On parametric implicit vector variational inequality problems

Abstract

Recently Huang et al. (Math. Comput. Model. 43:1267-1274, 2006)introduced a class of parametric implicit vector equilibrium problems (for shortPIVEP) and they presented some existence results for a solution of PIVEP. Also,they provided two theorems about upper and lower semi-continuity of the solutionset of PIVEP in a locally convex Hausdorff topological vector space. The paperextends the corresponding results obtained in the setting of topological vectorspaces with mild assumptions and removing the notion of locally non-positivenessat a point and lower semi-continuity of the parametric mapping.

1 Introduction and preliminaries

Equilibrium problems have been extensively studied in recent years, the origin ofwhich can be traced back to Takahashi [[1], Lemma 1], Blum and Oettli [2], and Noor and Oettli [3]. It is well known that vector equilibrium problems provide a unifiedmodel for several classes of problems, for example, vector variational inequalityproblems, vector complementarity problems, vector optimization problems, and vectorsaddle point problems; see [2â€“4] and the references therein. In 2003, Huang et al.[5] considered the implicit vector equilibrium problem (for short IVEP) whichconsists of finding $xâˆˆE$ such that

$f\left(g\left(x\right),y\right)âˆ‰âˆ’intC\left(x\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆE,$

where $f:EÃ—Eâ†’Y$ and $g:Eâ†’E$, are mappings, X and Y are twoHausdorff topological vector spaces, E is a nonempty closed convex subsetof X and $C:Eâ†’{2}^{Y}$ be a set-valued mapping such that for any$xâˆˆE$, $C\left(x\right)$ is a closed and convex cone with$C\left(x\right)âˆ©âˆ’C\left(x\right)=\left\{0\right\}$, that is pointed, with nonempty interior. Theycontinued their research and introduced the parametric implicit vector equilibriumproblem, which consists of finding ${x}^{âˆ—}âˆˆ\mathbf{K}\left(\mathrm{Î»}\right)$, for each given $\left(\mathrm{Î»},\mathrm{Ïµ}\right)âˆˆ{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}$ such that

$f\left(\mathrm{Ïµ},g\left({x}^{âˆ—}\right),y\right)âˆ‰âˆ’intC\left({x}^{âˆ—}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆ\mathbf{K}\left(\mathrm{Î»}\right),$

where ${\mathrm{Î›}}_{i}$ ($i=1,2$) are Hausdorff topological vector spaces (theparametric spaces), $\mathbf{K}:{\mathrm{Î›}}_{1}â†’{2}^{X}$ a set-valued mapping such that for any$\mathrm{Î»}âˆˆ{\mathrm{Î›}}_{1}$, $\mathbf{K}\left(\mathrm{Î»}\right)$ is a nonempty, closed and convex subset of Xwith $\mathbf{K}\left({\mathrm{Î›}}_{1}\right)={â‹ƒ}_{\mathrm{Î»}âˆˆ{\mathrm{Î›}}_{1}}\mathbf{K}\left(\mathrm{Î»}\right)âŠ†E$ and $f:{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}Ã—Eâ†’Y$. They obtained some existence results for a solutionof PIVEP and further they studied upper and lower semi-continuity of the solution ofPIVEP in locally convex Hausdorff topological vector spaces. This paper is motivatedand inspired by the recent paper [5] and its aim is to extend the results to the setting of Hausdorfftopological vector spaces with mild assumptions and removing the condition of beinglocally non-positive at a point has been applied in Proposition 3.3 of [6] and lower semi-continuity of the parametric mapping used inTheorem 3.2 of [6]. More precisely, we first establish an existence result for a solution ofIVEP and then by using it we will deal with the behavior of the solution set ofPIVEP when the parameters $\left(\mathrm{Î»},\mathrm{Ïµ}\right)$ start to change. In fact we will show that thesolution set as a mapping $S:{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}â†’{2}^{X}$ is upper semi-continuous and lower semi-continuousunder special conditions. In the rest of this section we recall some definitions andresults that we need in the next section.

