Skip to main content

Weighted composition followed and proceeded by differentiation operators fromZygmund spaces to Bloch-type spaces

Abstract

The boundedness and compactness of the weighted composition followed andproceeded by differentiation operators from Zygmund spaces to Bloch-type spacesand little Bloch-type spaces are characterized.

MSC: 47B38, 30H30, 32C15.

1 Introduction

Let Δ={z:|z|<1} be the open unit disc in the complex plane ℂ,and let H(Δ) be the class of all analytic functions on Δ. Theα-Bloch space B α (0<α<∞) is, by definition, the set of all functionsf in H(Δ) such that

∥ f ∥ B α = | f ( 0 ) | + sup z ∈ Δ ( 1 − | z | 2 ) α | f ′ ( z ) | <∞.
(1.1)

Under the above norm, B α is a Banach space. When α=1, B 1 =B is the well-known Bloch space. Let B 0 α denote the subspace of B α , i.e.,

B 0 α = { f : ( 1 − | z | 2 ) α | f ′ ( z ) | → 0  as  | z | → 1 , f ∈ B α } .

This space is called the little α-Bloch space (see [1]).

Assume that μ is a positive continuous function on[0,1), having the property that there exist positivenumbers s and t, 0<s<t, and δ∈[0,1), such that

μ ( r ) ( 1 − r ) s  is decreasing on  [ δ , 1 ) , lim r → 1 μ ( r ) ( 1 − r ) s = 0 , μ ( r ) ( 1 − r ) t  is increasing on  [ δ , 1 ) , lim r → 1 μ ( r ) ( 1 − r ) t = ∞ .

Then μ is called a normal function (see [2]).

Denote (see, e.g., [3–5])

B μ = { f : ∥ f ∥ B μ = | f ( 0 ) | + sup z ∈ Δ μ ( | z | ) | f ′ ( z ) | < ∞ , f ∈ H ( Δ ) } .
(1.2)

It is well known that B μ is a Banach space with the norm ∥ ⋅ ∥ B μ (see [4]).

Let B μ , 0 denote the subspace of B μ , i.e.,

B μ , 0 = { f : μ ( | z | ) | f ′ ( z ) | → 0  as  | z | → 1 , f ∈ B μ } .

This space is called the little Bloch-type space. When μ(r)= ( 1 − r 2 ) α , the induced space B μ becomes the α-Bloch space B α .

An f in H(Δ) is said to belong to the Zygmund space, denoted by, if

sup | f ( e i ( θ + h ) ) + f ( e i ( θ − h ) ) − 2 f ( e i θ ) | h <∞,

where the supremum is taken over all e i θ ∈∂Δ and h>0. By Theorem 5.3 in [6], we see that f∈Z if and only if

∥ f ∥ Z = | f ( 0 ) | + | f ′ ( 0 ) | + sup z ∈ Δ ( 1 − | z | 2 ) | f ″ ( z ) | <∞.
(1.3)

It is easy to check that is a Banach space under the above norm. For everyf∈Z, by using a result in [7], we have

| f ′ ( z ) | ≤C ∥ f ∥ Z ln e 1 − | z | 2 .
(1.4)

Let Z 0 denote the subspace of consisting of thosef∈Z for which

lim | z | → 1 ( 1 − | z | 2 ) | f ″ ( z ) | =0.

The space Z 0 is called the little Zygmund space. For thecorresponding n-dimensional Zygmund space see, e.g., [8] and [9].

Let φ be a nonconstant analytic self-map of Δ, and letϕ be an analytic function in Δ. We define the linearoperators

Ï• C φ Df=Ï• ( f ′ ∘ φ ) =Ï• f ′ (φ)andÏ•D C φ f=Ï• ( f ∘ φ ) ′ =Ï• f ′ (φ) φ ′ ,for f∈H(Δ).

They are called weighted composition followed and proceeded by differentiationoperators, respectively, where C φ and D are composition and differentiationoperators respectively. Associated with φ is the composition operator C φ f=f∘φ and weighted composition operatorϕ C φ f=ϕf∘φ for ϕ∈H(Δ) and f∈H(Δ). It is interesting to provide a function theoreticcharacterization for φ inducing a bounded or compact compositionoperator, weighted composition operator and related ones on various spaces (see,e.g., [10–19]). For example, it is well known that C φ is bounded on the classical Hardy, Bloch and Bergmanspaces. Operators D C φ and C φ D as well as some other products of linear operatorswere studied, for example, in [20–29] (see also the references therein). There has been some considerablerecent interest in investigation various type of operators from or to Zygmund typespaces (see, [7, 11, 23, 30–37]).

