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Abstract
Recently Huang et al. (Math. Comput. Model. 43:1267-1274, 2006) introduced a class
of parametric implicit vector equilibrium problems (for short PIVEP) and they
presented some existence results for a solution of PIVEP. Also, they provided two
theorems about upper and lower semi-continuity of the solution set of PIVEP in a
locally convex Hausdorff topological vector space. The paper extends the
corresponding results obtained in the setting of topological vector spaces with mild
assumptions and removing the notion of locally non-positiveness at a point and
lower semi-continuity of the parametric mapping.
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1 Introduction and preliminaries
Equilibrium problems have been extensively studied in recent years, the origin of which
can be traced back to Takahashi [, Lemma ], Blum and Oettli [], and Noor and Oettli
[]. It is well known that vector equilibrium problems provide a unified model for several
classes of problems, for example, vector variational inequality problems, vector comple-
mentarity problems, vector optimization problems, and vector saddle point problems; see
[–] and the references therein. In , Huang et al. [] considered the implicit vector
equilibrium problem (for short IVEP) which consists of finding x ∈ E such that

f
(
g(x), y

)
/∈– intC(x), ∀y ∈ E,

where f : E× E → Y and g : E → E, are mappings, X and Y are two Hausdorff topological
vector spaces, E is a nonempty closed convex subset of X and C : E → Y be a set-valued
mapping such that for any x ∈ E, C(x) is a closed and convex cone with C(x)∩–C(x) = {},
that is pointed, with nonempty interior. They continued their research and introduced the
parametric implicit vector equilibrium problem, which consists of finding x∗ ∈ K(λ), for
each given (λ, ε) ∈ � × � such that

f
(
ε, g

(
x∗), y

)
/∈– intC(

x∗), ∀y ∈K(λ),

where �i (i = , ) are Hausdorff topological vector spaces (the parametric spaces), K :
� → X a set-valued mapping such that for any λ ∈ �, K(λ) is a nonempty, closed and
convex subset of X with K(�) =

⋃
λ∈�

K(λ) ⊆ E and f : � × � × E → Y . They ob-
tained some existence results for a solution of PIVEP and further they studied upper and
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lower semi-continuity of the solution of PIVEP in locally convex Hausdorff topological
vector spaces. This paper is motivated and inspired by the recent paper [] and its aim is
to extend the results to the setting of Hausdorff topological vector spaces with mild as-
sumptions and removing the condition of being locally non-positive at a point has been
applied in Proposition . of [] and lower semi-continuity of the parametric mapping
used in Theorem . of []. More precisely, we first establish an existence result for a so-
lution of IVEP and then by using it we will deal with the behavior of the solution set of
PIVEP when the parameters (λ, ε) start to change. In fact we will show that the solution
set as a mapping S : � × � → X is upper semi-continuous and lower semi-continuous
under special conditions. In the rest of this section we recall some definitions and results
that we need in the next section.
A subset P of Y is called a pointed and convex cone if and only if P + P ⊆ P, tP ⊆ P, for

all t ≥ , and P∩–P = {}. The domain of a set-valued mappingW : X → Y is defined as
D(W ) = {x ∈ X :W (x) 	= ∅} and its graph is defined as

Graph(W ) =
{
(x, z) ∈ X × Y : z ∈W (x)

}
.

AlsoW is said to be closed if its graph, that is,Graph(W ), is a closed subset ofX×Y . A set-
valued mapping T : X → Y is called upper semi-continuous (u.s.c.) at x ∈ X if for every
open set V containing T(x) there exists an open set U containing x such that T(u) ⊆ V ,
for all u ∈ U . The mapping T is said to be lower semi-continuous (l.s.c.) if for every open
set V with T(x) ∩ V 	= ∅ there exists an open set U containing x such that T(u) ∩ V 	= ∅.
The mapping T is continuous at x if it is both u.s.c. and l.s.c. at x. Moreover, T is u.s.c.
(l.s.c.) on X if T is u.s.c. (l.s.c.) at each point of X.
We need the following lemma in the sequel.

Lemma . ([]) Let X and Y be topological spaces and T : X → Y be a mapping. The
following statements are true:

(i) If for any x ∈ X , T(x) is compact, then T is u.s.c. at x ∈ X if and only if for any net
{xi} ⊆ X such that xi → x and for every yi ∈ T(xi), there exist y ∈ T(x) and a subnet
{yj} of {yi} such that yj → y.