A subset P of Y is called a pointed and convex cone if and only if$P+PâŠ†P$, $tPâŠ†P$, for all $tâ‰¥0$, and $Pâˆ©âˆ’P=\left\{0\right\}$. The domain of a set-valued mapping$W:Xâ†’{2}^{Y}$ is defined as and its graph is defined as

$Graph\left(W\right)=\left\{\left(x,z\right)âˆˆXÃ—Y:zâˆˆW\left(x\right)\right\}.$

Also W is said to be closed if its graph, that is, $Graph\left(W\right)$, is a closed subset of $XÃ—Y$. A set-valued mapping $T:Xâ†’{2}^{Y}$ is called upper semi-continuous (u.s.c.) at$xâˆˆX$ if for every open set V containing$T\left(x\right)$ there exists an open set U containingx such that $T\left(u\right)âŠ†V$, for all $uâˆˆU$. The mapping T is said to be lowersemi-continuous (l.s.c.) if for every open set V with there exists an open set U containingx such that . The mapping T is continuous at xif it is both u.s.c. and l.s.c. at x. Moreover, T is u.s.c.(l.s.c.) on X if T is u.s.c. (l.s.c.) at each point ofX.

We need the following lemma in the sequel.

Lemma 1.1 ([7])

Let X and Y be topological spaces and$T:Xâ†’{2}^{Y}$be a mapping. The following statements are true:

1. (i)

If for any $xâˆˆX$, $T\left(x\right)$ is compact, then T is u.s.c. at $xâˆˆX$ if and only if for any net $\left\{{x}_{i}\right\}âŠ†X$ such that ${x}_{i}â†’x$ and for every ${y}_{i}âˆˆT\left({x}_{i}\right)$, there exist $yâˆˆT\left(x\right)$ and a subnet $\left\{{y}_{j}\right\}$ of $\left\{{y}_{i}\right\}$ such that ${y}_{j}â†’y$.

2. (ii)

T is l.s.c. at $xâˆˆX$ if and only if for any net $\left\{{x}_{i}\right\}âŠ†X$ with ${x}_{i}â†’x$ and for any $yâˆˆT\left(x\right)$, there exists a net $\left\{{y}_{i}\right\}$ such that ${y}_{i}âˆˆT\left({x}_{i}\right)$ and ${y}_{i}â†’y$.

Definition 1.2 ([8, 9])

Let X be a topological vector space. A mapping $F:KâŠ†Xâ†’{2}^{X}$ is said to be a KKM mapping, if, for any finite set$AâŠ†K$,

$coAâŠ†F\left(A\right)=\underset{xâˆˆA}{â‹ƒ}F\left(x\right),$

where coA denotes the convex hull of A.

The following lemma plays a crucial rule in this paper.

Lemma 1.3 ([8])

Let K be a nonempty subset of a topological vector space X and$F:Kâ†’{2}^{X}$be a$KKM$mapping with closed values in K. Assume that there exists a nonempty compact convex subset B of K such that${â‹‚}_{xâˆˆB}F\left(x\right)$is compact. Then.

2 Main results

The next result provides an existence result for a solution of IVEP.

Theorem 2.1 Let K be closed convex subset of a t.v.s. X and$f:KÃ—Kâ†’Y$and$g:Kâ†’K$be two mappings. If the following assumptions are satisfied:

1. (a)

$f\left(g\left(x\right),x\right)âˆ‰âˆ’intC\left(x\right)$, $\mathrm{âˆ€}xâˆˆK$,

2. (b)

the mapping $xâ†’f\left(g\left(x\right),y\right)$ is continuous, for all $yâˆˆK$,

3. (c)

for each $xâˆˆK$, the set $\left\{yâˆˆK:f\left(g\left(x\right),y\right)âˆˆâˆ’intC\left(x\right)\right\}$ is convex,

4. (d)

the mapping $W:Kâ†’{2}^{Y}$ defined by $W\left(x\right)=Y\mathrm{âˆ–}\left(âˆ’intC\left(x\right)\right)$ is closed,

5. (e)

there exist subsets M and N of K, compact convex and compact, respectively, such that for all $xâˆˆK\mathrm{âˆ–}N$ there is $yâˆˆM$ such that $f\left(g\left(x\right),y\right)âˆˆâˆ’intC\left(x\right)$,

then the solution set of IVEP is nonempty and compact.

