# Weighted composition followed and proceeded by differentiation operators fromZygmund spaces to Bloch-type spaces

## Abstract

The boundedness and compactness of the weighted composition followed andproceeded by differentiation operators from Zygmund spaces to Bloch-type spacesand little Bloch-type spaces are characterized.

MSC: 47B38, 30H30, 32C15.

## 1 Introduction

Let $\mathrm{Î”}=\left\{z:|z|<1\right\}$ be the open unit disc in the complex plane â„‚,and let $H\left(\mathrm{Î”}\right)$ be the class of all analytic functions on Î”. TheÎ±-Bloch space ${B}^{\mathrm{Î±}}$ ($0<\mathrm{Î±}<\mathrm{âˆž}$) is, by definition, the set of all functionsf in $H\left(\mathrm{Î”}\right)$ such that

${âˆ¥fâˆ¥}_{{B}^{\mathrm{Î±}}}=|f\left(0\right)|+\underset{zâˆˆ\mathrm{Î”}}{sup}{\left(1âˆ’{|z|}^{2}\right)}^{\mathrm{Î±}}|{f}^{â€²}\left(z\right)|<\mathrm{âˆž}.$
(1.1)

Under the above norm, ${B}^{\mathrm{Î±}}$ is a Banach space. When $\mathrm{Î±}=1$, ${B}^{1}=B$ is the well-known Bloch space. Let${B}_{0}^{\mathrm{Î±}}$ denote the subspace of ${B}^{\mathrm{Î±}}$, i.e.,

This space is called the little Î±-Bloch space (see [1]).

Assume that Î¼ is a positive continuous function on$\left[0,1\right)$, having the property that there exist positivenumbers s and t, $0, and $\mathrm{Î´}âˆˆ\left[0,1\right)$, such that

Then Î¼ is called a normal function (see [2]).

Denote (see, e.g., [3â€“5])

${B}_{\mathrm{Î¼}}=\left\{f:{âˆ¥fâˆ¥}_{{B}_{\mathrm{Î¼}}}=|f\left(0\right)|+\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|{f}^{â€²}\left(z\right)|<\mathrm{âˆž},fâˆˆH\left(\mathrm{Î”}\right)\right\}.$
(1.2)

It is well known that ${B}_{\mathrm{Î¼}}$ is a Banach space with the norm${âˆ¥â‹\dots âˆ¥}_{{B}_{\mathrm{Î¼}}}$ (see [4]).

Let ${B}_{\mathrm{Î¼},0}$ denote the subspace of ${B}_{\mathrm{Î¼}}$, i.e.,

This space is called the little Bloch-type space. When $\mathrm{Î¼}\left(r\right)={\left(1âˆ’{r}^{2}\right)}^{\mathrm{Î±}}$, the induced space ${B}_{\mathrm{Î¼}}$ becomes the Î±-Bloch space${B}^{\mathrm{Î±}}$.

An f in $H\left(\mathrm{Î”}\right)$ is said to belong to the Zygmund space, denoted by, if

$sup\frac{|f\left({e}^{i\left(\mathrm{Î¸}+h\right)}\right)+f\left({e}^{i\left(\mathrm{Î¸}âˆ’h\right)}\right)âˆ’2f\left({e}^{i\mathrm{Î¸}}\right)|}{h}<\mathrm{âˆž},$

where the supremum is taken over all ${e}^{i\mathrm{Î¸}}âˆˆ\mathrm{âˆ‚}\mathrm{Î”}$ and $h>0$. By Theorem 5.3 in [6], we see that $fâˆˆ\mathcal{Z}$ if and only if

${âˆ¥fâˆ¥}_{\mathbb{Z}}=|f\left(0\right)|+|{f}^{â€²}\left(0\right)|+\underset{zâˆˆ\mathrm{Î”}}{sup}\left(1âˆ’{|z|}^{2}\right)|{f}^{â€³}\left(z\right)|<\mathrm{âˆž}.$
(1.3)

It is easy to check that is a Banach space under the above norm. For every$fâˆˆ\mathcal{Z}$, by using a result in [7], we have

$|{f}^{â€²}\left(z\right)|â‰¤C{âˆ¥fâˆ¥}_{\mathcal{Z}}ln\frac{e}{1âˆ’{|z|}^{2}}.$
(1.4)

Let ${\mathcal{Z}}_{0}$ denote the subspace of consisting of those$fâˆˆ\mathcal{Z}$ for which

$\underset{|z|â†’1}{lim}\left(1âˆ’{|z|}^{2}\right)|{f}^{â€³}\left(z\right)|=0.$

The space ${\mathcal{Z}}_{0}$ is called the little Zygmund space. For thecorresponding n-dimensional Zygmund space see, e.g., [8] and [9].

Let Ï† be a nonconstant analytic self-map of Î”, and letÏ• be an analytic function in Î”. We define the linearoperators

They are called weighted composition followed and proceeded by differentiationoperators, respectively, where ${C}_{\mathrm{Ï†}}$ and D are composition and differentiationoperators respectively. Associated with Ï† is the composition operator${C}_{\mathrm{Ï†}}f=fâˆ˜\mathrm{Ï†}$ and weighted composition operator$\mathrm{Ï•}{C}_{\mathrm{Ï†}}f=\mathrm{Ï•}fâˆ˜\mathrm{Ï†}$ for $\mathrm{Ï•}âˆˆH\left(\mathrm{Î”}\right)$ and $fâˆˆH\left(\mathrm{Î”}\right)$. It is interesting to provide a function theoreticcharacterization for Ï† inducing a bounded or compact compositionoperator, weighted composition operator and related ones on various spaces (see,e.g., [10â€“19]). For example, it is well known that ${C}_{\mathrm{Ï†}}$ is bounded on the classical Hardy, Bloch and Bergmanspaces. Operators $D{C}_{\mathrm{Ï†}}$ and ${C}_{\mathrm{Ï†}}D$ as well as some other products of linear operatorswere studied, for example, in [20â€“29] (see also the references therein). There has been some considerablerecent interest in investigation various type of operators from or to Zygmund typespaces (see, [7, 11, 23, 30â€“37]).