In this paper, we investigate the operators ϕD C φ and ϕ C φ D from Zygmund spaces to Bloch-type spaces and littleBloch-type spaces. Some sufficient and necessary conditions for the boundedness andcompactness of these operators are given.

Throughout this paper, constants are denoted by C, they are positive and maydiffer from one occurrence to the other. The notation A≈B means that there is a positive constant Csuch that B C ≤A≤CB.

2 Main results and proofs

In this section, we state and prove our main results. In order to formulate our mainresults, we quote several lemmas which will be used in the proofs of the mainresults in this paper. The following lemma can be proved in a standard way (see,e.g., Proposition 3.11 in [10]). Hence we omit the details.

Lemma 2.1 Let φ be an analytic self-map of Δ, and let Ï• be an analytic function in Δ. Suppose that μ is normal. ThenÏ•D C φ (or Ï• C φ D):Z(or  Z 0 )→ B μ is compact if and only ifÏ•D C φ (or Ï• C φ D):Z(or  Z 0 )→ B μ is bounded and for any bounded sequence { f n } n ∈ N in(or Z 0 ) which converges to zero uniformly on compactsubsets of Δ asn→∞, and ∥ Ï• D C φ f n ∥ B μ →0 (or ∥ Ï• C φ D f n ∥ B μ →0) asn→∞.

Lemma 2.2[25]

A closed set of B μ , 0 is compact if and only if it is bounded and satisfied

lim | z | → 1 sup f ∈ K μ ( | z | ) | f ′ ( z ) | =0.

Theorem 2.3 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕD C φ :Z→ B μ is bounded;

  2. (ii)

    ϕD C φ : Z 0 → B μ is bounded;

  3. (iii)
    sup z ∈ Δ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 <∞
    (2.1)

and

sup z ∈ Δ μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 <∞.
(2.2)

Proof of Theorem 2.3 (i) ⇒ (ii). This implication is obvious.

  1. (ii)

    ⇒ (iii). Assume that ϕD C φ : Z 0 → B μ is bounded, i.e., there exists a constant C such that

    ∥ ϕ D C φ f ∥ B μ ≤C ∥ f ∥ Z

for all f∈ Z 0 . Taking the functions f(z)=z∈ Z 0 and f(z)= z 2 ∈ Z 0 respectively, we get

sup z ∈ Δ μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | < ∞ , sup z ∈ Δ μ ( | z | ) | ( ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ) φ ( z ) + ϕ ( z ) ( φ ′ ( z ) ) 2 | < ∞ .
(2.3)

Using these facts and the boundedness of function φ, we have

sup z ∈ Δ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | <∞.
(2.4)

Set

h(z)=(z−1) [ ( 1 + ln 1 1 − z ) 2 + 1 ]

and

h a (z)= h ( a ¯ z ) a ¯ ( ln 1 1 − | a | 2 ) − 1
(2.5)

for a∈Δ∖{0}. It is known that h a ∈ Z 0 (see [7]). Since

h a ′ (z)= ( ln 1 1 − a ¯ z ) 2 ( ln 1 1 − | a | 2 ) − 1
(2.6)

and

h a ″ (z)= 2 a ¯ 1 − a ¯ z ( ln 1 1 − a ¯ z ) ( ln 1 1 − | a | 2 ) − 1 ,
(2.7)

for |φ(λ)|> 1 2 , we have

C ∥ ϕ D C φ ∥ Z 0 → B μ ≥ ∥ ϕ D C φ h φ ( λ ) ∥ B μ ≥ μ ( | λ | ) | ϕ ( λ ) φ ″ ( λ ) + ϕ ′ ( λ ) φ ′ ( λ ) | ln 1 1 − | φ ( λ ) | 2 − 2 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 φ ( λ ) | 1 − | φ ( λ ) | 2 .