Proof Define the set-valued mapping $F:Kâ†’{2}^{K}$ by

$F\left(y\right)=\left\{xâˆˆK:f\left(g\left(x\right),y\right)âˆ‰âˆ’intC\left(x\right)\right\}.$

We show that F satisfies all the assumptions of Lemma 1.3. By (b) and(d), $F\left(y\right)$ is a closed subset of K for all$yâˆˆK$. It follows from (c) and (a) that F is a KKMmapping. Indeed, on the contrary of the assertion if there exist${y}_{1},{y}_{2},â€¦,{y}_{n}$ in K and $z={âˆ‘}_{i=1}^{n}{\mathrm{Î»}}_{i}{y}_{i}âˆˆco\left\{{y}_{1},{y}_{2},â€¦,{y}_{n}\right\}\mathrm{âˆ–}{â‹ƒ}_{i=1}^{n}F\left({y}_{i}\right)$, then $f\left(g\left(z\right),{y}_{i}\right)âˆˆâˆ’intC\left(z\right)$ and so by (c) we deduce that

$f\left(g\left(z\right),z\right)âˆˆâˆ’intC\left(z\right),$

which is a contradiction (by (a)). Then F is a KKM mapping. Also, it isobvious from (e) that ${â‹‚}_{yâˆˆM}F\left(y\right)âŠ†N$ and so ${â‹‚}_{yâˆˆM}F\left(y\right)$ is compact (note that $F\left(y\right)$ is closed for each $yâˆˆY$ and M is compact). Hence by Lemma 1.3there exists $\stackrel{Â¯}{x}âˆˆK$ such that

$\stackrel{Â¯}{x}âˆˆ\underset{xâˆˆK}{â‹‚}F\left(x\right)$

and it is easy to see that the solution set of IVEP is equal to the set${â‹‚}_{xâˆˆK}F\left(x\right)$ and hence $\stackrel{Â¯}{x}$ is a solution of IVEP and further it is compact (note${â‹‚}_{xâˆˆK}F\left(x\right)âŠ†{â‹‚}_{xâˆˆM}F\left(x\right)âŠ†N$) and hence the proof is complete.â€ƒâ–¡

We note that if g is continuous and f is continuous with respect tothe first variable then the mapping $xâ†’f\left(g\left(x\right),y\right)$ is continuous and so condition (b) holds while thesimple example $g\left(x\right)=1$ if x is rational, and$g\left(x\right)=0$ if x is irrational, and$f\left(x,y\right)=1$, for x rational, and $f\left(x,y\right)=0$ if x is irrational, shows that it is easy tocheck that the mapping $xâ†’f\left(g\left(x\right),y\right)$ is continuous; nevertheless, neither g norf is continuous, which shows that the converse does not hold ingeneral. Moreover, in the example, if we take $K=\left[0,1\right]$ then f and g satisfy all theassumptions of Theorem 2.1 and so the solution set of IVEP is nonempty andcompact but the example cannot fulfill all the conditions of Proposition 3.1 in [6]. Hence Theorem 2.1 extends Proposition 3.1 in [6]. Also one can easily see the C-convexity of f at thesecond variable, that is, for each $xâˆˆK$,

