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1 Introduction
Let � = {z : |z| < } be the open unit disc in the complex plane C, and letH(�) be the class
of all analytic functions on �. The α-Bloch space Bα ( < α < ∞) is, by definition, the set
of all functions f in H(�) such that

‖f ‖Bα =
∣∣f ()∣∣ + sup

z∈�

(
 – |z|)α∣∣f ′(z)

∣∣ < ∞. (.)

Under the above norm, Bα is a Banach space. When α = , B = B is the well-known Bloch
space. Let Bα

 denote the subspace of Bα , i.e.,

Bα
 =

{
f :

(
 – |z|)α∣∣f ′(z)

∣∣ →  as |z| → , f ∈ Bα
}
.

This space is called the little α-Bloch space (see []).
Assume that μ is a positive continuous function on [, ), having the property that there

exist positive numbers s and t,  < s < t, and δ ∈ [, ), such that

μ(r)
( – r)s

is decreasing on [δ, ), lim
r→

μ(r)
( – r)s

= ,

μ(r)
( – r)t

is increasing on [δ, ), lim
r→

μ(r)
( – r)t

=∞.

Then μ is called a normal function (see []).
Denote (see, e.g., [–])

Bμ =
{
f : ‖f ‖Bμ =

∣∣f ()∣∣ + sup
z∈�

μ
(|z|)∣∣f ′(z)

∣∣ < ∞, f ∈H(�)
}
. (.)
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It is well known that Bμ is a Banach space with the norm ‖ · ‖Bμ (see []).
Let Bμ, denote the subspace of Bμ, i.e.,

Bμ, =
{
f : μ

(|z|)∣∣f ′(z)
∣∣ →  as |z| → , f ∈ Bμ

}
.

This space is called the little Bloch-type space. When μ(r) = ( – r)α , the induced space
Bμ becomes the α-Bloch space Bα .
An f in H(�) is said to belong to the Zygmund space, denoted by Z , if

sup
|f (ei(θ+h)) + f (ei(θ–h)) – f (eiθ )|

h
<∞,

where the supremum is taken over all eiθ ∈ ∂� and h > . By Theorem . in [], we see
that f ∈Z if and only if

‖f ‖Z =
∣∣f ()∣∣ + ∣∣f ′()

∣∣ + sup
z∈�

(
 – |z|)∣∣f ′′(z)

∣∣ < ∞. (.)

It is easy to check that Z is a Banach space under the above norm. For every f ∈ Z , by
using a result in [], we have

∣∣f ′(z)
∣∣ ≤ C‖f ‖Z ln

e
 – |z| . (.)

Let Z denote the subspace of Z consisting of those f ∈Z for which

lim|z|→

(
 – |z|)∣∣f ′′(z)

∣∣ = .

The space Z is called the little Zygmund space. For the corresponding n-dimensional
Zygmund space see, e.g., [] and [].
Let ϕ be a nonconstant analytic self-map of �, and let φ be an analytic function in �.

We define the linear operators

φCϕDf = φ
(
f ′ ◦ ϕ

)
= φf ′(ϕ) and φDCϕ f = φ(f ◦ ϕ)′ = φf ′(ϕ)ϕ′, for f ∈H(�).

They are called weighted composition followed and proceeded by differentiation opera-
tors, respectively, where Cϕ and D are composition and differentiation operators respec-
tively. Associated with ϕ is the composition operator Cϕ f = f ◦ ϕ and weighted compo-
sition operator φCϕ f = φf ◦ ϕ for φ ∈ H(�) and f ∈ H(�). It is interesting to provide
a function theoretic characterization for ϕ inducing a bounded or compact composition
operator, weighted composition operator and related ones on various spaces (see, e.g., [–
]). For example, it is well known that Cϕ is bounded on the classical Hardy, Bloch and
Bergman spaces. Operators DCϕ and CϕD as well as some other products of linear op-
erators were studied, for example, in [–] (see also the references therein). There has
been some considerable recent interest in investigation various type of operators from or
to Zygmund type spaces (see, [, , , –]).
In this paper, we investigate the operators φDCϕ and φCϕD from Zygmund spaces to

Bloch-type spaces and little Bloch-type spaces. Some sufficient and necessary conditions
for the boundedness and compactness of these operators are given.
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Throughout this paper, constants are denoted byC, they are positive andmay differ from
one occurrence to the other. The notation A≈ Bmeans that there is a positive constant C
such that B

C ≤ A≤ CB.

