence {xn}n∈N in [, ]

such that limn→∞ xn = .

Definition . [] A -tuple (X,M,∗) is called a fuzzy metric space if X is an arbitrary
non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X × (,∞), satisfying
the following conditions for each x, y, z ∈ X and t, s > :
(FM-) M(x, y, t) > ,
(FM-) M(x, y, t) =  for all t >  if and only if x = y,
(FM-) M(x, y, t) =M(y,x, t),
(FM-) M(x, z, t + s)≥M(x, y, t) ∗M(y, z, s),
(FM-) M(x, y, ·) : (,∞) → [, ] is continuous.

Definition . [] Let (X,M,∗) be a fuzzy metric space. A sequence {xn} in X is called a
Cauchy sequence, if, for each ε ∈ (, ) and t > , there exists n ∈N such thatM(xn,xm, t) >

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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 – ε for all n,m ≥ n. A sequence {xn} in a fuzzy metric space (X,M,∗) is said to be con-
vergent to x ∈ X if limn→∞ M(xn,x, t) =  for all t > . A -tuple (X,M,∗) is complete if
every Cauchy sequence is convergent in X.

Lemma . [] Let (X,M,∗) be a fuzzymetric space.ThenM(x, y, t) is non-decreasing with
respect to t for all x, y ∈ X.

Definition . [] Let (X,M,∗) be a fuzzy metric space. M is said to be continuous on
X × (,∞), if

lim
n→∞M(xn, yn, tn) =M(x, y, t)

whenever a sequence {(xn, yn, tn)} inX × (,∞) converges to a point (x, y, t) ∈ X × (,∞),
that is,

lim
n→∞xn = x, lim

n→∞ yn = y, and lim
n→∞M(x, y, tn) =M(x, y, t).

Lemma . [] Let (X,M,∗) be a fuzzy metric space. Then M is continuous function on
X × (,∞).

Definition . [] Let (X,M,∗) be a fuzzy metric space. The fuzzy metricM is triangular
if it satisfies the condition

(


M(x, y, t)
– 

)
≤

(


M(x, z, t)
– 

)
+

(


M(z, y, t)
– 

)
,

for every x, y, z ∈ X and every t > .

Example . [] Let (X,d) be a metric space. Define a ∗ b = ab (or a ∗ b =min{a,b}) and
for all x, y ∈ X and t > ,

Md(x, y, t) =
t

t + d(x, y)
.

Then (X,Md,∗) is a fuzzymetric space.We call the fuzzymetricMd induced by themetric
d the standard fuzzy metric. Note that every standard fuzzy metric is triangular.

Definition . Let (X,M,∗) is a fuzzy metric space and t > . (i): A subset A ⊆ X is said
to be closed if for each convergent sequence {xn} with xn ∈ A and xn → x as n → ∞, we
have x ∈ A.
(ii): A ⊆ X is said to be compact if each sequence in A has a convergent subsequence.

Throughout the article, letP(X), C(X), andK(X) denote the set of all non-empty subsets,
the set of all non-empty closed subsets, and the set of all non-empty compact subsets of
X, respectively.

Definition . Let X be a non-empty set. A point x ∈ X is called a coincidence point of
the mappings F : X → P(X) and f : X → X if fx ∈ Fx. Point x ∈ X is called a fixed point of
the mappings F : X →P(X) if fx ∈ Fx.

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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Theorem . [] Let (X,M,∗) be a fuzzy metric space. For each A,B ∈ K(X) and t > 
define

HM(A,B, t) =min
{
inf
a∈A

M(a,B, t), inf
b∈B

M(A,b, t)
}
,

where M(a,B, t) := sup{M(a,b, t) : b ∈ B}. Then the -tuple (K(X),HM,∗) is a fuzzy metric
space.

The fuzzy metric (HM,∗) will be called the Hausdorff fuzzy metric of (M,∗) on K(X).

Lemma . [] Let (X,M,∗) be a fuzzy metric space.Then, for each a ∈ X, B ∈K(X) and
t > , there is b ∈ B such that

M(a,B, t) =M(a,b, t).

2 Main results
Throughout this section, ∗ denotes a continuous t-norm and T the set of all continuous
real-valued mappings T : [, ] → R satisfying the following properties:

T: T(t, t, . . . , t) is non-increasing in t, . . . , t.
T: If there exists k ∈ (, ) such that for each t > , we have

T
(
w(kt), v(t), v(t),u(t),u

(
t


)
∗ v

(
t


)
, 

)
≥ ,

where u, v,w : (,∞)→ [, ] are non-decreasing functions with u(t), v(t),w(t) ∈ (, ],
then w(kt) ≥ v(t).