$tf\left(x,{y}_{1}\right)+\left(1âˆ’t\right)f\left(x,{y}_{2}\right)âˆ’f\left(x,t{y}_{1}+\left(1âˆ’t\right){y}_{2}\right)âˆˆC\left(x\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}tâˆˆ\left[0,1\right],$

which implies condition (c) of Theorem 2.1, while if we take$X=\mathrm{â„œ}$ and let K be any nonempty convex and compactsubset of X and define $f\left(x,y\right)=âˆ’{y}^{2}$, for all $x,yâˆˆK$ and we let g be an arbitrary mapping, wetake the example $f\left(x,y\right)=âˆ’{y}^{2}$, for $x,yâˆˆK$ and g an arbitrary mapping, then thisexample fulfills condition (c) (note that it satisfies all the assumptions ofTheorem 2.1) but f is not convex at the second variable and hencecondition (c) improves condition (3) in Proposition 3.1 of [6].

Definition 2.2 ([6])

A mapping $f:EÃ—Eâ†’Y$ is said to be locally non-positive at${x}_{0}âˆˆE$ with respect to a mapping $g:Eâ†’E$ if there exist a neighborhood $V\left({x}_{0}\right)$ of ${x}_{0}$ and a point ${z}_{0}âˆˆEâˆ©intV\left({x}_{0}\right)$ such that

$f\left(g\left(x\right),{z}_{0}\right)âˆˆâˆ’C\left(x\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}xâˆˆEâˆ©\mathrm{âˆ‚}V\left({x}_{0}\right),$

where $\mathrm{âˆ‚}V\left({x}_{0}\right)$ is the boundary of $V\left({x}_{0}\right)$. In the case that g is the identity mapping,the mapping f is called locally non-positive at ${x}_{0}âˆˆE$.

The following corollary is an extension of Proposition 3.3 in [6] for topological vector spaces. Furthermore, the condition that fis locally non-positive at ${x}_{0}âˆˆK$ has been omitted.

Corollary 2.3 Let K be a nonempty closed and convex subset of a Hausdorff topological vectorspace X and let$f:KÃ—Kâ†’Y$and$C:Kâ†’Y$be two mappings such that:

1. (a)

$f\left(g\left(x\right),x\right)=0$, $\mathrm{âˆ€}xâˆˆK$,

2. (b)

the mapping $xâ†’f\left(g\left(x\right),y\right)$ is continuous, for all $yâˆˆK$,

3. (c)

for each $xâˆˆK$ the mapping $yâ†’f\left(g\left(x\right),y\right)$ is $C\left(x\right)$-convex,

4. (d)

the mapping $W:Kâ†’{2}^{Y}$ defined by $W\left(x\right)=Y\mathrm{âˆ–}\left(âˆ’intC\left(x\right)\right)$ is closed,

5. (e)

there exist a nonempty compact and convex subset D of $Kâˆ©V\left({x}_{0}\right)$ and ${y}_{0}âˆˆD$ such that for all $xâˆˆ\left(Kâˆ©V\left({x}_{0}\right)\right)\mathrm{âˆ–}D$

$f\left(g\left(x\right),y\right)âˆˆâˆ’intC\left(x\right).$

Then IVEP has a solution in the neighborhood$V\left({x}_{0}\right)$of${x}_{0}$, that is, there exists${x}^{âˆ—}âˆˆ\left(Kâˆ©V\left({x}_{0}\right)\right)$such that

$f\left(g\left({x}^{âˆ—}\right),y\right)âˆ‰intC\left({x}^{âˆ—}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆK.$

Moreover, the solution set is a compact subset of$Kâˆ©V\left({x}_{0}\right)$.