2 Main results and proofs
In this section, we state and prove ourmain results. In order to formulate ourmain results,
we quote several lemmas which will be used in the proofs of the main results in this paper.
The following lemma can be proved in a standard way (see, e.g., Proposition . in []).
Hence we omit the details.

Lemma . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then φDCϕ (or φCϕD) :Z(or Z) → Bμ is compact if and only
if φDCϕ (or φCϕD) : Z (or Z) → Bμ is bounded and for any bounded sequence {fn}n∈N
in Z (or Z) which converges to zero uniformly on compact subsets of � as n → ∞, and
‖φDCϕ fn‖Bμ →  (or ‖φCϕDfn‖Bμ → ) as n→ ∞.

Lemma . [] A closed setK of Bμ, is compact if and only if it is bounded and satisfied

lim|z|→
sup
f∈K

μ
(|z|)∣∣f ′(z)

∣∣ = .

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φDCϕ :Z → Bμ is bounded;
(ii) φDCϕ :Z → Bμ is bounded;
(iii)

sup
z∈�

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| < ∞ (.)

and

sup
z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ln e
 – |ϕ(z)| < ∞. (.)

Proof of Theorem . (i) ⇒ (ii). This implication is obvious.
(ii) ⇒ (iii). Assume that φDCϕ :Z → Bμ is bounded, i.e., there exists a constant C such

that

‖φDCϕ f ‖Bμ ≤ C‖f ‖Z

for all f ∈Z. Taking the functions f (z) = z ∈Z and f (z) = z ∈Z respectively, we get

sup
z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ <∞,

sup
z∈�

μ
(|z|)∣∣(φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

)
ϕ(z) + φ(z)

(
ϕ′(z)

)∣∣ <∞.
(.)

Using these facts and the boundedness of function ϕ, we have

sup
z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ < ∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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Set

h(z) = (z – )
[(

 + ln


 – z

)

+ 
]

and

ha(z) =
h(āz)
ā

(
ln


 – |a|

)–

(.)

for a ∈ � \ {}. It is known that ha ∈Z (see []). Since

h′
a(z) =

(
ln


 – āz

)(
ln


 – |a|

)–

(.)

and

h′′
a(z) =

ā
 – āz

(
ln


 – āz

)(
ln


 – |a|

)–

, (.)

for |ϕ(λ)| > 
 , we have

C‖φDCϕ‖Z→Bμ ≥ ‖φDCϕhϕ(λ)‖Bμ ≥ μ
(|λ|)∣∣φ(λ)ϕ′′(λ) + φ′(λ)ϕ′(λ)

∣∣ ln 
 – |ϕ(λ)|

– μ
(|λ|) |φ(λ)(ϕ′(λ))ϕ(λ)|

 – |ϕ(λ)| .

Hence

μ
(|λ|)∣∣φ(λ)ϕ′′(λ) + φ′(λ)ϕ′(λ)

∣∣ ln 
 – |ϕ(λ)|

≤ C‖φDCϕ‖Z→Bμ + μ
(|λ|) |φ(λ)(ϕ′(λ))ϕ(λ)|

 – |ϕ(λ)| . (.)

For a ∈ � \ {}, set

fa(z) =
h(āz)
ā

(
ln


 – |a|

)–

–
∫ z


ln


 – āω

dω. (.)

Then fa ∈Z. It is easy to see that

f ′
a(z) =

(
ln


 – āz

)(
ln


 – |a|

)–

– ln


 – āz
, f ′

a(a) = ,

and

f ′′
a (z) =

ā
 – āz

(
ln


 – āz

)(
ln


 – |a|

)–

–
ā

 – āz
, f ′′

a (a) =
ā

 – |a| .