(ii) T is l.s.c. at x ∈ X if and only if for any net {xi} ⊆ X with xi → x and for any y ∈ T(x),
there exists a net {yi} such that yi ∈ T(xi) and yi → y.

Definition . ([, ]) Let X be a topological vector space. A mapping F : K ⊆ X → X is
said to be a KKMmapping, if, for any finite set A ⊆ K ,

coA ⊆ F(A) =
⋃

x∈A
F(x),

where coA denotes the convex hull of A.

The following lemma plays a crucial rule in this paper.

Lemma . ([]) Let K be a nonempty subset of a topological vector space X and F : K →
X be a KKM mapping with closed values in K . Assume that there exists a nonempty com-
pact convex subset B of K such that

⋂
x∈B F(x) is compact. Then

⋂
x∈K F(x) 	= ∅.

http://www.journalofinequalitiesandapplications.com/content/2014/1/151


Farajzadeh and Plubteing Journal of Inequalities and Applications 2014, 2014:151 Page 3 of 7
http://www.journalofinequalitiesandapplications.com/content/2014/1/151

2 Main results
The next result provides an existence result for a solution of IVEP.

Theorem . Let K be closed convex subset of a t.v.s. X and f : K ×K → Y and g : K → K
be two mappings. If the following assumptions are satisfied:
(a) f (g(x),x) /∈– intC(x), ∀x ∈ K ,
(b) the mapping x→ f (g(x), y) is continuous, for all y ∈ K ,
(c) for each x ∈ K , the set {y ∈ K : f (g(x), y) ∈– intC(x)} is convex,
(d) the mappingW : K → Y defined byW (x) = Y\(– intC(x)) is closed,
(e) there exist subsetsM and N of K , compact convex and compact, respectively, such

that for all x ∈ K\N there is y ∈M such that f (g(x), y) ∈– intC(x),
then the solution set of IVEP is nonempty and compact.

Proof Define the set-valued mapping F : K → K by

F(y) =
{
x ∈ K : f

(
g(x), y

)
/∈– intC(x)}.

We show that F satisfies all the assumptions of Lemma .. By (b) and (d), F(y) is a
closed subset of K for all y ∈ K . It follows from (c) and (a) that F is a KKM mapping.
Indeed, on the contrary of the assertion if there exist y, y, . . . , yn in K and z =

∑n
i= λiyi ∈

co{y, y, . . . , yn}\⋃n
i= F(yi), then f (g(z), yi) ∈– intC(z) and so by (c) we deduce that

f
(
g(z), z

) ∈– intC(z),

which is a contradiction (by (a)). Then F is a KKM mapping. Also, it is obvious from (e)
that

⋂
y∈M F(y) ⊆ N and so

⋂
y∈M F(y) is compact (note that F(y) is closed for each y ∈ Y

andM is compact). Hence by Lemma . there exists x ∈ K such that

x ∈
⋂

x∈K
F(x)

and it is easy to see that the solution set of IVEP is equal to the set
⋂

x∈K F(x) and hence
x̄ is a solution of IVEP and further it is compact (note

⋂
x∈K F(x) ⊆ ⋂

x∈M F(x) ⊆ N ) and
hence the proof is complete. �

We note that if g is continuous and f is continuous with respect to the first variable
then the mapping x → f (g(x), y) is continuous and so condition (b) holds while the simple
example g(x) =  if x is rational, and g(x) =  if x is irrational, and f (x, y) = , for x rational,
and f (x, y) =  if x is irrational, shows that it is easy to check that themapping x→ f (g(x), y)
is continuous; nevertheless, neither g nor f is continuous, which shows that the converse
does not hold in general. Moreover, in the example, if we take K = [, ] then f and g
satisfy all the assumptions of Theorem . and so the solution set of IVEP is nonempty and
compact but the example cannot fulfill all the conditions of Proposition . in []. Hence
Theorem . extends Proposition . in []. Also one can easily see the C-convexity of f
at the second variable, that is, for each x ∈ K ,

tf (x, y) + ( – t)f (x, y) – f
(
x, ty + ( – t)y

) ∈ C(x), ∀t ∈ [, ],
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which implies condition (c) of Theorem ., while if we take X = � and let K be any
nonempty convex and compact subset of X and define f (x, y) = –y, for all x, y ∈ K and
we let g be an arbitrary mapping, we take the example f (x, y) = –y, for x, y ∈ K and g an
arbitrary mapping, then this example fulfills condition (c) (note that it satisfies all the as-
sumptions of Theorem .) but f is not convex at the second variable and hence condition
(c) improves condition () in Proposition . of [].