Proof There is neighborhood U of ${x}_{0}$ such that $coUâŠ†V\left({x}_{0}\right)$ (see, for example, [10]). Hence by Theorem 2.1, IVEP has a solution on$B=Kâˆ©\stackrel{Â¯}{co\left(coUâˆª\left\{{y}_{0}\right\}\right)}$. Then there exists ${x}^{âˆ—}âˆˆB$ such that

$f\left(g\left({x}^{âˆ—}\right),y\right)âˆ‰âˆ’intC\left({x}^{âˆ—}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆB.$

We claim that

$f\left(g\left({x}^{âˆ—}\right),y\right)âˆ‰âˆ’intC\left({x}^{âˆ—}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆK.$

Indeed, if the sentence is not true then there is $yâˆˆK$ so that

$f\left(g\left({x}^{âˆ—}\right),y\right)âˆˆâˆ’intC\left({x}^{âˆ—}\right).$

Put ${y}_{t}={x}^{âˆ—}+t\left(yâˆ’{x}^{âˆ—}\right)$, for $t>0$. It is clear that ${y}_{t}âˆˆB$, for t that is small enough. Then bycondition (c) we have

$f\left(g\left({x}^{âˆ—}\right),{y}_{t}\right)âˆˆ\left(1âˆ’t\right)f\left(g\left({x}^{âˆ—}\right),y\right)+tf\left(g\left({x}^{âˆ—}\right),{x}^{âˆ—}\right)âˆˆâˆ’intC\left({x}^{âˆ—}\right)+0=âˆ’intC\left({x}^{âˆ—}\right),$

which is a contradiction. Hence ${x}^{âˆ—}$ is a solution of IVEP. The second part follows fromcondition (e). This completes the proof.â€ƒâ–¡

The next theorem is an extension of Theorems 3.1, 3.3 and Corollary 3.3 in [6] with mild assumptions for mappings which do not need to satisfy thelocally non-positive condition. In fact this condition has been removed.

Theorem 2.4 Let$F:{\mathrm{Î›}}_{2}Ã—EÃ—Eâ†’Y$and$g:Eâ†’E$be two mappings. If the following assumptions hold:

1. (i)

$\mathbf{K}:{\mathrm{Î›}}_{1}â†’{2}^{E}$ is a continuous mapping with nonempty convex compact values;

2. (ii)

$\left(\mathrm{Îµ},x,y\right)â†’F\left(\mathrm{Îµ},g\left(x\right),y\right)$ is continuous;

3. (iii)

the set $\left\{y:F\left(\mathrm{Îµ},g\left(x\right),y\right)âˆˆâˆ’intC\left(x\right)\right\}$ is convex and $F\left(\mathrm{Îµ},g\left(x\right),x\right)=0$, for each $\left(\mathrm{Ïµ},x\right)âˆˆ{\mathrm{Î›}}_{1}Ã—E$;

4. (iv)

the mapping $W:Eâ†’{2}^{Y}$ defined by $W\left(x\right)=Y\mathrm{âˆ–}âˆ’intC\left(x\right)$ is closed;

then

1. (i)

for each $\left(\mathrm{Î»},\mathrm{Îµ}\right)âˆˆ{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}$, the solution set

$S\left(\mathrm{Î»},\mathrm{Îµ}\right)=\left\{xâˆˆ\mathbf{K}\left(\mathrm{Î»}\right):F\left(\mathrm{Îµ},g\left(x\right),y\right)âˆ‰âˆ’intC\left(x\right),\mathrm{âˆ€}yâˆˆ\mathbf{K}\left(\mathrm{Î»}\right)\right\},$

is nonempty and compact,

1. (ii)

the solution set mapping $S:{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}â†’{2}^{X}$ defined by

$\left(\mathrm{Î»},\mathrm{Îµ}\right)â†’S\left(\mathrm{Î»},\mathrm{Îµ}\right)$

is continuous.