In this paper, we investigate the operators $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}$ and $\mathrm{Ï•}{C}_{\mathrm{Ï†}}D$ from Zygmund spaces to Bloch-type spaces and littleBloch-type spaces. Some sufficient and necessary conditions for the boundedness andcompactness of these operators are given.

Throughout this paper, constants are denoted by C, they are positive and maydiffer from one occurrence to the other. The notation $Aâ‰ˆB$ means that there is a positive constant Csuch that $\frac{B}{C}â‰¤Aâ‰¤CB$.

## 2 Main results and proofs

In this section, we state and prove our main results. In order to formulate our mainresults, we quote several lemmas which will be used in the proofs of the mainresults in this paper. The following lemma can be proved in a standard way (see,e.g., Proposition 3.11 in [10]). Hence we omit the details.

Lemma 2.1 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Thenis compact if and only ifis bounded and for any bounded sequence${\left\{{f}_{n}\right\}}_{nâˆˆN}$in(or${\mathcal{Z}}_{0}$) which converges to zero uniformly on compactsubsets of Î” as$nâ†’\mathrm{âˆž}$, and${âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}â†’0$ (or${âˆ¥\mathrm{Ï•}{C}_{\mathrm{Ï†}}D{f}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}â†’0$) as$nâ†’\mathrm{âˆž}$.

Lemma 2.2[25]

A closed set of ${B}_{\mathrm{Î¼},0}$ is compact if and only if it is bounded and satisfied

$\underset{|z|â†’1}{lim}\underset{fâˆˆ\mathbb{K}}{sup}\mathrm{Î¼}\left(|z|\right)|{f}^{â€²}\left(z\right)|=0.$

Theorem 2.3 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded;

2. (ii)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded;

3. (iii)
$\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{âˆž}$
(2.1)

and

$\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{âˆž}.$
(2.2)

Proof of Theorem 2.3 (i) â‡’ (ii). This implication is obvious.

1. (ii)

â‡’ (iii). Assume that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded, i.e., there exists a constant C such that

${âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}fâˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¤C{âˆ¥fâˆ¥}_{\mathcal{Z}}$

for all $fâˆˆ{\mathcal{Z}}_{0}$. Taking the functions $f\left(z\right)=zâˆˆ{\mathcal{Z}}_{0}$ and $f\left(z\right)={z}^{2}âˆˆ{\mathcal{Z}}_{0}$ respectively, we get

$\begin{array}{r}\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|<\mathrm{âˆž},\\ \underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\left(\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right)\mathrm{Ï†}\left(z\right)+\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|<\mathrm{âˆž}.\end{array}$
(2.3)

Using these facts and the boundedness of function Ï†, we have

$\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|<\mathrm{âˆž}.$
(2.4)

Set

$h\left(z\right)=\left(zâˆ’1\right)\left[{\left(1+ln\frac{1}{1âˆ’z}\right)}^{2}+1\right]$

and

${h}_{a}\left(z\right)=\frac{h\left(\stackrel{Â¯}{a}z\right)}{\stackrel{Â¯}{a}}{\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1}$
(2.5)

for $aâˆˆ\mathrm{Î”}âˆ–\left\{0\right\}$. It is known that ${h}_{a}âˆˆ{\mathcal{Z}}_{0}$ (see [7]). Since

${h}_{a}^{â€²}\left(z\right)={\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{a}z}\right)}^{2}{\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1}$
(2.6)

and

${h}_{a}^{â€³}\left(z\right)=\frac{2\stackrel{Â¯}{a}}{1âˆ’\stackrel{Â¯}{a}z}\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{a}z}\right){\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1},$
(2.7)

for $|\mathrm{Ï†}\left(\mathrm{Î»}\right)|>\frac{1}{2}$, we have

$\begin{array}{rl}C{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}â‰¥& {âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{h}_{\mathrm{Ï†}\left(\mathrm{Î»}\right)}âˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¥\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€³}\left(\mathrm{Î»}\right)+{\mathrm{Ï•}}^{â€²}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}\\ âˆ’2\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}\mathrm{Ï†}\left(\mathrm{Î»}\right)|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}.\end{array}$

Hence

$\begin{array}{r}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€³}\left(\mathrm{Î»}\right)+{\mathrm{Ï•}}^{â€²}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}\\ \phantom{\rule{1em}{0ex}}â‰¤C{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}+2\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}\mathrm{Ï†}\left(\mathrm{Î»}\right)|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}.\end{array}$
(2.8)

For $aâˆˆ\mathrm{Î”}âˆ–\left\{0\right\}$, set

${f}_{a}\left(z\right)=\frac{h\left(\stackrel{Â¯}{a}z\right)}{\stackrel{Â¯}{a}}{\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1}âˆ’{âˆ«}_{0}^{z}ln\frac{1}{1âˆ’\stackrel{Â¯}{a}\mathrm{Ï‰}}\phantom{\rule{0.2em}{0ex}}d\mathrm{Ï‰}.$
(2.9)