T: For each t >  and some k ∈ (, ), the condition

T
(
w(kt), , , v(t), v(t), 

) ≥ ,

implies w(kt) ≥ v(t).

Now we give our main result.

Theorem . Let (X,M,∗) be a complete fuzzy metric space with Hadžić-type t-norm ∗
such thatM(x, y, t) →  as t → ∞, for all x, y ∈ X. Let� be a partial order defined on X . Let
F : X → K(X) be a set-valued mapping with non-empty compact values and f : X → X a
mapping such that f (X) is closed and for some T ∈ T and all comparable elements x, y ∈ X,
and t > , we have

T
(
HM(Fx,Fy,kt),M(fx, fy, t),M(fx,Fx, t),M(fy,Fy, t),

M(fx,Fy, t),M(fy,Fx, t)
) ≥ . (.)

Also suppose that the following conditions are satisfied:
(i) F(X)⊆ f (X),
(ii) fy ∈ F(x) implies x� y,
(iii) if yn ∈ F(xn) is a sequence such that yn → y = fx, then xn � x for all n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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Then F and f have a coincidence point, that is, there exists x ∈ X such that fx ∈ F(x).

Proof Let t >  be fixed and x ∈ X. By using (i) and (ii), there exists x ∈ X such that
x � x and y = fx ∈ Fx. Now from (i), (ii), and by Lemma ., for x ∈ X there is x ∈ X
such that x � x and y = fx ∈ Fx with

M(y,Fx, t) =M(y, y, t),

thus

HM(Fx,Fx, t)≤ sup
y∈Fx

M(y, y, t) =M(y,Fx, t) =M(y, y, t). (.)

On the other hand by x = x and y = x in (.), we have

T
(
HM(Fx,Fx,kt),M(fx, fx, t),M(fx,Fx, t),M(fx,Fx, t),

M(fx,Fx, t),M(fx,Fx, t)
) ≥ .

Now sinceM(fx,Fx, t) ≥M(fx, y, t),M(fx,Fx, t) ≥M(y, y, t), also

M(fx,Fx, t) ≥M(fx, y, t) ≥M
(
fx, y,

t


)
∗M

(
y, y,

t


)
,

andM(fx,Fx, t)≥M(y, y, t) = , and by using T, we get

T
(
HM(Fx,Fx,kt),M(fx, fx, t),M(fx, y, t),M(fx, y, t),

M
(
fx, y,

t


)
∗M

(
y, y,

t


)
, 

)
≥ .

This means that

T
(
w(kt), v(t), v(t),u(t),u

(
t


)
∗ v

(
t


)
, 

)
≥ ,

where w(t) =HM(Fx,Fx, t), v(t) =M(fx, fx, t), u(t) =M(fx, y, t), then from T, we have
(w(kt) ≥ v(t))

HM(Fx,Fx,kt)≥M(fx, fx, t) =M(fx, y, t),

hence by (.), we obtain

M(y, y, t)≥M
(
fx, y,

t
k

)
.

Again by (i), (ii), and by Lemma ., there exists x ∈ X such that x � x with y = fx ∈
Fx that satisfying in

HM(Fx,Fx, t) ≤M(y,Fx, t) =M(y, y, t). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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Since x � x thus by replacing x = x and y = x in (.) and from T, we obtain

T
(
HM(Fx,Fx,kt),M(y, y, t),M(y, y, t),M(y, y, t),

M
(
y, y,

t


)
∗M

(
y, y,

t


)
, 

)
≥ .

Now by w(t) =HM(Fx,Fx, t), v(t) =M(y, y, t), u(t) =M(y, y, t), the property T implies

HM(Fx,Fx,kt)≥M(y, y, t),

thus from (.), we get

M(y, y, t) ≥M
(
y, y,

t
k

)
.

Repeatedly, there exists x ∈ X with x � x such that y = fx ∈ Fx and HM(Fx,Fx, t) ≤
M(y, y, t), and

HM(Fx,Fx,kt)≥M(y, y, t),

therefore

M(y, y, t) ≥M
(
y, y,

t
k

)
≥M

(
y, y,

t
k

)
≥M

(
fx, y,

t
k

)
.