Proof The first part, that is, (i), follows from Theorem 2.1 by taking,for each $\left(\mathrm{Î»},\mathrm{Îµ}\right)âˆˆ{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}$, $M=N=\mathbf{K}\left(\mathrm{Î»}\right)$ and defining $f\left(x,y\right)=F\left(\mathrm{Îµ},x,y\right)$, for all $\left(x,y\right)âˆˆ\mathbf{K}\left(\mathrm{Î»}\right)Ã—\mathbf{K}\left(\mathrm{Î»}\right)$. To prove (ii), let ${\left\{\left({\mathrm{Î»}}_{i},{\mathrm{Ïµ}}_{i}\right)\right\}}_{iâˆˆI}âŠ†{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}$ be a net with $\left({\mathrm{Î»}}_{i},{\mathrm{Ïµ}}_{i}\right)â†’\left(\mathrm{Î»},\mathrm{Ïµ}\right)$ and ${z}_{i}âˆˆS\left({\mathrm{Î»}}_{i},{\mathrm{Ïµ}}_{i}\right)âŠ‚K\left({\mathrm{Î»}}_{i}\right)$. Since K is u.s.c., ${\mathrm{Î»}}_{i}â†’\mathrm{Î»}$ and ${z}_{i}âˆˆ\mathbf{K}\left({\mathrm{Î»}}_{i}\right)$, using Lemma 1.1(i), there exist$zâˆˆ\mathbf{K}\left(\mathrm{Î»}\right)$ and a subnet $\left\{{z}_{{i}_{j}}\right\}$ of $\left\{{z}_{i}\right\}$ which converges to z. So

$F\left({\mathrm{Ïµ}}_{{i}_{j}},g\left({z}_{{i}_{j}}\right),y\right)âˆˆY\mathrm{âˆ–}\left(âˆ’intC\left({z}_{{i}_{j}}\right)\right)=W\left({z}_{{i}_{j}}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆ\mathbf{K}\left({\mathrm{Î»}}_{{i}_{j}}\right).$
(1)

We claim that $zâˆˆS\left(\mathrm{Î»},\mathrm{Ïµ}\right)$ (note that if we show the claim then according toLemma 1.1 the mapping S will be an u.s.c.). If the claim is not truethen there is $yâˆˆ\mathbf{K}\left(\mathrm{Î»}\right)$ such that

$F\left(\mathrm{Ïµ},g\left(z\right),y\right)âˆˆâˆ’intC\left(z\right).$
(2)

So, since K is l.s.c., there exists net ${w}_{j}âˆˆ\mathbf{K}\left({\mathrm{Î»}}_{j}\right)$ such that ${w}_{j}â†’y$. Then it follows from (1) that

$F\left({\mathrm{Ïµ}}_{{i}_{j}},g\left({z}_{{i}_{j}}\right),{w}_{j}\right)âˆˆW\left({z}_{{i}_{j}}\right),$

and so by (ii) and (iv) we get

$F\left(\mathrm{Ïµ},g\left(z\right),y\right)âˆˆY\mathrm{âˆ–}âˆ’intC\left(z\right)=W\left(z\right),$

which is contradicted by (2) and so $zâˆˆS\left(\mathrm{Î»},\mathrm{Ïµ}\right)$. It follows from ${x}_{{i}_{j}}âˆˆS\left({\mathrm{Î»}}_{{i}_{j}},{\mathrm{Ïµ}}_{{i}_{j}}\right)$ that $f\left({\mathrm{Ïµ}}_{{i}_{j}},g\left({x}_{{i}_{j}}\right),{\mathrm{Ïµ}}_{{i}_{j}}\right)âˆ‰âˆ’intC\left({x}_{{i}_{j}}\right)$ and so $f\left({\mathrm{Ïµ}}_{{i}_{j}},g\left({x}_{{i}_{j}}\right),{y}_{{i}_{j}}\right)âˆˆW\left({x}_{{i}_{j}}\right)$ and by the closedness of W we get$f\left(\mathrm{Ïµ},g\left(x\right),y\right)âˆˆW\left(x\right)$, which is a contradiction, and then the solution setmapping S is u.s.c. Now we show that S is l.s.c. Let${\left\{\left({\mathrm{Î»}}_{i},{\mathrm{Ïµ}}_{i}\right)\right\}}_{iâˆˆI}âŠ†{\mathrm{Î›}}_{1}Ã—{\mathrm{Î›}}_{2}$ be a net with $\left({\mathrm{Î»}}_{i},{\mathrm{Ïµ}}_{i}\right)â†’\left(\mathrm{Î»},\mathrm{Ïµ}\right)$ and z an arbitrary element of$S\left(\mathrm{Î»},\mathrm{Ïµ}\right)âŠ†\mathbf{K}\left(\mathrm{Î»}\right)$. Put (note by the relation $Vâª¯W$ if and only if $VâŠ‡W$, the set Îž is a directed set). Then for each$\left(V,i\right)âˆˆ\mathrm{Îž}Ã—I$, there is a closed and convex neighborhood${H}_{V,i}$ of z such that ${H}_{V,i}âŠ‚V$ (see [10]) and so it follows from Theorem 2.1 that there is${z}_{i}âˆˆ{H}_{V,i}âˆ©\mathbf{K}\left({\mathrm{Î»}}_{i}\right)$ such that