Then ${f}_{a}âˆˆ{\mathcal{Z}}_{0}$. It is easy to see that

${f}_{a}^{â€²}\left(z\right)={\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{a}z}\right)}^{2}{\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1}âˆ’ln\frac{1}{1âˆ’\stackrel{Â¯}{a}z},\phantom{\rule{2em}{0ex}}{f}_{a}^{â€²}\left(a\right)=0,$

and

${f}_{a}^{â€³}\left(z\right)=\frac{2\stackrel{Â¯}{a}}{1âˆ’\stackrel{Â¯}{a}z}\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{a}z}\right){\left(ln\frac{1}{1âˆ’{|a|}^{2}}\right)}^{âˆ’1}âˆ’\frac{\stackrel{Â¯}{a}}{1âˆ’\stackrel{Â¯}{a}z},\phantom{\rule{2em}{0ex}}{f}_{a}^{â€³}\left(a\right)=\frac{\stackrel{Â¯}{a}}{1âˆ’{|a|}^{2}}.$

Therefore

$C{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}â‰¥{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{\mathrm{Ï†}\left(\mathrm{Î»}\right)}âˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¥\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}\mathrm{Ï†}\left(\mathrm{Î»}\right)|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}.$
(2.10)

From (2.8) and (2.10), we have

$\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|>\frac{1}{2}}{sup}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€³}\left(\mathrm{Î»}\right)+{\mathrm{Ï•}}^{â€²}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}â‰¤C{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}<\mathrm{âˆž}.$
(2.11)

On the other hand, from the first inequality in (2.3), we have

$\begin{array}{r}\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|â‰¤\frac{1}{2}}{sup}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€³}\left(\mathrm{Î»}\right)+{\mathrm{Ï•}}^{â€²}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}\\ \phantom{\rule{1em}{0ex}}â‰¤\underset{\mathrm{Î»}âˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€³}\left(\mathrm{Î»}\right)+{\mathrm{Ï•}}^{â€²}\left(\mathrm{Î»}\right){\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)|ln\frac{4}{3}<\mathrm{âˆž}.\end{array}$
(2.12)

Hence, from (2.3), (2.11), and (2.12), we obtain (2.2). Further, from (2.10), wehave

$\begin{array}{rl}\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|>\frac{1}{2}}{sup}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}& â‰¤\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|>\frac{1}{2}}{sup}2\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}\mathrm{Ï†}\left(\mathrm{Î»}\right)|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}\\ â‰¤C{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}<\mathrm{âˆž}.\end{array}$
(2.13)

On the other hand, by (2.4), we have

$\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|â‰¤\frac{1}{2}}{sup}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)\frac{|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|}^{2}}â‰¤\underset{|\mathrm{Ï†}\left(\mathrm{Î»}\right)|â‰¤\frac{1}{2}}{sup}\frac{4}{3}\mathrm{Î¼}\left(|\mathrm{Î»}|\right)|\mathrm{Ï•}\left(\mathrm{Î»}\right){\left({\mathrm{Ï†}}^{â€²}\left(\mathrm{Î»}\right)\right)}^{2}|<\mathrm{âˆž}.$
(2.14)

Combining (2.13) and (2.14), (2.1) follows.

1. (iii)

â‡’ (i). Assume that (2.1) and (2.2) hold. Then, for every $fâˆˆ\mathcal{Z}$, from (1.4), we have

$\begin{array}{r}\mathrm{Î¼}\left(|z|\right)|{\left(\mathrm{Ï•}D{C}_{\mathrm{Ï†}}f\right)}^{â€²}\left(z\right)|\\ \phantom{\rule{1em}{0ex}}=\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right){f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)+\mathrm{Ï•}\left(z\right)\left[{f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}+{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right){\mathrm{Ï†}}^{â€³}\left(z\right)\right]|\\ \phantom{\rule{1em}{0ex}}â‰¤\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|+\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)|\\ \phantom{\rule{1em}{0ex}}â‰¤\mathrm{Î¼}\left(|z|\right)C\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}{âˆ¥fâˆ¥}_{\mathcal{Z}}+\mathrm{Î¼}\left(|z|\right)C|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|\\ \phantom{\rule{2em}{0ex}}Ã—ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}{âˆ¥fâˆ¥}_{\mathcal{Z}}.\end{array}$
(2.15)

Taking the supremum in (2.15) for $zâˆˆ\mathrm{Î”}$, and employing (2.1) and (2.2), we deduce that$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded. The proof of Theorem 2.3 iscompleted.â€ƒâ–¡

Theorem 2.4 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is compact;

2. (ii)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact;

3. (iii)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded,

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0$
(2.16)

and

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0.$
(2.17)

Proof of Theorem 2.4 (i) â‡’ (ii). This implication is clear.