Continuing the process, we can have a sequence {xn} in X with xn � xn+ such that, for
n≥ , yn = fxn+ ∈ Fxn, and

M(yn, yn+, t) ≥M
(
yn–, yn,

t
k

)
, (.)

and

M(yn, yn+, t) ≥M
(
y, y,

t
kn

)
≥M

(
fx, y,

t
kn+

)
. (.)

From (.), we conclude that, for each i≥ ,

M(yn+i, yn+i+, t) ≥M
(
yn, yn+,

t
ki

)
. (.)

Next, we prove that the sequence yn is Cauchy. Suppose that δ >  and ε ∈ (, ) are given.
Then, by Lemma . and (FM-), for allm > n,

M(yn, ym, δ) ≥M
(
yn, ym, δ( – k)

(
 + k + · · · + km–n–))

≥M
(
yn, yn+, δ( – k)

) ∗M
(
yn+, yn+, δk( – k)

) ∗ · · ·
∗M

(
ym–, ym, δkm–n–( – k)

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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On the other hand, putting t = δki( – k) in (.), for all n≥ , i ≥ , we get

M
(
yn+i, yn+i+, δki( – k)

) ≥M
(
yn, yn+, δ( – k)

)
.

Then by replacing the above inequality in (.), we obtain, for allm > n,

M(yn, ym, δ) ≥M
(
yn, yn+, δ( – k)

) ∗M
(
yn+, yn+, δ( – k)

) ∗ · · ·
∗M

(
ym–, ym, δ( – k)

)
= ∗(m–n) M

(
yn, yn+, δ( – k)

)
. (.)

By hypothesis, ∗ is a t-norm of Hadžić-type, and there exists η ∈ (, ) such that for all
m > n,

≥ s > η ⇒ ∗(m–n)(s) >  – ε. (.)

ByM(fx, y, t) →  as t → ∞, there exists n such that, for all n≥ n,

M
(
fx, y,

δ( – k)
kn+

)
> η.

From (.) and the above inequality, we have

M
(
yn, yn+, δ( – k)

)
> η,

therefore, (.) and (.) imply that, for all n≥ n and eachm > n,

M(yn, ym, δ) >  – ε.

This shows that {yn} is a Cauchy sequence. Since X is complete, there exists some y ∈ X
such that

lim
n→∞ yn = lim

n→∞ f (xn+) = y ∈ lim
n→∞F(xn).

Now, since f (X) is closed, there exists x̄ ∈ X such that y = f x̄ ∈ f (X). Also (ii) implies that
xn � x̄ for any n. Thus from (.), we have

T
(
HM(Fxn,Fx̄,kt),M(fxn, f x̄, t),M(fxn,Fxn, t),M(f x̄,Fx̄, t),

M(fxn,Fx̄, t),M(f x̄,Fxn, t)
) ≥ .

By taking the limit as n→ ∞, by the continuity of T , and from Lemma ., we get

T
(
lim
n→∞HM(Fxn,Fx̄,kt), , ,M(y,Fx̄, t),M(y,Fx̄, t), 

)
≥ .

Now by using T, we have

lim
n→∞HM(Fxn,Fx̄,kt)≥M(y,Fx̄, t),

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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on the other hand HM(Fxn,Fx̄,kt) ≤M(yn,Fx̄,kt), so

M(y,Fx̄,kt) ≥ lim
n→∞HM(Fxn,Fx̄,kt)≥M(y,Fx̄, t).

It follows that M(y,Fx̄, t) =  for each t > . Now since Fx̄ is closed (note that Fx̄ is com-
pact), we get f x̄ = y ∈ Fx̄, thus x̄ is a coincidence point of F and f . The proof is complete.�

Remark . In Theorem ., we proved that the sequence yn is Cauchy; one can replace
the condition ‘∗ is Hadžić-type t-norm and M(x, y, t) →  as t → ∞, for all x, y ∈ X ’ with
the following: ‘limn→∞ ∗∞

i=nM(x, y, thi) =  for each h > ’. To see this, choose some q >  and
n ∈N such that kq <  and

∑∞
i=n


qi ≤ . Then from (FM-) and (.), for everym > n≥ n,

we have

M(yn, ym, t)

≥M

(
yn, ym,

m–∑
i=n


qi
t

)

≥M
(
yn, yn+,


qn

t
)

∗M
(
yn+, yn+,


qn+

t
)

∗ · · · ∗M
(
ym–, ym,


qm– t

)

≥M
(
fx, y,


kn+qn

t
)

∗M
(
fx, y,


kn+qn+

t
)

∗ · · · ∗M
(
fx, y,


kmqm– t

)

≥M
(
fx, y,


(kq)n+

t
)

∗M
(
fx, y,


(kq)n+

t
)

∗ · · · ∗M
(
fx, y,


(kq)m

t
)

≥ ∞∗
i=n

M
(
fx, y,


(kq)i+

t
)
>  – ε.