$F\left({\mathrm{Ïµ}}_{i},g\left({z}_{i}\right),y\right)âˆ‰âˆ’intC\left({z}_{i}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆ{H}_{V,i}âˆ©\mathbf{K}\left({\mathrm{Î»}}_{i}\right).$
(3)

Now if there exists $yâˆˆ\mathbf{K}\left({\mathrm{Î»}}_{i}\right)$ such that

$F\left({\mathrm{Ïµ}}_{i},g\left({z}_{i}\right),y\right)âˆˆâˆ’intC\left({z}_{i}\right),$

it follows from $F\left({\mathrm{Ïµ}}_{i},g\left({z}_{i}\right),{z}_{i}\right)=0$ (see condition (i)) and (iii) that

$F\left({\mathrm{Ïµ}}_{i},g\left({z}_{i}\right),{z}_{i}+t\left(yâˆ’{z}_{i}\right)\right)âˆˆâˆ’intC\left({z}_{i}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}tâˆˆ\left[0,1\right],$

which is a contradiction, for $tâˆˆ\left[0,1\right]$ small enough, by (3) (note ${H}_{V,i}$ is an open set and ${z}_{i}âˆˆ{H}_{V,i}$). So

$F\left({\mathrm{Ïµ}}_{i},g\left({z}_{i}\right),y\right)âˆ‰âˆ’intC\left({z}_{i}\right),\phantom{\rule{1em}{0ex}}\mathrm{âˆ€}yâˆˆ\mathbf{K}\left({\mathrm{Î»}}_{i}\right),$

and hence ${z}_{i}âˆˆS\left({\mathrm{Ïµ}}_{i},{\mathrm{Î»}}_{i}\right)$. Consequently, for each point $\left(V,i\right)âˆˆ\mathrm{Îž}Ã—I$ there is ${z}_{i}âˆˆS\left({\mathrm{Ïµ}}_{i},{\mathrm{Î»}}_{i}\right)$, and so ${z}_{i}â†’z$. Hence it follows from Lemma 1.1(ii) thatS is l.s.c. and the proof is completed.â€ƒâ–¡

Inspired by the proof of the second part of the previous theorem we can deduce thelower semi-continuity of the solution set mapping. Indeed the next theorem is animprovement of Theorem 3.2 in [6] without using the lower semi-continuity of the mapping$\mathbf{K}:{\mathrm{Î›}}_{1}â†’{2}^{E}$; its proof is similar to the proof presented for thesecond part of Theorem 2.4 and so we omit the proof.