1. (ii)

â‡’ (iii). Assume that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact. Then it is clear that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded. By Theorem 2.3 we know that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded. Let ${\left({z}_{n}\right)}_{nâˆˆN}$ be a sequence in Î” such that $|\mathrm{Ï†}\left({z}_{n}\right)|â†’1$ as $nâ†’\mathrm{âˆž}$ and , $nâˆˆN$ (if such a sequence does not exist then (2.16) and (2.17) are vacuously satisfied). Set

${h}_{n}\left(z\right)=\frac{h\left(\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}z\right)}{\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}}{\left(ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\right)}^{âˆ’1},\phantom{\rule{1em}{0ex}}nâˆˆN.$
(2.18)

Then from the proof of Theorem 2.3, we see that ${h}_{n}âˆˆ{\mathcal{Z}}_{0}$ for each $nâˆˆN$. Moreover ${h}_{n}â†’0$ uniformly on compact subsets of Î” as$nâ†’\mathrm{âˆž}$ and

${h}_{n}^{â€²}\left(\mathrm{Ï†}\left({z}_{n}\right)\right)=ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}},\phantom{\rule{2em}{0ex}}{h}_{n}^{â€³}\left(\mathrm{Ï†}\left({z}_{n}\right)\right)=ln\frac{2\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}.$

Since $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact, by Lemma 2.1, we have

$\underset{nâ†’\mathrm{âˆž}}{lim}{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{h}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}=0.$

On the other hand, similar to the proof of Theorem 2.3, we have

$\begin{array}{rl}{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{h}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¥& |2\mathrm{Î¼}\left(|{z}_{n}|\right)\frac{|\mathrm{Ï•}\left({z}_{n}\right){\left({\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)\right)}^{2}||\mathrm{Ï†}\left({z}_{n}\right)|}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}âˆ’\mathrm{Î¼}\left(|{z}_{n}|\right)|\\ Ã—\mathrm{Ï•}\left({z}_{n}\right){\mathrm{Ï†}}^{â€³}\left({z}_{n}\right)+{\mathrm{Ï•}}^{â€²}\left({z}_{n}\right){\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}|,\end{array}$

which implies that

$\begin{array}{r}\underset{nâ†’\mathrm{âˆž}}{lim}2\mathrm{Î¼}\left(|{z}_{n}|\right)\frac{|\mathrm{Ï•}\left({z}_{n}\right){\left({\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)\right)}^{2}||\mathrm{Ï†}\left({z}_{n}\right)|}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\\ \phantom{\rule{1em}{0ex}}=\underset{nâ†’\mathrm{âˆž}}{lim}\mathrm{Î¼}\left(|{z}_{n}|\right)|\mathrm{Ï•}\left({z}_{n}\right){\mathrm{Ï†}}^{â€³}\left({z}_{n}\right)+{\mathrm{Ï•}}^{â€²}\left({z}_{n}\right){\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}},\end{array}$
(2.19)

if one of these two limits exists.

Next, set

$\begin{array}{rl}{f}_{n}\left(z\right)=& \frac{h\left(\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}z\right)}{\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}}{\left(ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\right)}^{âˆ’1}\\ âˆ’{âˆ«}_{0}^{z}{ln}^{3}\frac{1}{1âˆ’\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}\mathrm{Ï‰}}\phantom{\rule{0.2em}{0ex}}d\mathrm{Ï‰}{\left(ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\right)}^{âˆ’2}.\end{array}$
(2.20)

Then ${f}_{n}âˆˆ{\mathcal{Z}}_{0}$ and ${f}_{n}$ converges to 0 uniformly on compact subsets of Î”as $nâ†’\mathrm{âˆž}$ (see [7]). Since

${f}_{n}^{â€²}\left(z\right)={\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}z}\right)}^{2}{\left(ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\right)}^{âˆ’1}âˆ’{\left(ln\frac{1}{1âˆ’\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}z}\right)}^{3}{\left(ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}\right)}^{âˆ’2},$

we have ${f}_{n}^{â€²}\left(\mathrm{Ï†}\left({z}_{n}\right)\right)=0$, for every $nâˆˆN$ and

${f}_{n}^{â€³}\left(\mathrm{Ï†}\left({z}_{n}\right)\right)=âˆ’\frac{\stackrel{Â¯}{\mathrm{Ï†}\left({z}_{n}\right)}}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}.$

By using these facts, since $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact, and from Lemma 2.1, we find that

$0â‰¤\underset{nâ†’\mathrm{âˆž}}{lim}\mathrm{Î¼}\left(|{z}_{n}|\right)\frac{|\mathrm{Ï•}\left({z}_{n}\right){\left({\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)\right)}^{2}||\mathrm{Ï†}\left({z}_{n}\right)|}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}â‰¤\underset{nâ†’\mathrm{âˆž}}{lim}{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}=0.$

Therefore

$\underset{nâ†’\mathrm{âˆž}}{lim}\mathrm{Î¼}\left(|{z}_{n}|\right)\frac{|\mathrm{Ï•}\left({z}_{n}\right){\left({\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}=\underset{nâ†’\mathrm{âˆž}}{lim}\mathrm{Î¼}\left(|{z}_{n}|\right)\frac{|\mathrm{Ï•}\left({z}_{n}\right){\left({\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)\right)}^{2}\mathrm{Ï†}\left({z}_{n}\right)|}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}=0,$

which implies (2.16). From this and (2.19), we have

$\underset{nâ†’\mathrm{âˆž}}{lim}\mathrm{Î¼}\left(|{z}_{n}|\right)|\mathrm{Ï•}\left({z}_{n}\right){\mathrm{Ï†}}^{â€³}\left({z}_{n}\right)+{\mathrm{Ï•}}^{â€²}\left({z}_{n}\right){\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)|ln\frac{1}{1âˆ’{|\mathrm{Ï†}\left({z}_{n}\right)|}^{2}}=0.$
(2.21)

From (2.21), it follows that ${lim}_{nâ†’\mathrm{âˆž}}\mathrm{Î¼}\left(|{z}_{n}|\right)|\mathrm{Ï•}\left({z}_{n}\right){\mathrm{Ï†}}^{â€³}\left({z}_{n}\right)+{\mathrm{Ï•}}^{â€²}\left({z}_{n}\right){\mathrm{Ï†}}^{â€²}\left({z}_{n}\right)|=0$, which altogether imply (2.17).