Therefore

C‖φDCϕ‖Z→Bμ ≥ ‖φDCϕ fϕ(λ)‖Bμ ≥ μ
(|λ|) |φ(λ)(ϕ′(λ))ϕ(λ)|

 – |ϕ(λ)| . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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From (.) and (.), we have

sup
|ϕ(λ)|> 



μ
(|λ|)∣∣φ(λ)ϕ′′(λ) + φ′(λ)ϕ′(λ)

∣∣ ln 
 – |ϕ(λ)| ≤ C‖φDCϕ‖Z→Bμ <∞. (.)

On the other hand, from the first inequality in (.), we have

sup
|ϕ(λ)|≤ 



μ
(|λ|)∣∣φ(λ)ϕ′′(λ) + φ′(λ)ϕ′(λ)

∣∣ ln 
 – |ϕ(λ)|

≤ sup
λ∈�

μ
(|λ|)∣∣φ(λ)ϕ′′(λ) + φ′(λ)ϕ′(λ)

∣∣ ln 

< ∞. (.)

Hence, from (.), (.), and (.), we obtain (.). Further, from (.), we have

sup
|ϕ(λ)|> 



μ
(|λ|) |φ(λ)(ϕ′(λ))|

 – |ϕ(λ)| ≤ sup
|ϕ(λ)|> 



μ
(|λ|) |φ(λ)(ϕ′(λ))ϕ(λ)|

 – |ϕ(λ)|

≤ C‖φDCϕ‖Z→Bμ < ∞. (.)

On the other hand, by (.), we have

sup
|ϕ(λ)|≤ 



μ
(|λ|) |φ(λ)(ϕ′(λ))|

 – |ϕ(λ)| ≤ sup
|ϕ(λ)|≤ 





μ

(|λ|)∣∣φ(λ)(ϕ′(λ)
)∣∣ <∞. (.)

Combining (.) and (.), (.) follows.
(iii) ⇒ (i). Assume that (.) and (.) hold. Then, for every f ∈Z , from (.), we have

μ
(|z|)∣∣(φDCϕ f )′(z)

∣∣
= μ

(|z|)∣∣φ′(z)ϕ′(z)f ′(ϕ(z)) + φ(z)
[
f ′′(ϕ(z))(ϕ′(z)

) + f ′(ϕ(z))ϕ′′(z)
]∣∣

≤ μ
(|z|)∣∣φ(z)f ′′(ϕ(z))(ϕ′(z)

)∣∣ +μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z)

∣∣
≤ μ

(|z|)C |φ(z)(ϕ′(z))|
 – |ϕ(z)| ‖f ‖Z +μ

(|z|)C∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣

× ln
e

 – |ϕ(z)| ‖f ‖Z . (.)

Taking the supremum in (.) for z ∈ �, and employing (.) and (.), we deduce that
φDCϕ :Z → Bμ is bounded. The proof of Theorem . is completed. �

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φDCϕ :Z → Bμ is compact;
(ii) φDCϕ :Z → Bμ is compact;
(iii) φDCϕ :Z → Bμ is bounded,

lim
|ϕ(z)|→

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| =  (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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and

lim
|ϕ(z)|→

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ln e
 – |ϕ(z)| = . (.)

Proof of Theorem . (i) ⇒ (ii). This implication is clear.
(ii) ⇒ (iii). Assume that φDCϕ :Z → Bμ is compact. Then it is clear that φDCϕ :Z →

Bμ is bounded. By Theorem . we know that φDCϕ :Z → Bμ is bounded. Let (zn)n∈N be
a sequence in � such that |ϕ(zn)| →  as n → ∞ and ϕ(zn) �= , n ∈ N (if such a sequence
does not exist then (.) and (.) are vacuously satisfied). Set

hn(z) =
h(ϕ(zn)z)

ϕ(zn)

(
ln


 – |ϕ(zn)|

)–

, n ∈ N . (.)

Then from the proof of Theorem., we see that hn ∈Z for each n ∈ N .Moreover hn → 
uniformly on compact subsets of � as n→ ∞ and

h′
n
(
ϕ(zn)

)
= ln


 – |ϕ(zn)| , h′′

n
(
ϕ(zn)

)
= ln

ϕ(zn)
 – |ϕ(zn)| .

Since φDCϕ :Z → Bμ is compact, by Lemma ., we have

lim
n→∞‖φDCϕhn‖Bμ = .