Theorem 2.5 Let$F:{\mathrm{Î›}}_{2}Ã—EÃ—Eâ†’Y$and$g:Eâ†’E$be two mappings. For a given$\left({\mathrm{Î»}}_{0},{\mathrm{Ïµ}}_{0}\right)âˆˆ\left({\mathrm{Î›}}_{1},{\mathrm{Î›}}_{2}\right)$there exist neighborhoods$U\left({\mathrm{Î»}}_{0}\right)$of${\mathrm{Î»}}_{0}$and$M\left({\mathrm{Ïµ}}_{0}\right)$of${\mathrm{Ïµ}}_{0}$such that the following assumptions are satisfied:

1. (i)

$\mathbf{K}:U\left({\mathrm{Î»}}_{0}\right)â†’{2}^{X}$ is a mapping with nonempty convex and compact values;

2. (ii)

mapping $\left(\mathrm{Îµ},x,y\right)â†’F\left(\mathrm{Îµ},g\left(x\right),y\right)$ is continuous, for each $\left(\mathrm{Îµ},x,y\right)âˆˆM\left({\mathrm{Ïµ}}_{0}\right)Ã—EÃ—E$;

3. (iii)

for each $xâˆˆE$ the mapping $yâ†’F\left(\mathrm{Îµ},g\left(x\right),y\right)$ is $C\left(x\right)$-convex and $F\left(\mathrm{Îµ},g\left(x\right),x\right)=0$, for each $\left(\mathrm{Ïµ},x\right)âˆˆM\left({\mathrm{Ïµ}}_{0}\right)Ã—E$;

4. (iv)

the mapping $W:Eâ†’{2}^{Y}$ defined by $W\left(x\right)=Y\mathrm{âˆ–}âˆ’intC\left(x\right)$ is closed.

Then

1. (i)

$S\left(\mathrm{Î»},\mathrm{Îµ}\right)$, for each $\left(\mathrm{Î»},\mathrm{Îµ}\right)âˆˆU\left({\mathrm{Î»}}_{0}\right)Ã—M\left({\mathrm{Îµ}}_{0}\right)$ is nonempty and compact;

2. (ii)

the mapping S is l.s.c. at $\left({\mathrm{Î»}}_{0},{\mathrm{Îµ}}_{0}\right)$.

References

1. Takahashi W: Nonlinear variational inequalities and fixed point theorems. J. Math. Soc. Jpn. 1976, 28: 168â€“181. 10.2969/jmsj/02810168

2. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994,63(93):123â€“145.

3. Noor MA, Oettli W: On generalized nonlinear complementarity problems and quasi equilibria. Matematiche 1994, 49: 313â€“331.

4. Bianchi M, Pini R: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 2005, 124: 79â€“92. 10.1007/s10957-004-6466-9

5. Huang NJ, Li J, Thompson HB: Implicit vector equilibrium problems with applications. Math. Comput. Model. 2003, 37: 1343â€“1356. 10.1016/S0895-7177(03)90045-8

6. Huang NJ, Li J, Thompson HB: Stability for parametric implicit equilibrium problem. Math. Comput. Model. 2006, 43: 1267â€“1274. 10.1016/j.mcm.2005.06.010

7. Tan NX: Quasi-variational inequalities in topological linear locally convex Hausdorffspaces. Math. Nachr. 1985, 122: 231â€“245. 10.1002/mana.19851220123

8. Fan K: Some properties of convex sets related to fixed point theorems. Math. Ann. 1984, 266: 519â€“537. 10.1007/BF01458545

9. Yuan XZ: KKM Theory and Applications in Nonlinear Analysis. Dekker, New York; 1999.

10. Rudin W: Functional Analysis. McGraw-Hill, New York; 1973.

Author information

Authors

Corresponding author

Correspondence to S Plubteing.

Competing interests

The authors declare that they have no competing interests.

Authorsâ€™ contributions

This work presented have was carried out in collaboration between all authors. Themain idea of this paper was proposed by AF and SP prepared the manuscript initiallyand performed all the steps of the proofs in this research. All authors read andapproved the final manuscript.

Rights and permissions

Reprints and permissions

Farajzadeh, A., Plubteing, S. On parametric implicit vector variational inequality problems. J Inequal Appl 2014, 151 (2014). https://doi.org/10.1186/1029-242X-2014-151