1. (iii)

â‡’ (i). Suppose that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded and conditions (2.16) and (2.17) hold. From Theorem 2.3, it follows that

$\begin{array}{r}{C}_{1}=\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|<\mathrm{âˆž},\\ {C}_{2}=\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|<\mathrm{âˆž}.\end{array}$
(2.22)

By the assumption, for every $\mathrm{Îµ}>0$, there is a $\mathrm{Î´}âˆˆ\left(0,1\right)$, such that

$\begin{array}{r}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{Îµ}\phantom{\rule{1em}{0ex}}\text{and}\\ \mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{Îµ},\end{array}$
(2.23)

whenever $\mathrm{Î´}<|\mathrm{Ï†}\left(z\right)|<1$.

Assume that ${\left({f}_{k}\right)}_{kâˆˆN}$ is a sequence in such that${sup}_{kâˆˆN}{âˆ¥{f}_{k}âˆ¥}_{\mathbb{Z}}â‰¤L$ and ${f}_{k}$ converges to 0 uniformly on compact subsets of Î”as $kâ†’\mathrm{âˆž}$. Let $K=\left\{zâˆˆ\mathrm{Î”}:|\mathrm{Ï†}\left(z\right)|â‰¤\mathrm{Î´}\right\}$. Then by (1.4), (2.22), and (2.23), we have

$\begin{array}{r}\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|{\left(\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{k}\right)}^{â€²}\left(z\right)|\\ \phantom{\rule{1em}{0ex}}=\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right){f}_{k}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)+\mathrm{Ï•}\left(z\right)\left[{f}_{k}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}+{f}_{k}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right){\mathrm{Ï†}}^{â€³}\left(z\right)\right]|\\ \phantom{\rule{1em}{0ex}}â‰¤\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}{f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right)|+\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)|\\ \phantom{\rule{1em}{0ex}}â‰¤\underset{zâˆˆK}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}{f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right)|+\underset{zâˆˆK}{sup}\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)|\\ \phantom{\rule{2em}{0ex}}+\underset{zâˆˆ\mathrm{Î”}âˆ–K}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}{f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right)|\\ \phantom{\rule{2em}{0ex}}+\underset{zâˆˆ\mathrm{Î”}âˆ–K}{sup}\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)|\\ \phantom{\rule{1em}{0ex}}â‰¤\underset{zâˆˆK}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}{f}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right)|+\underset{zâˆˆK}{sup}\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{f}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)|\\ \phantom{\rule{2em}{0ex}}+\underset{zâˆˆ\mathrm{Î”}âˆ–K}{sup}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}{âˆ¥{f}_{k}âˆ¥}_{\mathcal{Z}}\\ \phantom{\rule{2em}{0ex}}+C\underset{zâˆˆ\mathrm{Î”}âˆ–K}{sup}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}{âˆ¥{f}_{k}âˆ¥}_{\mathcal{Z}}\\ \phantom{\rule{1em}{0ex}}â‰¤{C}_{2}\underset{|\mathrm{Ï‰}|â‰¤\mathrm{Î´}}{sup}|{f}_{k}^{â€³}\left(\mathrm{Ï‰}\right)|+{C}_{1}\underset{|\mathrm{Ï‰}|â‰¤\mathrm{Î´}}{sup}|{f}_{k}^{â€²}\left(\mathrm{Ï‰}\right)|+\left(C+1\right)\mathrm{Îµ}{âˆ¥{f}_{k}âˆ¥}_{\mathcal{Z}},\end{array}$

i.e. we obtain

$\begin{array}{rl}{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{k}âˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¤& {C}_{2}\underset{|\mathrm{Ï‰}|â‰¤\mathrm{Î´}}{sup}|{f}_{k}^{â€³}\left(\mathrm{Ï‰}\right)|+{C}_{1}\underset{|\mathrm{Ï‰}|â‰¤\mathrm{Î´}}{sup}|{f}_{k}^{â€²}\left(\mathrm{Ï‰}\right)|\\ +\left(C+1\right)\mathrm{Îµ}{âˆ¥{f}_{k}âˆ¥}_{\mathcal{Z}}+|\mathrm{Ï•}\left(0\right)||{f}_{k}^{â€²}\left(\mathrm{Ï†}\left(0\right)\right)||{\mathrm{Ï†}}^{â€²}\left(0\right)|.\end{array}$
(2.24)

Since ${f}_{k}$ converges to 0 uniformly on compact subsets of Î”as $kâ†’\mathrm{âˆž}$, from Cauchyâ€™s estimate, it follows that${f}_{k}^{â€²}â†’0$ and ${f}_{k}^{â€³}â†’0$ as $kâ†’\mathrm{âˆž}$ on compact subsets of Î”. Hence, letting$kâ†’\mathrm{âˆž}$ in (2.24), and using the fact that Îµ isan arbitrary positive number, we obtain

$\underset{kâ†’\mathrm{âˆž}}{lim}{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{f}_{k}âˆ¥}_{{B}_{\mathrm{Î¼}}}=0.$

By combining this with Lemma 2.1 the result easily follows. The proof ofTheorem 2.4 is completed.â€ƒâ–¡

Theorem 2.5 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$is bounded if and only if$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$is bounded and

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|=0\phantom{\rule{1em}{0ex}}\mathit{\text{and}}\phantom{\rule{1em}{0ex}}\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|=0.$
(2.25)

Proof of Theorem 2.5 Assume that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$ is bounded. Then, it is clear that$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded. Taking the test functions$f\left(z\right)=z$ and $f\left(z\right)={z}^{2}$ respectively, we obtain (2.25).