Thus, {yn} is a Cauchy sequence. Then we have the following theorem.

Theorem . Let (X,M,∗) be a complete fuzzy metric space and suppose for each h > ,
limn→∞ ∗∞

i=nM(x, y, thi) = . Let � be a partial order defined on X. Let F : X → K(X) be a
set-valued mapping with non-empty compact values and f : X → X a mapping such that
f (X) is closed and for some T ∈ T and all comparable elements x, y ∈ X, and t > , we have

T
(
HM(Fx,Fy,kt),M(fx, fy, t),M(fx,Fx, t),M(fy,Fy, t),

M(fx,Fy, t),M(fy,Fx, t)
) ≥ .

Also suppose that the following conditions are satisfied:
(i) F(X)⊆ f (X),
(ii) fy ∈ F(x) implies x� y,
(iii) if yn ∈ F(xn) is a sequence such that yn → y = fx, then xn � x for all n.
Then F and f have a coincidence point, that is, there exists x ∈ X such that fx ∈ F(x).

If in Theorem . and . we put T(u, . . . ,u) := u(kt)
u(t)

, where k ∈ (, ), then we have the
following corollaries.

Corollary . Let (X,M,∗) be a complete fuzzy metric space with Hadžić-type t-norm ∗
such that M(x, y, t) →  as t → ∞, for all x, y ∈ X. Let � be a partial order defined on X .

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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Let F : X →K(X) be a set-valued mapping with non-empty compact values and f : X → X
a mapping such that f (X) be closed and for all comparable elements x, y ∈ X, and t > , we
have

HM(Fx,Fy,kt)≥M(fx, fy, t).

Also suppose that the following conditions are satisfied:
(i) F(X)⊆ f (X),
(ii) fy ∈ F(x) implies x� y,
(iii) if yn ∈ F(xn) is a sequence such that yn → y = fx, then xn � x for all n.
Then there exists x ∈ X such that fx ∈ F(x).

Corollary . Let (X,M,∗) be a complete fuzzy metric space and suppose for each h > ,
limn→∞ ∗∞

i=nM(x, y, thi) = . Let � be a partial order defined on X. Let F : X → K(X) be a
set-valued mapping with non-empty compact values and f : X → X a mapping such that
f (X) be closed and for all comparable elements x, y ∈ X, and t > , we have

HM(Fx,Fy,kt)≥M(fx, fy, t).

Also suppose that the following conditions are satisfied:
(i) F(X)⊆ f (X),
(ii) fy ∈ F(x) implies x� y,
(iii) if yn ∈ F(xn) is a sequence such that yn → y = fx, then xn � x for all n.
Then there exists x ∈ X such that fx ∈ F(x).

Putting f = I (the identity mapping) in Corollary . and ., we get the following corol-
laries.

Corollary . Let (X,M,∗) be a complete fuzzy metric space with Hadžić-type t-norm ∗
such that M(x, y, t) →  as t → ∞, for some x ∈ X and x ∈ Fx. Let � be a partial order
defined on X. Let F : X → K(X) be a set-valued mapping with non-empty compact values
for all comparable elements x, y ∈ X, and t > , we have

HM(Fx,Fy,kt)≥M(x, y, t).

Also suppose that the following conditions are satisfied:
(i) y ∈ F(x) implies x� y,
(ii) if yn ∈ F(xn) is a sequence such that yn → x, then xn � x for all n.
Then F has a fixed point.

Corollary . Let (X,M,∗) be a complete fuzzy metric space and suppose for each h > ,
limn→∞ ∗∞

i=nM(x, y, thi) =  for some x ∈ X and x ∈ Fx. Let � be a partial order defined
on X. Let F : X → K(X) be a set-valued mapping with non-empty compact values for all
comparable elements x, y ∈ X, and t > , we have

HM(Fx,Fy,kt)≥M(x, y, t).

Also suppose that the following conditions are satisfied:

http://www.journalofinequalitiesandapplications.com/content/2014/1/157
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(i) y ∈ F(x) implies x� y,
(ii) if yn ∈ F(xn) is a sequence such that yn → x, then xn � x for all n.
Then F has a fixed point.