Definition . ([]) A mapping f : E × E → Y is said to be locally non-positive at x ∈ E
with respect to a mapping g : E → E if there exist a neighborhood V (x) of x and a point
z ∈ E ∩ intV (x) such that

f
(
g(x), z

) ∈ –C(x), ∀x ∈ E ∩ ∂V (x),

where ∂V (x) is the boundary of V (x). In the case that g is the identity mapping, the
mapping f is called locally non-positive at x ∈ E.

The following corollary is an extension of Proposition . in [] for topological vector
spaces. Furthermore, the condition that f is locally non-positive at x ∈ K has been omit-
ted.

Corollary . Let K be a nonempty closed and convex subset of a Hausdorff topological
vector space X and let f : K ×K → Y and C : K → Y be two mappings such that:
(a) f (g(x),x) = , ∀x ∈ K ,
(b) the mapping x→ f (g(x), y) is continuous, for all y ∈ K ,
(c) for each x ∈ K the mapping y → f (g(x), y) is C(x)-convex,
(d) the mappingW : K → Y defined byW (x) = Y\(– intC(x)) is closed,
(e) there exist a nonempty compact and convex subset D of K ∩V (x) and y ∈ D such

that for all x ∈ (K ∩V (x))\D

f
(
g(x), y

) ∈– intC(x).

Then IVEP has a solution in the neighborhood V (x) of x, that is, there exists x∗ ∈ (K ∩
V (x)) such that

f
(
g
(
x∗), y

)
/∈ intC

(
x∗), ∀y ∈ K .

Moreover, the solution set is a compact subset of K ∩V (x).

Proof There is neighborhood U of x such that coU ⊆ V (x) (see, for example, []).
Hence by Theorem ., IVEP has a solution on B = K ∩ co(coU ∪ {y}). Then there ex-
ists x∗ ∈ B such that

f
(
g
(
x∗), y

)
/∈– intC(

x∗), ∀y ∈ B.

We claim that

f
(
g
(
x∗), y

)
/∈– intC(

x∗), ∀y ∈ K .
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Indeed, if the sentence is not true then there is y ∈ K so that

f
(
g
(
x∗), y

) ∈– intC(
x∗).

Put yt = x∗ + t(y – x∗), for t > . It is clear that yt ∈ B, for t that is small enough. Then by
condition (c) we have

f
(
g
(
x∗), yt

) ∈ ( – t)f
(
g
(
x∗), y

)
+ tf

(
g
(
x∗),x∗) ∈– intC(

x∗) +  =– intC
(
x∗),

which is a contradiction. Hence x∗ is a solution of IVEP. The second part follows from
condition (e). This completes the proof. �

The next theorem is an extension of Theorems ., . and Corollary . in [] withmild
assumptions for mappings which do not need to satisfy the locally non-positive condition.
In fact this condition has been removed.

Theorem . Let F : � × E × E → Y and g : E → E be two mappings. If the following
assumptions hold:

(i) K :� → E is a continuous mapping with nonempty convex compact values;
(ii) (ε,x, y) → F(ε, g(x), y) is continuous;
(iii) the set {y : F(ε, g(x), y) ∈– intC(x)} is convex and F(ε, g(x),x) = , for each

(ε,x) ∈ � × E;
(iv) the mappingW : E → Y defined byW (x) = Y\– intC(x) is closed;

then
(i) for each (λ, ε) ∈ � × �, the solution set

S(λ, ε) =
{
x ∈K(λ) : F

(
ε, g(x), y

)
/∈– intC(x),∀y ∈K(λ)

}
,

is nonempty and compact,
(ii) the solution set mapping S :� × � → X defined by

(λ, ε) → S(λ, ε)

is continuous.