On the other hand, similar to the proof of Theorem ., we have

‖φDCϕhn‖Bμ ≥
∣∣∣∣μ(|zn|) |φ(zn)(ϕ′(zn))||ϕ(zn)|

 – |ϕ(zn)| –μ
(|zn|)

∣∣∣∣
× φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)

∣∣∣∣ln 
 – |ϕ(zn)|

∣∣∣∣,

which implies that

lim
n→∞μ

(|zn|) |φ(zn)(ϕ′(zn))||ϕ(zn)|
 – |ϕ(zn)|

= lim
n→∞μ

(|zn|)∣∣φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)
∣∣ ln 

 – |ϕ(zn)| , (.)

if one of these two limits exists.
Next, set

fn(z) =
h(ϕ(zn)z)

ϕ(zn)

(
ln


 – |ϕ(zn)|

)–

–
∫ z


ln


 – ϕ(zn)ω

dω

(
ln


 – |ϕ(zn)|

)–

. (.)

Then fn ∈Z and fn converges to  uniformly on compact subsets of� as n→ ∞ (see []).
Since

f ′
n(z) =

(
ln


 – ϕ(zn)z

)(
ln


 – |ϕ(zn)|

)–

–
(
ln


 – ϕ(zn)z

)(
ln


 – |ϕ(zn)|

)–

,

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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we have f ′
n(ϕ(zn)) = , for every n ∈N and

f ′′
n
(
ϕ(zn)

)
= –

ϕ(zn)
 – |ϕ(zn)| .

By using these facts, since φDCϕ :Z → Bμ is compact, and from Lemma ., we find that

 ≤ lim
n→∞μ

(|zn|) |φ(zn)(ϕ′(zn))||ϕ(zn)|
 – |ϕ(zn)| ≤ lim

n→∞‖φDCϕ fn‖Bμ = .

Therefore

lim
n→∞μ

(|zn|) |φ(zn)(ϕ′(zn))|
 – |ϕ(zn)| = lim

n→∞μ
(|zn|) |φ(zn)(ϕ′(zn))ϕ(zn)|

 – |ϕ(zn)| = ,

which implies (.). From this and (.), we have

lim
n→∞μ

(|zn|)∣∣φ(zn)ϕ′′(zn) + φ′(zn)ϕ′(zn)
∣∣ ln 

 – |ϕ(zn)| = . (.)

From (.), it follows that limn→∞ μ(|zn|)|φ(zn)ϕ′′(zn)+φ′(zn)ϕ′(zn)| = , which altogether
imply (.).
(iii) ⇒ (i). Suppose that φDCϕ : Z → Bμ is bounded and conditions (.) and (.)

hold. From Theorem ., it follows that

C = sup
z∈�

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ < ∞,

C = sup
z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ < ∞.
(.)

By the assumption, for every ε > , there is a δ ∈ (, ), such that

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| < ε and

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ln e
 – |ϕ(z)| < ε,

(.)

whenever δ < |ϕ(z)| < .
Assume that (fk)k∈N is a sequence in Z such that supk∈N ‖fk‖Z ≤ L and fk converges to 

uniformly on compact subsets of � as k → ∞. Let K = {z ∈ � : |ϕ(z)| ≤ δ}. Then by (.),
(.), and (.), we have

sup
z∈�

μ
(|z|)∣∣(φDCϕ fk)′(z)

∣∣
= sup

z∈�

μ
(|z|)∣∣φ′(z)ϕ′(z)f ′

k
(
ϕ(z)

)
+ φ(z)

[
f ′′
k
(
ϕ(z)

)(
ϕ′(z)

) + f ′
k
(
ϕ(z)

)
ϕ′′(z)

]∣∣
≤ sup

z∈�

μ
(|z|)∣∣φ(z)(ϕ′(z)

)f ′′(ϕ(z))∣∣ + sup
z∈�

μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z))∣∣

≤ sup
z∈K

μ
(|z|)∣∣φ(z)(ϕ′(z)

)f ′′(ϕ(z))∣∣ + sup
z∈K

μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z))∣∣

+ sup
z∈�\K

μ
(|z|)∣∣φ(z)(ϕ′(z)