Remark . Note that we assumed the implicit relation (.) only for the comparable
elements of the partially ordered fuzzy metric space.

Remark . Corollary . improves and generalizes the mentioned result of Gregori and
Sapena (see Theorem . of []) for set-valued mappings in complete partially ordered
fuzzy metric spaces.

In continuation, in the spirit of Miheţ [], we introduce the notion of a set-valued fuzzy
order ψ-contraction of (ε,λ)-type mappings and give a fixed point theorem in partially
ordered fuzzy metric spaces.

Definition . Let (X,M,∗) be a fuzzy metric space and ψ : (, ) → (, ). A mapping
F : X → C(X) is a set-valued fuzzy order ψ-contraction of (ε,λ)-type if the following im-
plication holds:

M(x, y, ε) >  – λ ⇒ ∀p ∈ Fx ∃q ∈ Fy; M(p,q, ε) >  –ψ(λ), (.)

for every ε > , λ ∈ (, ) and all comparable elements x, y ∈ X.

If ψ(t) = αt (t ∈ (, )) for some α ∈ (, ), then F will be called a set-valued fuzzy order
α-contraction of (ε,λ)-type.
Also note that ifψ(t) < t for all t ∈ (, ), then every set-valued fuzzy orderψ-contraction

of (ε,λ)-type satisfies the relation

∀p ∈ Fx ∃q ∈ Fy; M(p,q, t) ≥M(x, y, t),

for all comparable elements x, y ∈ X and t > . Indeed, if for some comparable x, y ∈ X and
t >  there exists p ∈ Fx such that for all q ∈ Fy, we have M(p,q, t) <M(x, y, t); then there
is λ ∈ (, ) such that M(p,q, t) <  – λ <M(x, y, t), that is, M(x, y, t) >  – λ and M(p,q, t) <
 – λ <  –ψ(λ), which is a contradiction.

Example . Let (X,M,∗) be a fuzzy metric space. Let F : Y → C(Y ) be a set-valued
mapping, where Y ∈ C(X). If there is α ∈ (, ) such that

∀p ∈ Fx ∃q ∈ Fy;  –M(p,q, t) ≤ α
(
 –M(x, y, t)

)
,

for all comparable elements x, y ∈ X and t > , then F is a set-valued fuzzy order α-
contraction of (ε,λ)-type. Indeed, ifM(x, y, ε) >  – λ, then for every comparable elements
x, y ∈ X and some α ∈ (, ), we have

∀p ∈ Fx ∃q ∈ Fy;  –M(p,q, ε) ≤ α
(
 –M(x, y, ε)

)
< αλ,

thusM(p,q, ε) >  – αλ.
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Now we state our main theorem.

Theorem . Let (X,M,∗) be a complete fuzzy metric space with supt< t ∗ t = .
Y ∈ C(X) and F : Y → C(Y ) be a set-valued fuzzy order ψ-contraction of (ε,λ)-type,
where limn→∞ ψ (n)(t) =  for all t ∈ (, ). Let ‘�’ be a partial order defined on X, and
limn→∞ ∗∞

i=n( – ψ (i)(ξ )) =  for all ξ ∈ (, ). Suppose that there exist x ∈ Y and x ∈ Fx
such that M(x,x, +) >  and the following two conditions hold:

(i) y ∈ F(x) implies x� y,
(ii) if xn is a sequence with xn+ ∈ Fxn and xn → x, then xn � x for all n.
Then F has a fixed point.

Proof Since there exist x ∈ Y and x ∈ Fx such that M(x,x, +) > , we have x � x
with M(x,x, +) > . We may suppose that M(x,x, +) < . For, if we assume the con-
trary, thenM(x,x, t) =  for all t > , that is, x = x ∈ Fx and we have finished the proof.
Therefore, for some δ ∈ (, ) and every t > , δ ∈ (δ, ), we have

M(x,x, t) ≥M(x,x, +) =  – δ >  – δ.

Since F is a set-valued fuzzy order ψ-contraction of (ε,λ)-type mapping, there exists
x ∈ Fx with x � x such that M(x,x, t) >  – ψ(δ). Repeating this argument, we get
a sequence {xn} in Y such that xn+ ∈ Fxn with xn � xn+ and such that

M(xn,xn+, t) >  –ψn(δ). (.)