Hence

μ ( | λ | ) | ϕ ( λ ) φ ″ ( λ ) + ϕ ′ ( λ ) φ ′ ( λ ) | ln 1 1 − | φ ( λ ) | 2 ≤ C ∥ ϕ D C φ ∥ Z 0 → B μ + 2 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 φ ( λ ) | 1 − | φ ( λ ) | 2 .
(2.8)

For a∈Δ∖{0}, set

f a (z)= h ( a ¯ z ) a ¯ ( ln 1 1 − | a | 2 ) − 1 − ∫ 0 z ln 1 1 − a ¯ ω dω.
(2.9)

Then f a ∈ Z 0 . It is easy to see that

f a ′ (z)= ( ln 1 1 − a ¯ z ) 2 ( ln 1 1 − | a | 2 ) − 1 −ln 1 1 − a ¯ z , f a ′ (a)=0,

and

f a ″ (z)= 2 a ¯ 1 − a ¯ z ( ln 1 1 − a ¯ z ) ( ln 1 1 − | a | 2 ) − 1 − a ¯ 1 − a ¯ z , f a ″ (a)= a ¯ 1 − | a | 2 .

Therefore

C ∥ ϕ D C φ ∥ Z 0 → B μ ≥ ∥ ϕ D C φ f φ ( λ ) ∥ B μ ≥μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 φ ( λ ) | 1 − | φ ( λ ) | 2 .
(2.10)

From (2.8) and (2.10), we have

sup | φ ( λ ) | > 1 2 μ ( | λ | ) | ϕ ( λ ) φ ″ ( λ ) + ϕ ′ ( λ ) φ ′ ( λ ) | ln 1 1 − | φ ( λ ) | 2 ≤C ∥ ϕ D C φ ∥ Z 0 → B μ <∞.
(2.11)

On the other hand, from the first inequality in (2.3), we have

sup | φ ( λ ) | ≤ 1 2 μ ( | λ | ) | ϕ ( λ ) φ ″ ( λ ) + ϕ ′ ( λ ) φ ′ ( λ ) | ln 1 1 − | φ ( λ ) | 2 ≤ sup λ ∈ Δ μ ( | λ | ) | ϕ ( λ ) φ ″ ( λ ) + ϕ ′ ( λ ) φ ′ ( λ ) | ln 4 3 < ∞ .
(2.12)

Hence, from (2.3), (2.11), and (2.12), we obtain (2.2). Further, from (2.10), wehave

sup | φ ( λ ) | > 1 2 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 | 1 − | φ ( λ ) | 2 ≤ sup | φ ( λ ) | > 1 2 2 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 φ ( λ ) | 1 − | φ ( λ ) | 2 ≤ C ∥ ϕ D C φ ∥ Z 0 → B μ < ∞ .
(2.13)

On the other hand, by (2.4), we have

sup | φ ( λ ) | ≤ 1 2 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 | 1 − | φ ( λ ) | 2 ≤ sup | φ ( λ ) | ≤ 1 2 4 3 μ ( | λ | ) | ϕ ( λ ) ( φ ′ ( λ ) ) 2 | <∞.
(2.14)

Combining (2.13) and (2.14), (2.1) follows.

  1. (iii)

    ⇒ (i). Assume that (2.1) and (2.2) hold. Then, for every f∈Z, from (1.4), we have

    μ ( | z | ) | ( ϕ D C φ f ) ′ ( z ) | = μ ( | z | ) | ϕ ′ ( z ) φ ′ ( z ) f ′ ( φ ( z ) ) + ϕ ( z ) [ f ″ ( φ ( z ) ) ( φ ′ ( z ) ) 2 + f ′ ( φ ( z ) ) φ ″ ( z ) ] | ≤ μ ( | z | ) | ϕ ( z ) f ″ ( φ ( z ) ) ( φ ′ ( z ) ) 2 | + μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] f ′ ( φ ( z ) | ≤ μ ( | z | ) C | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 ∥ f ∥ Z + μ ( | z | ) C | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | × ln e 1 − | φ ( z ) | 2 ∥ f ∥ Z .
    (2.15)

Taking the supremum in (2.15) for z∈Δ, and employing (2.1) and (2.2), we deduce thatÏ•D C φ :Z→ B μ is bounded. The proof of Theorem 2.3 iscompleted. □

Theorem 2.4 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕD C φ :Z→ B μ is compact;

  2. (ii)

    ϕD C φ : Z 0 → B μ is compact;

  3. (iii)

    ϕD C φ :Z→ B μ is bounded,

    lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 =0
    (2.16)

and

lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 =0.
(2.17)

Proof of Theorem 2.4 (i) ⇒ (ii). This implication is clear.