)f ′′(ϕ(z))∣∣

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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+ sup
z∈�\K

μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z))∣∣

≤ sup
z∈K

μ
(|z|)∣∣φ(z)(ϕ′(z)

)f ′′(ϕ(z))∣∣ + sup
z∈K

μ
(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

]
f ′(ϕ(z))∣∣

+ sup
z∈�\K

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| ‖fk‖Z

+C sup
z∈�\K

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ln e
 – |ϕ(z)| ‖fk‖Z

≤ C sup
|ω|≤δ

∣∣f ′′
k (ω)

∣∣ +C sup
|ω|≤δ

∣∣f ′
k (ω)

∣∣ + (C + )ε‖fk‖Z ,

i.e. we obtain

‖φDCϕ fk‖Bμ ≤ C sup
|ω|≤δ

∣∣f ′′
k (ω)

∣∣ +C sup
|ω|≤δ

∣∣f ′
k (ω)

∣∣

+ (C + )ε‖fk‖Z +
∣∣φ()∣∣∣∣f ′

k
(
ϕ()

)∣∣∣∣ϕ′()
∣∣. (.)

Since fk converges to  uniformly on compact subsets of � as k → ∞, from Cauchy’s
estimate, it follows that f ′

k →  and f ′′
k →  as k → ∞ on compact subsets of �. Hence,

letting k → ∞ in (.), and using the fact that ε is an arbitrary positive number, we obtain

lim
k→∞

‖φDCϕ fk‖Bμ = .

By combining this with Lemma . the result easily follows. The proof of Theorem . is
completed. �

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then φDCϕ :Z → Bμ, is bounded if and only if φDCϕ :Z →
Bμ is bounded and

lim|z|→
μ

(|z|)∣∣φ(z)(ϕ′(z)
)∣∣ =  and lim|z|→

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ = . (.)

Proof of Theorem . Assume that φDCϕ : Z → Bμ, is bounded. Then, it is clear that
φDCϕ :Z → Bμ is bounded. Taking the test functions f (z) = z and f (z) = z respectively,
we obtain (.).
Conversely, assume that φDCϕ : Z → Bμ is bounded and (.) holds. Then for each

polynomial p, we have

μ
(|z|)∣∣(φDCϕp)′(z)

∣∣
≤ μ

(|z|)∣∣φ(z)(ϕ′(z)
)p′′(ϕ(z))∣∣ +μ

(|z|)∣∣[φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
]
p′(ϕ(z))∣∣. (.)

In view of the facts

sup
ω∈�

∣∣p′′(ω)
∣∣ < ∞, sup

ω∈�

∣∣p′(ω)
∣∣ < ∞,

from (.) and (.), it follows that φDCϕp ∈ Bμ,. Since the set of all polynomials is
dense in Z (see []), it follows that for every f ∈ Z, there is a sequence of polynomials

http://www.journalofinequalitiesandapplications.com/content/2014/1/152
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(pn)n∈N such that ‖f – pn‖Z →  as n→ ∞. Hence

‖φDCϕ f – φDCϕpn‖Bμ ≤ ‖φDCϕ‖Z→Bμ‖f – pn‖Z → 

as n → ∞. Since the operator φDCϕ : Z → Bμ is bounded, we have φDCϕ(Z) ⊆ Bμ,,
which implies the boundedness of φDCϕ :Z → Bμ,. �

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φDCϕ :Z → Bμ, is compact;
(ii) φDCϕ :Z → Bμ, is compact;
(iii)

lim|z|→
μ

(|z|) |φ(z)(ϕ′(z))|
 – |ϕ(z)| =  (.)

and

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ ln e

 – |ϕ(z)| = . (.)

Proof of Theorem . (i) ⇒ (ii). This implication is trivial.
(ii) ⇒ (iii). Assume that φDCϕ : Z → Bμ, is compact. Then φDCϕ : Z → Bμ, is

bounded. From the proof of Theorem ., we have

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ =  (.)

and

lim|z|→
μ

(|z|)∣∣φ(z)(ϕ′(z)
)∣∣ = . (.)