Suppose that ε >  and λ ∈ (, ) are given. Since limn→∞ ∗∞
i=n( – ψ (i)(ξ )) =  for all ξ ∈

(, ), there exists n ∈N such that for all n ≥ n and all ξ ∈ (, ), and we have

∞∗
i=n

(
 –ψ (i)(ξ )

)
>  – λ. (.)

Now by using (FM-) and from (.)-(.), for allm > n≥ n, we get

M(xn,xm, ε)

≥M
(
xn,xn+,

ε

m – n

)
∗M

(
xn+,xn+,

ε

m – n

)
∗ · · · ∗M

(
xm–,xm,

ε

m – n

)

≥ (
 –ψ (n)(δ)

) ∗ (
 –ψ (n+)(δ)

) ∗ · · · ∗ (
 –ψ (m–)(δ)

)
≥ ∞∗

i=n

(
 –ψ (i)(δ)

)
>  – λ.

This shows that {xn} is a Cauchy sequence. SinceX is complete, {xn} converges to some x̄ ∈
X, that is, limn→∞ M(xn, x̄, t) = . Now we prove that x̄ ∈ Fx̄. But Fx̄ = Fx̄; then it is enough
to show that for every ε′ >  and λ′ ∈ (, ) there exists z ∈ Fx̄ such thatM(x̄, z, ε′) >  – λ′.
Let ε′ >  and λ′ ∈ (, ) be arbitrary. From supt< t ∗ t = , it follows that there exists

λ(λ′) ∈ (, ) such that

( – λ) ∗ ( – λ) >  – λ′. (.)
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Also for λ there are λ ∈ (, ) such that

( – λ) ∗ ( – λ) >  – λ. (.)

Now put λ =min{λ,λ}. We prove that there exists μ ∈ (, ) such that ψ(μ) < λ. For, if
ψ(t)≥ λ for every t ∈ (, ), then ψn(t) ≥ λ for every n ∈N and every t ∈ (, ), therefore
∗∞
i=n( –ψ (i)(ξ ))≤ ∗∞

i=n( – λ) ≤  – λ for all n ∈N, which means that  = limn→∞ ∗∞
i=n( –

ψ (i)(ξ ))≤  – λ < , and this is a contradiction.
Since limn→∞ M(xn, x̄, t) =  for all t > , there exists n ∈ N such that for all n ≥ n, and

we haveM(xn, x̄, ε′
 ) >  –μ; thus, since xn � x̄ and by using (.), there exists z ∈ Fx̄ such

that

M
(
xn+, z,

ε′



)
>  –ψ(μ) >  – λ. (.)

On the other hand limn→∞ ψ (n)(t) =  for every t ∈ (, ). Therefore (.) implies the ex-
istence of the element n ∈N such that for all n≥ n, we have

M
(
xn,xn+,

ε′



)
>  – λ. (.)

Also since limn→∞ xn = x̄, there exists n ∈N such that for all n≥ n,

M
(
xn, x̄,

ε′



)
>  – λ. (.)

Now if n≥max{n,n,n}, then by (.)-(.), we get

M
(
x̄, z, ε′) ≥M

(
x̄,xn,

ε′



)
∗M

(
xn,xn+,

ε′



)
∗M

(
xn+, z,

ε′



)

> ( – λ) ∗ ( – λ) ∗ ( – λ) >  – λ′.

Hence x̄ ∈ Fx̄ = Fx̄, consequently x̄ is a fixed point of F . The theorem is proved. �

Corollary . Let (X,M,∗) be a complete fuzzy metric space with Lukasiewicz t-norm
and ‘�’ be a partial order defined on X. Let Y ∈ C(X) and F : Y → C(Y ) be a set-valued
mapping with the property that there is α ∈ (, ) such that

∀p ∈ Fx ∃q ∈ Fy;  –M(p,q, t) ≤ α
(
 –M(x, y, t)

)
,

for all comparable elements x, y ∈ X and t > , and the following conditions hold:
(i) y ∈ F(x) implies x� y,
(ii) if xn is a sequence with xn+ ∈ Fxn and xn → x, then xn � x for all n.
Then F has a fixed point.