Proof The first part, that is, (i), follows from Theorem . by taking, for each (λ, ε) ∈ � ×
�,M =N =K(λ) and defining f (x, y) = F(ε,x, y), for all (x, y) ∈K(λ)×K(λ). To prove (ii),
let {(λi, εi)}i∈I ⊆ � × � be a net with (λi, εi) → (λ, ε) and zi ∈ S(λi, εi) ⊂ K (λi). Since K is
u.s.c., λi → λ and zi ∈ K(λi), using Lemma .(i), there exist z ∈ K(λ) and a subnet {zij} of
{zi} which converges to z. So

F
(
εij , g(zij ), y

) ∈ Y\(– intC(zij )
)
=W (zij ), ∀y ∈K(λij ). ()

We claim that z ∈ S(λ, ε) (note that if we show the claim then according to Lemma . the
mapping S will be an u.s.c.). If the claim is not true then there is y ∈K(λ) such that

F
(
ε, g(z), y

) ∈– intC(z). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/151
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So, since K is l.s.c., there exists net wj ∈ K(λj) such that wj → y. Then it follows from ()
that

F
(
εij , g(zij ),wj

) ∈W (zij ),

and so by (ii) and (iv) we get

F
(
ε, g(z), y

) ∈ Y\– intC(z) =W (z),

which is contradicted by () and so z ∈ S(λ, ε). It follows from xij ∈ S(λij , εij ) that
f (εij , g(xij ), εij ) /∈– intC(xij ) and so f (εij , g(xij ), yij ) ∈ W (xij ) and by the closedness of W we
get f (ε, g(x), y) ∈ W (x), which is a contradiction, and then the solution set mapping S is
u.s.c. Now we show that S is l.s.c. Let {(λi, εi)}i∈I ⊆ � × � be a net with (λi, εi) → (λ, ε)
and z an arbitrary element of S(λ, ε) ⊆ K(λ). Put � = {V : V is a neighborhood of z} (note
by the relation V � W if and only if V ⊇ W , the set � is a directed set). Then for each
(V , i) ∈ �× I , there is a closed and convex neighborhoodHV ,i of z such thatHV ,i ⊂ V (see
[]) and so it follows from Theorem . that there is zi ∈HV ,i ∩K(λi) such that

F
(
εi, g(zi), y

)
/∈– intC(zi), ∀y ∈HV ,i ∩K(λi). ()

Now if there exists y ∈K(λi) such that

F
(
εi, g(zi), y

) ∈– intC(zi),

it follows from F(εi, g(zi), zi) =  (see condition (i)) and (iii) that

F
(
εi, g(zi), zi + t(y – zi)

) ∈– intC(zi), ∀t ∈ [, ],

which is a contradiction, for t ∈ [, ] small enough, by () (note HV ,i is an open set and
zi ∈HV ,i). So

F
(
εi, g(zi), y

)
/∈– intC(zi), ∀y ∈K(λi),

and hence zi ∈ S(εi,λi). Consequently, for each point (V , i) ∈ �× I there is zi ∈ S(εi,λi), and
so zi → z. Hence it follows from Lemma .(ii) that S is l.s.c. and the proof is completed.

�

Inspired by the proof of the secondpart of the previous theoremwe can deduce the lower
semi-continuity of the solution set mapping. Indeed the next theorem is an improvement
of Theorem . in [] without using the lower semi-continuity of the mapping K : � →
E ; its proof is similar to the proof presented for the second part of Theorem . and so
we omit the proof.

Theorem . Let F : � × E × E → Y and g : E → E be two mappings. For a given
(λ, ε) ∈ (�,�) there exist neighborhoods U(λ) of λ and M(ε) of ε such that the fol-
lowing assumptions are satisfied:

http://www.journalofinequalitiesandapplications.com/content/2014/1/151
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(i) K :U(λ) → X is a mapping with nonempty convex and compact values;
(ii) mapping (ε,x, y) → F(ε, g(x), y) is continuous, for each (ε,x, y) ∈M(ε)× E × E;
(iii) for each x ∈ E the mapping y → F(ε, g(x), y) is C(x)-convex and F(ε, g(x),x) = , for

each (ε,x) ∈M(ε)× E;
(iv) the mappingW : E → Y defined byW (x) = Y\– intC(x) is closed.

Then
(i) S(λ, ε), for each (λ, ε) ∈ U(λ)×M(ε) is nonempty and compact;
(ii) the mapping S is l.s.c. at (λ, ε).
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