  1. (ii)

    ⇒ (iii). Assume that Ï•D C φ : Z 0 → B μ is compact. Then it is clear that Ï•D C φ : Z 0 → B μ is bounded. By Theorem 2.3 we know that Ï•D C φ :Z→ B μ is bounded. Let ( z n ) n ∈ N be a sequence in Δ such that |φ( z n )|→1 as n→∞ and φ( z n )≠0, n∈N (if such a sequence does not exist then (2.16) and (2.17) are vacuously satisfied). Set

    h n (z)= h ( φ ( z n ) ¯ z ) φ ( z n ) ¯ ( ln 1 1 − | φ ( z n ) | 2 ) − 1 ,n∈N.
    (2.18)

Then from the proof of Theorem 2.3, we see that h n ∈ Z 0 for each n∈N. Moreover h n →0 uniformly on compact subsets of Δ asn→∞ and

h n ′ ( φ ( z n ) ) =ln 1 1 − | φ ( z n ) | 2 , h n ″ ( φ ( z n ) ) =ln 2 φ ( z n ) ¯ 1 − | φ ( z n ) | 2 .

Since Ï•D C φ : Z 0 → B μ is compact, by Lemma 2.1, we have

lim n → ∞ ∥ ϕ D C φ h n ∥ B μ =0.

On the other hand, similar to the proof of Theorem 2.3, we have

∥ ϕ D C φ h n ∥ B μ ≥ | 2 μ ( | z n | ) | ϕ ( z n ) ( φ ′ ( z n ) ) 2 | | φ ( z n ) | 1 − | φ ( z n ) | 2 − μ ( | z n | ) | × ϕ ( z n ) φ ″ ( z n ) + ϕ ′ ( z n ) φ ′ ( z n ) | ln 1 1 − | φ ( z n ) | 2 | ,

which implies that

lim n → ∞ 2 μ ( | z n | ) | ϕ ( z n ) ( φ ′ ( z n ) ) 2 | | φ ( z n ) | 1 − | φ ( z n ) | 2 = lim n → ∞ μ ( | z n | ) | ϕ ( z n ) φ ″ ( z n ) + ϕ ′ ( z n ) φ ′ ( z n ) | ln 1 1 − | φ ( z n ) | 2 ,
(2.19)

if one of these two limits exists.

Next, set

f n ( z ) = h ( φ ( z n ) ¯ z ) φ ( z n ) ¯ ( ln 1 1 − | φ ( z n ) | 2 ) − 1 − ∫ 0 z ln 3 1 1 − φ ( z n ) ¯ ω d ω ( ln 1 1 − | φ ( z n ) | 2 ) − 2 .
(2.20)

Then f n ∈ Z 0 and f n converges to 0 uniformly on compact subsets of Δas n→∞ (see [7]). Since

f n ′ (z)= ( ln 1 1 − φ ( z n ) ¯ z ) 2 ( ln 1 1 − | φ ( z n ) | 2 ) − 1 − ( ln 1 1 − φ ( z n ) ¯ z ) 3 ( ln 1 1 − | φ ( z n ) | 2 ) − 2 ,

we have f n ′ (φ( z n ))=0, for every n∈N and

f n ″ ( φ ( z n ) ) =− φ ( z n ) ¯ 1 − | φ ( z n ) | 2 .

By using these facts, since Ï•D C φ : Z 0 → B μ is compact, and from Lemma 2.1, we find that

0≤ lim n → ∞ μ ( | z n | ) | ϕ ( z n ) ( φ ′ ( z n ) ) 2 | | φ ( z n ) | 1 − | φ ( z n ) | 2 ≤ lim n → ∞ ∥ ϕ D C φ f n ∥ B μ =0.

Therefore

lim n → ∞ μ ( | z n | ) | ϕ ( z n ) ( φ ′ ( z n ) ) 2 | 1 − | φ ( z n ) | 2 = lim n → ∞ μ ( | z n | ) | ϕ ( z n ) ( φ ′ ( z n ) ) 2 φ ( z n ) | 1 − | φ ( z n ) | 2 =0,

which implies (2.16). From this and (2.19), we have

lim n → ∞ μ ( | z n | ) | ϕ ( z n ) φ ″ ( z n ) + ϕ ′ ( z n ) φ ′ ( z n ) | ln 1 1 − | φ ( z n ) | 2 =0.
(2.21)

From (2.21), it follows that lim n → ∞ μ(| z n |)|ϕ( z n ) φ ″ ( z n )+ ϕ ′ ( z n ) φ ′ ( z n )|=0, which altogether imply (2.17).