Proof By using Definition ., supt< t ∗ t = . Also, from Example . it follows that F is a
set-valued fuzzy order ψ-contraction of (ε,λ)-type with ψ(t) = αt. Since, for all λ ∈ (, ),
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∑∞
i= ψ

(i)(λ) =
∑∞

i= α
iλ < ∞, from Proposition ., we have limn→∞ ∗∞

i=n( – ψ (i)(λ)) = .
Next, since

∀p ∈ Fx ∃q ∈ Fy; M(p,q, t) ≥  – α + αM(x, y, t) ≥  – α > ,

for all comparable elements x, y ∈ X and t > , there exist x ∈ Y and x ∈ Fx such that
M(x,x, +) > . Consequently, by the preceding theorem, F has a fixed point. �

Corollary . Let (X,M,∗) be a complete fuzzy metric space with a continuous g-
convergent t-norm and ‘�’ be a partial order defined on X. Let Y ∈ C(X) and F : Y → C(Y )
be a set-valued fuzzy order α-contraction of (ε,λ)-type. If there exist x ∈ Y and x ∈ Fx
such that M(x,x, +) >  and the following two conditions hold:

(i) y ∈ F(x) implies x� y,
(ii) if xn is a sequence with xn+ ∈ Fxn and xn → x, then xn � x for all n.
Then F has a fixed point.

Theorem . and Corollary . are, respectively, generalizations of the theorems of
Mihet [] and Tirado [] to the set-valued case in partial ordered fuzzy metric spaces.
Now we introduce a definition and, by using it, we shall state fixed and common fixed

point theorems in the partially ordered fuzzy metric space. Our results generalize and
extend Theorems . and . of [] to set-valued mappings in complete partially ordered
fuzzy metric spaces.

Definition . Let Y be a non-empty subset of fuzzy metric space (X,M,∗). Mapping
F : Y → P(X) is called fuzzy order K-set-valued mapping, if for all x ∈ Y , ux ∈ Fx, there
exists uy ∈ Fy with ux � uy such that


M(ux,uy, t)

–  ≤ k
[


M(x,ux, t)

–  +


M(y,uy, t)
– 

]
, (.)

for every t >  and y ∈ Y with x � y and some k ∈ (,  ).

Theorem. Let (X,M,∗) be a complete fuzzymetric space,withM triangular, and ‘�’ a
partial order on X. Let Y ∈ C(X) and F : Y → C(Y ) be a fuzzy order K-set-valuedmapping.
Also let there for some x ∈ Y exist x ∈ Fx with x � x, and the following condition is
satisfied:
If xn → x is a sequence in Y whose consecutive terms are comparable, then xn � x, for

all n.
Then F has a fixed point in X .

Proof By the hypothesis, for x ∈ Y there exists x ∈ Fx such that x � x. Now because
F is a fuzzy order K-set-valued mapping, there exists x ∈ Fx such that x � x and


M(x,x, t)

–  ≤ k
[


M(x,x, t)

–  +


M(x,x, t)
– 

]
,

thus


M(x,x, t)

–  ≤ k
 – k

[


M(x,x, t)
– 

]
.
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Then it follows by induction that


M(xn,xn+, t)

–  ≤
(

k
 – k

)n[ 
M(x,x, t)

– 
]
, (.)

where {xn} is a sequence whose consecutive terms are comparable, that is, xn+ ∈ Fxn. Now
we prove that {xn} is a Cauchy sequence. By putting λ = k

–k , and by (.), and since M is
triangular, we have for allm > n


M(xn,xm, t)

–  ≤
m–n–∑
i=

[


M(xn+i,xn+i+, t)
– 

]

≤
(


M(x,x, t)

– 
) m–∑

i=n

λi ≤
(


M(x,x, t)

– 
)

λn

 – λ
. (.)

For each t >  and each ε ∈ (, ), we can choose a sufficiently large n ∈N such that

(


M(x,x, t)
– 

)
λn

 – λ
<


 – ε

– . (.)

Thus from (.) and (.),M(xn,xm, t) > – ε, for allm,n > n and t > . This shows that
the sequence {xn} is Cauchy, and, since X is complete, it converges to a point x ∈ X. But
Y is closed, thus x ∈ Y and also by using the hypothesis xn � x. Now we show that x ∈ Fx.
From xn ∈ Fxn–, and xn– � x for all n, since F is a fuzzy order K-set-valued mapping,
there exists un ∈ Fx such that xn � un, and


M(xn,un, t)

–  ≤ k
[


M(xn–,xn, t)

–  +


M(x,un, t)
– 

]
. (.)