Conversely, assume that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded and (2.25) holds. Then for each polynomialp, we have

$\begin{array}{r}\mathrm{Î¼}\left(|z|\right)|{\left(\mathrm{Ï•}D{C}_{\mathrm{Ï†}}p\right)}^{â€²}\left(z\right)|\\ \phantom{\rule{1em}{0ex}}â‰¤\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}{p}^{â€³}\left(\mathrm{Ï†}\left(z\right)\right)|+\mathrm{Î¼}\left(|z|\right)|\left[\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)\right]{p}^{â€²}\left(\mathrm{Ï†}\left(z\right)\right)|.\end{array}$
(2.26)

In view of the facts

$\underset{\mathrm{Ï‰}âˆˆ\mathrm{Î”}}{sup}|{p}^{â€³}\left(\mathrm{Ï‰}\right)|<\mathrm{âˆž},\phantom{\rule{2em}{0ex}}\underset{\mathrm{Ï‰}âˆˆ\mathrm{Î”}}{sup}|{p}^{â€²}\left(\mathrm{Ï‰}\right)|<\mathrm{âˆž},$

from (2.25) and (2.26), it follows that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}pâˆˆ{B}_{\mathrm{Î¼},0}$. Since the set of all polynomials is dense in${\mathcal{Z}}_{0}$ (see [23]), it follows that for every $fâˆˆ{\mathcal{Z}}_{0}$, there is a sequence of polynomials${\left({p}_{n}\right)}_{nâˆˆN}$ such that ${âˆ¥fâˆ’{p}_{n}âˆ¥}_{\mathcal{Z}}â†’0$ as $nâ†’\mathrm{âˆž}$. Hence

${âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}fâˆ’\mathrm{Ï•}D{C}_{\mathrm{Ï†}}{p}_{n}âˆ¥}_{{B}_{\mathrm{Î¼}}}â‰¤{âˆ¥\mathrm{Ï•}D{C}_{\mathrm{Ï†}}âˆ¥}_{{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}}{âˆ¥fâˆ’{p}_{n}âˆ¥}_{\mathcal{Z}}â†’0$

as $nâ†’\mathrm{âˆž}$. Since the operator $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded, we have $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}\left({\mathcal{Z}}_{0}\right)âŠ†{B}_{\mathrm{Î¼},0}$, which implies the boundedness of$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$.â€ƒâ–¡

Theorem 2.6 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼},0}$ is compact;

2. (ii)

$\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$ is compact;

3. (iii)
$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0$
(2.27)

and

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0.$
(2.28)

Proof of Theorem 2.6 (i) â‡’ (ii). This implication is trivial.

1. (ii)

â‡’ (iii). Assume that $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$ is compact. Then $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$ is bounded. From the proof of Theorem 2.5, we have

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|=0$
(2.29)

and

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|=0.$
(2.30)

Hence, if ${âˆ¥\mathrm{Ï†}âˆ¥}_{\mathrm{âˆž}}<1$, from (2.29) and (2.30), we obtain

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}â‰¤\frac{1}{1âˆ’{âˆ¥\mathrm{Ï†}âˆ¥}_{\mathrm{âˆž}}^{2}}\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|=0$

and

$\begin{array}{r}\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}\\ \phantom{\rule{1em}{0ex}}â‰¤ln\frac{e}{1âˆ’{âˆ¥\mathrm{Ï†}âˆ¥}_{\mathrm{âˆž}}^{2}}\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|=0,\end{array}$

from which the result follows in this case.

Now assume that ${âˆ¥\mathrm{Ï†}âˆ¥}_{\mathrm{âˆž}}=1$. Let ${\left({z}_{k}\right)}_{kâˆˆN}$ be a sequence such that $|\mathrm{Ï†}\left({z}_{k}\right)|â†’1$ as $kâ†’\mathrm{âˆž}$. Since $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact, by Theorem 2.4, we have

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0$
(2.31)

and

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0.$
(2.32)

From (2.30) and (2.31), it follows that for every $\mathrm{Îµ}>0$, there exists an $râˆˆ\left(0,1\right)$ such that $\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{Îµ}$, when $r<|\mathrm{Ï†}\left(z\right)|<1$, and there exists a $\mathrm{Ïƒ}âˆˆ\left(0,1\right)$ such that $\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|â‰¤\mathrm{Îµ}\left(1âˆ’{r}^{2}\right)$, when $\mathrm{Ïƒ}<|z|<1$. Therefore, when $\mathrm{Ïƒ}<|z|<1$ and $r<|\mathrm{Ï†}\left(z\right)|<1$, we have

$\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{Îµ}.$
(2.33)

On the other hand, if $\mathrm{Ïƒ}<|z|<1$ and $|\mathrm{Ï†}\left(z\right)|â‰¤r$, we obtain

$\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{r}^{2}}<\mathrm{Îµ}.$
(2.34)

Inequality (2.33) together with (2.34) gives the (2.27). Similarly, (2.29) and(2.32) imply (2.28).