  1. (iii)

    ⇒ (i). Suppose that Ï•D C φ :Z→ B μ is bounded and conditions (2.16) and (2.17) hold. From Theorem 2.3, it follows that

    C 1 = sup z ∈ Δ μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | < ∞ , C 2 = sup z ∈ Δ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | < ∞ .
    (2.22)

By the assumption, for every ε>0, there is a δ∈(0,1), such that

μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 < ε and μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 < ε ,
(2.23)

whenever δ<|φ(z)|<1.

Assume that ( f k ) k ∈ N is a sequence in such that sup k ∈ N ∥ f k ∥ Z ≤L and f k converges to 0 uniformly on compact subsets of Δas k→∞. Let K={z∈Δ:|φ(z)|≤δ}. Then by (1.4), (2.22), and (2.23), we have

sup z ∈ Δ μ ( | z | ) | ( ϕ D C φ f k ) ′ ( z ) | = sup z ∈ Δ μ ( | z | ) | ϕ ′ ( z ) φ ′ ( z ) f k ′ ( φ ( z ) ) + ϕ ( z ) [ f k ″ ( φ ( z ) ) ( φ ′ ( z ) ) 2 + f k ′ ( φ ( z ) ) φ ″ ( z ) ] | ≤ sup z ∈ Δ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 f ″ ( φ ( z ) ) | + sup z ∈ Δ μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] f ′ ( φ ( z ) ) | ≤ sup z ∈ K μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 f ″ ( φ ( z ) ) | + sup z ∈ K μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] f ′ ( φ ( z ) ) | + sup z ∈ Δ ∖ K μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 f ″ ( φ ( z ) ) | + sup z ∈ Δ ∖ K μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] f ′ ( φ ( z ) ) | ≤ sup z ∈ K μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 f ″ ( φ ( z ) ) | + sup z ∈ K μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] f ′ ( φ ( z ) ) | + sup z ∈ Δ ∖ K μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 ∥ f k ∥ Z + C sup z ∈ Δ ∖ K μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 ∥ f k ∥ Z ≤ C 2 sup | ω | ≤ δ | f k ″ ( ω ) | + C 1 sup | ω | ≤ δ | f k ′ ( ω ) | + ( C + 1 ) ε ∥ f k ∥ Z ,

i.e. we obtain

∥ ϕ D C φ f k ∥ B μ ≤ C 2 sup | ω | ≤ δ | f k ″ ( ω ) | + C 1 sup | ω | ≤ δ | f k ′ ( ω ) | + ( C + 1 ) ε ∥ f k ∥ Z + | ϕ ( 0 ) | | f k ′ ( φ ( 0 ) ) | | φ ′ ( 0 ) | .
(2.24)

Since f k converges to 0 uniformly on compact subsets of Δas k→∞, from Cauchy’s estimate, it follows that f k ′ →0 and f k ″ →0 as k→∞ on compact subsets of Δ. Hence, lettingk→∞ in (2.24), and using the fact that ε isan arbitrary positive number, we obtain

lim k → ∞ ∥ ϕ D C φ f k ∥ B μ =0.

By combining this with Lemma 2.1 the result easily follows. The proof ofTheorem 2.4 is completed. □

Theorem 2.5 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. ThenϕD C φ : Z 0 → B μ , 0 is bounded if and only ifϕD C φ : Z 0 → B μ is bounded and

lim | z | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | =0and lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | =0.
(2.25)

Proof of Theorem 2.5 Assume that Ï•D C φ : Z 0 → B μ , 0 is bounded. Then, it is clear thatÏ•D C φ : Z 0 → B μ is bounded. Taking the test functionsf(z)=z and f(z)= z 2 respectively, we obtain (2.25).

Conversely, assume that ϕD C φ : Z 0 → B μ is bounded and (2.25) holds. Then for each polynomialp, we have

μ ( | z | ) | ( ϕ D C φ p ) ′ ( z ) | ≤ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 p ″ ( φ ( z ) ) | + μ ( | z | ) | [ ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) ] p ′ ( φ ( z ) ) | .
(2.26)

In view of the facts

sup ω ∈ Δ | p ″ ( ω ) | <∞, sup ω ∈ Δ | p ′ ( ω ) | <∞,

from (2.25) and (2.26), it follows that ϕD C φ p∈ B μ , 0 . Since the set of all polynomials is dense in Z 0 (see [23]), it follows that for every f∈ Z 0 , there is a sequence of polynomials ( p n ) n ∈ N such that ∥ f − p n ∥ Z →0 as n→∞. Hence