Hence, if ‖ϕ‖∞ < , from (.) and (.), we obtain

lim|z|→
μ

(|z|) |φ(z)(ϕ′(z))|
 – |ϕ(z)| ≤ 

 – ‖ϕ‖∞
lim|z|→

μ
(|z|)∣∣φ(z)(ϕ′(z)

)∣∣ = 

and

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ ln e

 – |ϕ(z)|

≤ ln
e

 – ‖ϕ‖∞
lim|z|→

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ = ,

from which the result follows in this case.
Now assume that ‖ϕ‖∞ = . Let (zk)k∈N be a sequence such that |ϕ(zk)| →  as k → ∞.

Since φDCϕ :Z → Bμ is compact, by Theorem ., we have

lim
|ϕ(z)|→

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| =  (.)
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and

lim
|ϕ(z)|→

μ
(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)

∣∣ ln e
 – |ϕ(z)| = . (.)

From (.) and (.), it follows that for every ε > , there exists an r ∈ (, ) such
that μ(|z|) |φ(z)(ϕ′(z))|

–|ϕ(z)| < ε, when r < |ϕ(z)| < , and there exists a σ ∈ (, ) such that
μ(|z|)|φ(z)(ϕ′(z))| ≤ ε(– r), when σ < |z| < . Therefore, when σ < |z| <  and r < |ϕ(z)| <
, we have

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| < ε. (.)

On the other hand, if σ < |z| <  and |ϕ(z)| ≤ r, we obtain

μ
(|z|) |φ(z)(ϕ′(z))|

 – |ϕ(z)| < μ
(|z|) |φ(z)(ϕ′(z))|

 – r
< ε. (.)

Inequality (.) together with (.) gives the (.). Similarly, (.) and (.) imply
(.).
(iii) ⇒ (i). Let f ∈Z . Then we have

μ
(|z|)∣∣(φDCϕ f )′(z)

∣∣
≤ C

[
μ

(|z|) |φ(z)(ϕ′(z))|
 – |ϕ(z)| +μ

(|z|)∣∣φ(z)ϕ′′(z) + φ′(z)ϕ′(z)
∣∣ ln e

 – |ϕ(z)|
]
‖f ‖Z .

Taking the supremum in this inequality over all f ∈ Z such that ‖f ‖Z ≤ , then letting
|z| → , and using (.) and (.), we obtain

lim|z|→
sup

‖f ‖Z≤
μ

(|z|)∣∣(φDCϕ f )′(z)
∣∣ = .

From Lemma . it follows that the operator φDCϕ :Z → Bμ, is compact. �

Similarly to the proofs of Theorems .-., we can get the following results; we omit
the proof.

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φCϕD :Z → Bμ is bounded;
(ii) φCϕD :Z → Bμ is bounded;
(iii)

sup
z∈�

μ
(|z|) |φ(z)ϕ′(z)|

 – |ϕ(z)| < ∞

and

sup
z∈�

μ
(|z|)∣∣φ′(z)

∣∣ ln e
 – |ϕ(z)| <∞.
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Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φCϕD :Z → Bμ is compact;
(ii) φCϕD :Z → Bμ is compact;
(iii) φCϕD :Z → Bμ is bounded,

lim
|ϕ(z)|→

μ
(|z|) |φ(z)ϕ′(z)|

 – |ϕ(z)| = 

and

lim
|ϕ(z)|→

μ
(|z|)∣∣φ′(z)

∣∣ ln e
 – |ϕ(z)| = .

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then φCϕD :Z → Bμ, is bounded if and only if φCϕD :Z →
Bμ is bounded and

lim|z|→
μ

(|z|)∣∣φ(z)ϕ′(z)
∣∣ =  and lim|z|→

μ
(|z|)∣∣φ′(z)

∣∣ = .

Theorem . Let ϕ be an analytic self-map of �, and let φ be an analytic function in �.
Suppose that μ is normal. Then the following statements are equivalent.

(i) φCϕD :Z → Bμ, is compact;
(ii) φCϕD :Z → Bμ, is compact;
(iii)

lim|z|→
μ

(|z|) |φ(z)ϕ′(z)|
 – |ϕ(z)| = 

and

lim|z|→
μ

(|z|)∣∣φ′(z)
∣∣ ln e

 – |ϕ(z)| = .
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