1. (iii)

â‡’ (i). Let $fâˆˆ\mathcal{Z}$. Then we have

$\begin{array}{r}\mathrm{Î¼}\left(|z|\right)|{\left(\mathrm{Ï•}D{C}_{\mathrm{Ï†}}f\right)}^{â€²}\left(z\right)|\\ \phantom{\rule{1em}{0ex}}â‰¤C\left[\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\left({\mathrm{Ï†}}^{â€²}\left(z\right)\right)}^{2}|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}+\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€³}\left(z\right)+{\mathrm{Ï•}}^{â€²}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}\right]{âˆ¥fâˆ¥}_{\mathcal{Z}}.\end{array}$

Taking the supremum in this inequality over all $fâˆˆ\mathcal{Z}$ such that ${âˆ¥fâˆ¥}_{\mathcal{Z}}â‰¤1$, then letting $|z|â†’1$, and using (2.27) and (2.28), we obtain

$\underset{|z|â†’1}{lim}\underset{{âˆ¥fâˆ¥}_{\mathcal{Z}}â‰¤1}{sup}\mathrm{Î¼}\left(|z|\right)|{\left(\mathrm{Ï•}D{C}_{\mathrm{Ï†}}f\right)}^{â€²}\left(z\right)|=0.$

From Lemma 2.2 it follows that the operator $\mathrm{Ï•}D{C}_{\mathrm{Ï†}}:\mathcal{Z}â†’{B}_{\mathrm{Î¼},0}$ is compact.â€ƒâ–¡

Similarly to the proofs of Theorems 2.3-2.6, we can get the following results; weomit the proof.

Theorem 2.7 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded;

2. (ii)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is bounded;

3. (iii)
$\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{âˆž}$

and

$\underset{zâˆˆ\mathrm{Î”}}{sup}\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}<\mathrm{âˆž}.$

Theorem 2.8 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is compact;

2. (ii)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$ is compact;

3. (iii)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:\mathcal{Z}â†’{B}_{\mathrm{Î¼}}$ is bounded,

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0$

and

$\underset{|\mathrm{Ï†}\left(z\right)|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0.$

Theorem 2.9 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$is bounded if and only if$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼}}$is bounded and

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|=0\phantom{\rule{1em}{0ex}}\mathit{\text{and}}\phantom{\rule{1em}{0ex}}\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right)|=0.$

Theorem 2.10 Let Ï† be an analytic self-map of Î”, and let Ï• be an analytic function in Î”. Suppose that Î¼ is normal. Then the following statements are equivalent.

1. (i)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:\mathcal{Z}â†’{B}_{\mathrm{Î¼},0}$ is compact;

2. (ii)

$\mathrm{Ï•}{C}_{\mathrm{Ï†}}D:{\mathcal{Z}}_{0}â†’{B}_{\mathrm{Î¼},0}$ is compact;

3. (iii)
$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)\frac{|\mathrm{Ï•}\left(z\right){\mathrm{Ï†}}^{â€²}\left(z\right)|}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0$

and

$\underset{|z|â†’1}{lim}\mathrm{Î¼}\left(|z|\right)|{\mathrm{Ï•}}^{â€²}\left(z\right)|ln\frac{e}{1âˆ’{|\mathrm{Ï†}\left(z\right)|}^{2}}=0.$

## References

1. Zhu K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 1993,23(3):1143â€“1177. 10.1216/rmjm/1181072549

2. Shields A, Williams D: Bonded projections, duality, and multipliers in spaces of analyticfunctions. Trans. Am. Math. Soc. 1971, 162: 287â€“302.

3. Fu X, Zhu X: Weighted composition operators on some weighted spaces in the unit ball. Abstr. Appl. Anal. 2008., 2008: Article ID 605807

4. Hu Z, Wang S: Composition operators on Bloch-type spaces. Proc. R. Soc. Edinb. A 2005,135(6):1229â€“1239. 10.1017/S0308210500004340

5. Krantz SG, SteviÄ‡ S: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 2009,71(5â€“6):1772â€“1795. 10.1016/j.na.2009.01.013

6. Duren P: Theory of Hp Spaces. Academic Press, New York; 1970.

7. Li S, SteviÄ‡ S: Volterra type operators on Zygmund spaces. J. Inequal. Appl. 2007., 2007: Article ID 32124

8. SteviÄ‡ S: On an integral operator from the Zygmund space to the Bloch-type space on theunit ball. Glasg. Math. J. 2009,51(2):275â€“287. 10.1017/S0017089508004692

9. SteviÄ‡ S: On an integral-type operator from Zygmund-type spaces to mixed-norm spaces onthe unit ball. Abstr. Appl. Anal. 2010., 2010: Article ID 198608

10. Cowen C, Maccluer B Studies in Advanced Mathematics. In Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton; 1995.

11. Li S, SteviÄ‡ S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 2008,338(2):1282â€“1295. 10.1016/j.jmaa.2007.06.013

12. Madigan K, Matheson A: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 1995, 347: 2679â€“2687. 10.1090/S0002-9947-1995-1273508-X

13. Shapiro J: Composition Operators and Classical Function Theory. Springer, New York; 1993.

14. SteviÄ‡ S: Generalized composition operators between mixed norm space and some weightedspaces. Numer. Funct. Anal. Optim. 2009, 29: 426â€“434.