Now sinceM is triangular, by using (.), we get


M(x,un, t)

–  ≤ 
 – k

[


M(x,xn, t)
–  +


M(xn–,xn, t)

– 
]
,

and so, letting n → ∞, un → x. Consequently, since Fx is closed, we have x ∈ Fx. Then F
has a fixed point. �

From the above theorem we can immediately obtain the following generalization for
getting a common fixed point.

Theorem . Let (X,M,∗) be a complete fuzzy metric space, with M triangular, and ‘�’
a partial order on X. Let Y ∈ C(X) and, for every n ∈ N, Fn : Y → C(Y ) be a sequence of
mappings such that, for every two mappings Fi, Fj and for all x ∈ Y , ux ∈ Fi(x), there exists
uy ∈ Fj(y) with ux � uy such that


M(ux,uy, t)

–  ≤ k
[


M(x,ux, t)

–  +


M(y,uy, t)
– 

]
,

for every t >  and y ∈ Y with x � y and some k ∈ (,  ).Also let there exist, for some x ∈ Y ,
x ∈ Fx with x � x, and the following condition be satisfied:
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If xn → x is a sequence in Y whose consecutive terms are comparable, then xn � x, for
all n.
Then there exists x ∈ Y such that x ∈ ⋂

Fnx, that is, {Fn} has a common fixed point.

Proof We can find x ∈ Fx such that x � x and that


M(x,x, t)

–  ≤ k
 – k

[


M(x,x, t)
– 

]
.

Also for x there exists x ∈ Fx with x � x and such that


M(x,x, t)

–  ≤ k
 – k

[


M(x,x, t)
– 

]
.

By continuing this process, we get


M(xn,xn+, t)

–  ≤
(

k
 – k

)n[ 
M(x,x, t)

– 
]
,

where {xn} is a sequence with xn+ ∈ Fn+xn. Now similar to the proof of the preceding
theorem, we can prove that {xn} is a Cauchy sequence and by the completeness of X it
follows that {xn} converges to some x ∈ X. Furthermore, x ∈ Y and xn � x. Now suppose
that FN is any arbitrary member of Fn. Since xn ∈ Fnxn–, xn– � x for all n, and by the
hypothesis, there exists un ∈ FNx such that xn � un, and


M(xn,un, t)

–  ≤ k
[


M(xn–,xn, t)

–  +


M(x,un, t)
– 

]
,

thus


M(x,un, t)

–  ≤ 
 – k

[


M(x,xn, t)
–  +


M(xn–,xn, t)

– 
]
.

Next by the letting n→ ∞, we get un → x, and then x ∈ FNx. As FN is an arbitrarymember
of Fn, x ∈ ⋂

Fnx, and x is a common fixed point of {Fn}. The theorem is proved. �

Example . Let X = [,∞) with t-norm defined a ∗ b =min{a,b} for all a,b ∈ [, ] and
M(x, y, t) = t

t+|x–y| , for all x, y ∈ X and t > . Then (X,M,∗) is a complete fuzzymetric space.
Let the natural ordering ≤ of the numbers as the partial ordering �. Define Y = [, ] and
F : Y → C(Y ) as Fx = {z, x } for each  ≤ x < 

 , and {z, x } for each 
 ≤ x ≤ , where z ∈ Y is

an arbitrary. If x, y ∈ Y such that x � y and ux = z ∈ Fx, then there exists uy = z ∈ Fy such
that ux � uy and (.) is satisfied. Thus F is a fuzzy order K-set-valued mapping. But if
ux �= z ∈ Fx, then three cases arise.
Case (i). If ≤ x≤ y < 

 , then for every t > 


M( x ,

y
 , t)

–  =
y – x
t

≤ 


[
(x + y)

t

]
=



[


M(x, x , t)
–  +


M(y, y , t)

– 
]
.

Case (ii). If 
 ≤ x ≤ y≤ , then for every t > 


M( x ,

y
 , t)

–  =
y – x
t

≤ 


[
(x + y)

t

]
=



[


M(x, x , t)
–  +


M(y, y , t)

– 
]
.
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Case (iii). If  ≤ x < 
 ≤ y≤ , then for every t > 


M( x ,

y
 , t)

–  ≤ 


[
x + y

t

]
=



[


M(x, x , t)
–  +


M(y, y , t)

– 
]
.

Hence F is a fuzzy order K-set-valued mapping with k = 
 < 

 . Moreover, there exists
x =  (or x = z) with x =  (x = z) such that x � x. Thus all the hypotheses of Theo-
rem . are satisfied and x =  (or x = z) is the fixed point of F .
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