∥ ϕ D C φ f − ϕ D C φ p n ∥ B μ ≤ ∥ ϕ D C φ ∥ Z 0 → B μ ∥ f − p n ∥ Z →0

as n→∞. Since the operator ϕD C φ : Z 0 → B μ is bounded, we have ϕD C φ ( Z 0 )⊆ B μ , 0 , which implies the boundedness ofϕD C φ : Z 0 → B μ , 0 . □

Theorem 2.6 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕD C φ :Z→ B μ , 0 is compact;

  2. (ii)

    ϕD C φ : Z 0 → B μ , 0 is compact;

  3. (iii)
    lim | z | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 =0
    (2.27)

and

lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 =0.
(2.28)

Proof of Theorem 2.6 (i) ⇒ (ii). This implication is trivial.

  1. (ii)

    ⇒ (iii). Assume that Ï•D C φ : Z 0 → B μ , 0 is compact. Then Ï•D C φ : Z 0 → B μ , 0 is bounded. From the proof of Theorem 2.5, we have

    lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | =0
    (2.29)

and

lim | z | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | =0.
(2.30)

Hence, if ∥ φ ∥ ∞ <1, from (2.29) and (2.30), we obtain

lim | z | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 ≤ 1 1 − ∥ φ ∥ ∞ 2 lim | z | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | =0

and

lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 ≤ ln e 1 − ∥ φ ∥ ∞ 2 lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | = 0 ,

from which the result follows in this case.

Now assume that ∥ φ ∥ ∞ =1. Let ( z k ) k ∈ N be a sequence such that |φ( z k )|→1 as k→∞. Since Ï•D C φ : Z 0 → B μ is compact, by Theorem 2.4, we have

lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 =0
(2.31)

and

lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 =0.
(2.32)

From (2.30) and (2.31), it follows that for every ε>0, there exists an r∈(0,1) such that μ(|z|) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 <ε, when r<|φ(z)|<1, and there exists a σ∈(0,1) such that μ(|z|)|ϕ(z) ( φ ′ ( z ) ) 2 |≤ε(1− r 2 ), when σ<|z|<1. Therefore, when σ<|z|<1 and r<|φ(z)|<1, we have

μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 <ε.
(2.33)

On the other hand, if σ<|z|<1 and |φ(z)|≤r, we obtain

μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 <μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − r 2 <ε.
(2.34)

Inequality (2.33) together with (2.34) gives the (2.27). Similarly, (2.29) and(2.32) imply (2.28).

  1. (iii)

    ⇒ (i). Let f∈Z. Then we have

    μ ( | z | ) | ( ϕ D C φ f ) ′ ( z ) | ≤ C [ μ ( | z | ) | ϕ ( z ) ( φ ′ ( z ) ) 2 | 1 − | φ ( z ) | 2 + μ ( | z | ) | ϕ ( z ) φ ″ ( z ) + ϕ ′ ( z ) φ ′ ( z ) | ln e 1 − | φ ( z ) | 2 ] ∥ f ∥ Z .

Taking the supremum in this inequality over all f∈Z such that ∥ f ∥ Z ≤1, then letting |z|→1, and using (2.27) and (2.28), we obtain

lim | z | → 1 sup ∥ f ∥ Z ≤ 1 μ ( | z | ) | ( ϕ D C φ f ) ′ ( z ) | =0.

From Lemma 2.2 it follows that the operator Ï•D C φ :Z→ B μ , 0 is compact. □

Similarly to the proofs of Theorems 2.3-2.6, we can get the following results; weomit the proof.

Theorem 2.7 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕ C φ D:Z→ B μ is bounded;

  2. (ii)

    ϕ C φ D: Z 0 → B μ is bounded;

  3. (iii)
    sup z ∈ Δ μ ( | z | ) | ϕ ( z ) φ ′ ( z ) | 1 − | φ ( z ) | 2 <∞

and

sup z ∈ Δ μ ( | z | ) | ϕ ′ ( z ) | ln e 1 − | φ ( z ) | 2 <∞.

Theorem 2.8 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕ C φ D:Z→ B μ is compact;

  2. (ii)

    ϕ C φ D: Z 0 → B μ is compact;

  3. (iii)

    ϕ C φ D:Z→ B μ is bounded,

    lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ( z ) φ ′ ( z ) | 1 − | φ ( z ) | 2 =0

and

lim | φ ( z ) | → 1 μ ( | z | ) | ϕ ′ ( z ) | ln e 1 − | φ ( z ) | 2 =0.