15. SteviÄ‡ S:Norm of weighted composition operators from Bloch space to${H}_{\mathrm{Î¼}}^{\mathrm{âˆž}}$ on the unit ball. Ars Comb. 2008, 88: 125â€“127.

16. SteviÄ‡ S: Norm of weighted composition operators from Î± -Bloch spaces toweighted-type spaces. Appl. Math. Comput. 2009, 215: 818â€“820. 10.1016/j.amc.2009.06.005

17. Ueki S:Composition operators on the Privalov spaces of the unit ball of${\mathbb{C}}^{n}$. J. Korean Math. Soc. 2005,42(1):111â€“127.

18. Ueki S: Weighted composition operators on the Bargmann-Fock space. Int. J. Mod. Math. 2008,3(3):231â€“243.

19. Zhu X: Generalized weighted composition operators from Bloch-type spaces to weightedBergman spaces. Indian J.Â Math. 2007,49(2):139â€“149.

20. Hibschweiler R, Portnoy N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 2005,35(3):843â€“855. 10.1216/rmjm/1181069709

21. Li S, SteviÄ‡ S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 2007,9(2):195â€“205.

22. Li S, SteviÄ‡ S: Composition followed by differentiation between ${H}^{\mathrm{âˆž}}$and Î± -Bloch spaces. Houst. J. Math. 2009,35(1):327â€“340.

23. Li S, SteviÄ‡ S: Products of composition and differentiation operators from Zygmund spaces toBloch spaces and Bers spaces. Appl. Math. Comput. 2010, 217: 3144â€“3154. 10.1016/j.amc.2010.08.047

24. Li S, SteviÄ‡ S: Composition followed by differentiation from mixed-norm spaces to Î± -Bloch spaces. Sb. Math. 2008,199(12):1847â€“1857. 10.1070/SM2008v199n12ABEH003983

25. Long J, Wu P:Weighted composition followed and proceeded by differentiation operators from${Q}_{k}\left(p,q\right)$ spaces to Bloch-type spaces. J. Inequal. Appl. 2012., 2012: Article ID 160

26. Ohno S: Products of composition and differentiation between Hardy spaces. Bull. Aust. Math. Soc. 2006,73(2):235â€“243. 10.1017/S0004972700038818

27. SteviÄ‡ S: Weighted differentiation composition operators from mixed-norm spaces toweighted-type spaces. Appl. Math. Comput. 2009, 211: 222â€“233. 10.1016/j.amc.2009.01.061

28. SteviÄ‡ S: Norm and essential norm of composition followed by differentiation from Î± âˆ’Bloch spaces to ${H}_{\mathrm{Î¼}}^{\mathrm{âˆž}}$ . Appl. Math. Comput. 2009,207(1):225â€“229. 10.1016/j.amc.2008.10.032

29. SteviÄ‡ S: Products of composition and differentiation operators on the weighted Bergmanspace. Bull. Belg. Math. Soc. Simon Stevin 2009,16(4):623â€“635.

30. Fu X, Li S: Composition operators from Zygmund spaces into QK spaces. J. Inequal. Appl. 2013., 2013: Article ID 175

31. Li S, SteviÄ‡ S: On an integral-type operator from Ï‰ -Bloch spaces to Î¼ -Zygmund spaces. Appl. Math. Comput. 2010,215(12):4385â€“4391. 10.1016/j.amc.2009.12.070

32. Li S, SteviÄ‡ S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 2008,206(2):825â€“831. 10.1016/j.amc.2008.10.006

33. Li S, SteviÄ‡ S: Integral-type operators from Bloch-type spaces to Zygmund-type spaces. Appl. Math. Comput. 2009, 215: 464â€“473. 10.1016/j.amc.2009.05.011

34. Li S, SteviÄ‡ S:Products of Volterra type operator and composition operator from${H}^{\mathrm{âˆž}}$ and Bloch spaces to the Zygmund space. J. Math. Anal. Appl. 2008, 345: 40â€“52. 10.1016/j.jmaa.2008.03.063

35. Liu Y, Yu Y: Riemann-Stieltjes operator from mixed norm spaces to Zygmund-type spaces onthe unit ball. Taiwan. J.Â Math. 2013,17(5):1751â€“1764.

36. Yang C:Integral-type operators from $F\left(p;q;s\right)$ spaces to Zygmund-type spaces on the unitball. J. Inequal. Appl. 2010., 2010: Article ID 789285

37. Zhu X: Extended CesÃ ro operators from mixed norm spaces to Zygmund typespaces. Tamsui Oxford Univ. J. Math. Sci. 2010,26(4):411â€“422.

## Acknowledgements

The authors would like to thank the referees for their valuable suggestions whichgreatly improve the present article. The work was supported by the UnitedTechnology Foundation of Science and Technology Department of Guizhou Provinceand Guizhou Normal University (Grant No. LKS[2012]12), and National NaturalScience Foundation of China (Grant No. 11171080, Grant No. 11171277).

## Author information

Authors

### Corresponding author

Correspondence to Jianren Long.

### Competing interests

The authors declare that they have no competing interests.

### Authorsâ€™ contributions

All authors contributed equally to the manuscript. All authors read and approved thefinal manuscript.

## Rights and permissions

Reprints and permissions

Long, J., Qiu, C. & Wu, P. Weighted composition followed and proceeded by differentiation operators fromZygmund spaces to Bloch-type spaces. J Inequal Appl 2014, 152 (2014). https://doi.org/10.1186/1029-242X-2014-152