Theorem 2.9 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Thenϕ C φ D: Z 0 → B μ , 0 is bounded if and only ifϕ C φ D: Z 0 → B μ is bounded and

lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ′ ( z ) | =0and lim | z | → 1 μ ( | z | ) | ϕ ′ ( z ) | =0.

Theorem 2.10 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal. Then the following statements are equivalent.

  1. (i)

    ϕ C φ D:Z→ B μ , 0 is compact;

  2. (ii)

    ϕ C φ D: Z 0 → B μ , 0 is compact;

  3. (iii)
    lim | z | → 1 μ ( | z | ) | ϕ ( z ) φ ′ ( z ) | 1 − | φ ( z ) | 2 =0

and

lim | z | → 1 μ ( | z | ) | ϕ ′ ( z ) | ln e 1 − | φ ( z ) | 2 =0.

References

  1. Zhu K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 1993,23(3):1143–1177. 10.1216/rmjm/1181072549

    Article  MathSciNet  MATH  Google Scholar 

  2. Shields A, Williams D: Bonded projections, duality, and multipliers in spaces of analyticfunctions. Trans. Am. Math. Soc. 1971, 162: 287–302.

    MathSciNet  Google Scholar 

  3. Fu X, Zhu X: Weighted composition operators on some weighted spaces in the unit ball. Abstr. Appl. Anal. 2008., 2008: Article ID 605807

    Google Scholar 

  4. Hu Z, Wang S: Composition operators on Bloch-type spaces. Proc. R. Soc. Edinb. A 2005,135(6):1229–1239. 10.1017/S0308210500004340

    Article  MathSciNet  MATH  Google Scholar 

  5. Krantz SG, Stević S: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 2009,71(5–6):1772–1795. 10.1016/j.na.2009.01.013

    Article  MathSciNet  MATH  Google Scholar 

  6. Duren P: Theory of Hp Spaces. Academic Press, New York; 1970.

    MATH  Google Scholar 

  7. Li S, Stević S: Volterra type operators on Zygmund spaces. J. Inequal. Appl. 2007., 2007: Article ID 32124

    Google Scholar 

  8. Stević S: On an integral operator from the Zygmund space to the Bloch-type space on theunit ball. Glasg. Math. J. 2009,51(2):275–287. 10.1017/S0017089508004692

    Article  MathSciNet  MATH  Google Scholar 

  9. Stević S: On an integral-type operator from Zygmund-type spaces to mixed-norm spaces onthe unit ball. Abstr. Appl. Anal. 2010., 2010: Article ID 198608

    Google Scholar 

  10. Cowen C, Maccluer B Studies in Advanced Mathematics. In Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton; 1995.

    Google Scholar 

  11. Li S, Stević S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 2008,338(2):1282–1295. 10.1016/j.jmaa.2007.06.013

    Article  MathSciNet  MATH  Google Scholar 

  12. Madigan K, Matheson A: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 1995, 347: 2679–2687. 10.1090/S0002-9947-1995-1273508-X

    Article  MathSciNet  MATH  Google Scholar 

  13. Shapiro J: Composition Operators and Classical Function Theory. Springer, New York; 1993.

    Book  MATH  Google Scholar 

  14. Stević S: Generalized composition operators between mixed norm space and some weightedspaces. Numer. Funct. Anal. Optim. 2009, 29: 426–434.

    Google Scholar 

  15. Stević S:Norm of weighted composition operators from Bloch space to H μ ∞ on the unit ball. Ars Comb. 2008, 88: 125–127.

    MathSciNet  MATH  Google Scholar 

  16. Stević S: Norm of weighted composition operators from α -Bloch spaces toweighted-type spaces. Appl. Math. Comput. 2009, 215: 818–820. 10.1016/j.amc.2009.06.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Ueki S:Composition operators on the Privalov spaces of the unit ball of C n . J. Korean Math. Soc. 2005,42(1):111–127.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ueki S: Weighted composition operators on the Bargmann-Fock space. Int. J. Mod. Math. 2008,3(3):231–243.

    MathSciNet  MATH  Google Scholar 

  19. Zhu X: Generalized weighted composition operators from Bloch-type spaces to weightedBergman spaces. Indian J. Math. 2007,49(2):139–149.

    MathSciNet  MATH  Google Scholar 

  20. Hibschweiler R, Portnoy N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 2005,35(3):843–855. 10.1216/rmjm/1181069709

    Article  MathSciNet  MATH  Google Scholar 

  21. Li S, Stević S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 2007,9(2):195–205.

    MathSciNet  MATH  Google Scholar 

  22. Li S, Stević S: Composition followed by differentiation between H ∞ and α -Bloch spaces. Houst. J. Math. 2009,35(1):327–340.

    MathSciNet  MATH  Google Scholar 

  23. Li S, Stević S: Products of composition and differentiation operators from Zygmund spaces toBloch spaces and Bers spaces. Appl. Math. Comput. 2010, 217: 3144–3154. 10.1016/j.amc.2010.08.047

    Article  MathSciNet  MATH  Google Scholar 

  24. Li S, Stević S: Composition followed by differentiation from mixed-norm spaces to α -Bloch spaces. Sb. Math. 2008,199(12):1847–1857. 10.1070/SM2008v199n12ABEH003983

    Article  MathSciNet  MATH  Google Scholar 

  25. Long J, Wu P:Weighted composition followed and proceeded by differentiation operators from Q k (p,q) spaces to Bloch-type spaces. J. Inequal. Appl. 2012., 2012: Article ID 160

    Google Scholar 

  26. Ohno S: Products of composition and differentiation between Hardy spaces. Bull. Aust. Math. Soc. 2006,73(2):235–243. 10.1017/S0004972700038818

    Article  MathSciNet  MATH  Google Scholar 

  27. Stević S: Weighted differentiation composition operators from mixed-norm spaces toweighted-type spaces. Appl. Math. Comput. 2009, 211: 222–233. 10.1016/j.amc.2009.01.061

    Article  MathSciNet  MATH  Google Scholar 

  28. Stević S: Norm and essential norm of composition followed by differentiation from α −Bloch spaces to H μ ∞ . Appl. Math. Comput. 2009,207(1):225–229. 10.1016/j.amc.2008.10.032

    Article  MathSciNet  MATH  Google Scholar 

  29. Stević S: Products of composition and differentiation operators on the weighted Bergmanspace. Bull. Belg. Math. Soc. Simon Stevin 2009,16(4):623–635.

    MathSciNet  MATH  Google Scholar 

  30. Fu X, Li S: Composition operators from Zygmund spaces into QK spaces. J. Inequal. Appl. 2013., 2013: Article ID 175

    Google Scholar 

  31. Li S, Stević S: On an integral-type operator from ω -Bloch spaces to μ -Zygmund spaces. Appl. Math. Comput. 2010,215(12):4385–4391. 10.1016/j.amc.2009.12.070

    Article  MathSciNet  MATH  Google Scholar 

  32. Li S, Stević S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 2008,206(2):825–831. 10.1016/j.amc.2008.10.006

    Article  MathSciNet  MATH  Google Scholar 

  33. Li S, Stević S: Integral-type operators from Bloch-type spaces to Zygmund-type spaces. Appl. Math. Comput. 2009, 215: 464–473. 10.1016/j.amc.2009.05.011

    Article  MathSciNet  MATH  Google Scholar 

  34. Li S, Stević S:Products of Volterra type operator and composition operator from H ∞ and Bloch spaces to the Zygmund space. J. Math. Anal. Appl. 2008, 345: 40–52. 10.1016/j.jmaa.2008.03.063

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu Y, Yu Y: Riemann-Stieltjes operator from mixed norm spaces to Zygmund-type spaces onthe unit ball. Taiwan. J. Math. 2013,17(5):1751–1764.

    MATH  Google Scholar 

  36. Yang C:Integral-type operators from F(p;q;s) spaces to Zygmund-type spaces on the unitball. J. Inequal. Appl. 2010., 2010: Article ID 789285

    Google Scholar 

  37. Zhu X: Extended Cesàro operators from mixed norm spaces to Zygmund typespaces. Tamsui Oxford Univ. J. Math. Sci. 2010,26(4):411–422.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions whichgreatly improve the present article. The work was supported by the UnitedTechnology Foundation of Science and Technology Department of Guizhou Provinceand Guizhou Normal University (Grant No. LKS[2012]12), and National NaturalScience Foundation of China (Grant No. 11171080, Grant No. 11171277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianren Long.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript. All authors read and approved thefinal manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Qiu, C. & Wu, P. Weighted composition followed and proceeded by differentiation operators fromZygmund spaces to Bloch-type spaces. J Inequal Appl 2014, 152 (2014). https://doi.org/10.1186/1029-242X-2014-152

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-152

Keywords