Skip to main content

Almost contractive coupled mapping in ordered complete metric spaces

Abstract

In this paper, we introduce the notion of almost contractive mapping F:X×X→X with respect to the mapping g:X→X and establish some existence and uniqueness theorems of a coupled common coincidence point in ordered complete metric spaces. Also, we introduce an example to support our main results. Our results generalize several well-known comparable results in the literature.

MSC:54H25, 47H10, 34B15.

1 Introduction and preliminaries

The existence and uniqueness theorems of a fixed point in complete metric spaces play an important role in constructing methods for solving problems in differential equations, matrix equations, and integral equations. Furthermore, the fixed point theory is a crucial method in numerical analysis to present a way for solving and approximating the roots of many equations in real analysis. One of the main theorems on a fixed point is the Banach contraction theorem [1]. Many authors generalized the Banach contraction theorem in different metric spaces in different ways. For some works on fixed point theory, we refer the readers to [2–17]. The study of a coupled fixed point was initiated by Bhaskar and Lakshmikantham [18]. Bhaskar and Lakshmikantham [18] obtained some nice results on a coupled fixed point and applied their results to solve a pair of differential equations. For some results on a coupled fixed point in ordered metric spaces, we refer the reader to [18–26].

The following definitions will be needed in the sequel.

Definition 1.1 Let (X,⪯) be a partially ordered set and F:X×X→X. The mapping F is said to have the mixed monotone property if F(x,y) is monotone non-decreasing in x and is monotone non-increasing in y, that is, for any

x,y∈X, x 1 , x 2 ∈X, x 1 ⪯ x 2 ⇒F( x 1 ,y)⪯F( x 2 ,y)

and

y 1 , y 2 ∈X, y 1 ⪯ y 2 ⇒F(x, y 1 )⪰F(x, y 2 ).

Definition 1.2 We call an element (x,y)∈X×X a coupled fixed point of the mapping F:X×X→X if

F(x,y)=xandF(y,x)=y.

Definition 1.3 [20]

Let (X,⪯) be a partially ordered set and F:X×X→X and g:X→X. The mapping F is said to have the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, for any x,y∈X,

x 1 , x 2 ∈X,g( x 1 )⪯g( x 2 )⇒F( x 1 ,y)⪯F( x 2 ,y)
(1)

and

y 1 , y 2 ∈X,g( y 1 )⪯g( y 2 )⇒F(x, y 1 )⪰F(x, y 2 ).
(2)

Definition 1.4 An element (x,y)∈X×X is called a coupled coincidence point of the mappings F:X×X→X and g:X→X if

F(x,y)=g(x)andF(y,x)=g(y).

The main results of Bhaskar and Lakshmikantham in [18] are the following.

Theorem 1.1 [18]

Let (X,⪯) be a partially ordered set and d be a metric on X such that (X,d) is a complete metric space. Let F:X×X→X be a continuous mapping having the mixed monotone property on X. Assume that there exists a k∈[0,1) with

d ( F ( x , y ) , F ( u , v ) ) ≤ k 2 [ d ( x , u ) + d ( y , v ) ] ∀x⪰u and y⪯v.

If there exist two elements x 0 , y 0 ∈X with

x 0 ⪯F( x 0 , y 0 )and y 0 ⪰F( y 0 , x 0 ),

then there exist x,y∈X such that

x=F(x,y)andy=F(y,x).

Theorem 1.2 [18]

Let (X,⪯) be a partially ordered set and d be a metric on X such that (X,d) is a complete metric space. Assume that X has the following property:

  1. (i)

    if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

  2. (ii)

    if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n.

Let F:X×X→X be a mapping having the mixed monotone property on X. Assume that there exists k∈[0,1) with

d ( F ( x , y ) , F ( u , v ) ) ≤ k 2 [ d ( x , u ) + d ( y , v ) ] ∀x⪰u and y⪯v.

If there exist two elements x 0 , y 0 ∈X with

x 0 ⪯F( x 0 , y 0 )and y 0 ⪰F( y 0 , x 0 ),

then there exist x,y∈X such that

x=F(x,y)andy=F(y,x).

Definition 1.5 Let (X,d) be a metric space and F:X×X→X and g:X→X be mappings. We say that F and g commute if

F ( g ( x ) , g ( y ) ) =g ( F ( x , y ) )

for all x,y∈X.

Nashine and Shatanawi [22] proved the following coupled coincidence point theorems.

Theorem 1.3 [22]

Let (X,d,⪯) be an ordered metric space. Let F:X×X→X and g:X→X be mappings such that F has the mixed g-monotone property on X such that there exist two elements x 0 , y 0 ∈X with g( x 0 )⪯F( x 0 , y 0 ) and g( y 0 )⪰F( y 0 , x 0 ). Suppose that there exist non-negative real numbers α, β, L with α+β<1 such that

d ( F ( x , y ) , F ( u , v ) ) ≤ α min { d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( x ) ) } + β min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) }
(3)

for all (x,y),(u,v)∈X×X with g(x)⪯g(u) and g(y)⪰g(v). Further suppose that F(X×X)⊆g(X) and g(X) is a complete subspace of X. Also suppose that X satisfies the following properties:

  1. (i)

    if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

  2. (ii)

    if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n.

Then there exist x,y∈X such that

F(x,y)=g(x)andF(y,x)=g(y),

that is, F and g have a coupled coincidence point (x,y)∈X×X.

Theorem 1.4 [22]

Let (X,⪯) be a partially ordered set and suppose that there is a metric d on X such that (X,d) is a complete metric space. Let F:X×X→X and g:X→X be mappings such that F has the mixed g-monotone property on X such that there exist two elements x 0 , y 0 ∈X with g( x 0 )⪯F( x 0 , y 0 ) and g( y 0 )⪰F( y 0 , x 0 ). Suppose that there exist non-negative real numbers α, β, L with α+β<1 such that

d ( F ( x , y ) , F ( u , v ) ) ≤ α min { d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( x ) ) } + β min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) }
(4)

for all (x,y),(u,v)∈X×X with g(x)⪯g(u) and g(y)⪰g(v). Further suppose that F(X×X)⊆g(X), g is continuous nondecreasing and commutes with F, and also suppose that either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following property:

    1. (i)

      if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

    2. (ii)

      if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n.

Then there exist x,y∈X such that

F(x,y)=g(x)andF(y,x)=g(y),

that is, F and g have a coupled coincidence point (x,y)∈X×X.

Berinde [27–30] initiated the concept of almost contractions and studied many interesting fixed point theorems for a Ćirić strong almost contraction. So, it is fundamental to recall the following definition.

Definition 1.6 [27]

A single-valued mapping f:X×X is called a Ćirić strong almost contraction if there exist a constant α∈[0,1) and some L≥0 such that

d(fx,fy)≤αM(x,y)+Ld(y,fx)

for all x,y∈X, where

M(x,y)=max { d ( x , y ) , d ( x , f x ) , d ( y , f y ) , d ( x , f y ) + d ( y , f x ) 2 } .

The aim of this paper is to introduce the notion of almost contractive mapping F:X×X→X with respect to the mapping g:X→X and present some uniqueness and existence theorems of coupled fixed and coincidence point. Our results generalize Theorems 1.1-1.4.

2 Main theorems

We start with the following definition.

Definition 2.1 Let (X,d,⪯) be an ordered metric space. We say that the mapping F:X×X→X is an almost contractive mapping with respect to the mapping g:X→X if there exist a real number α∈[0,1) and a nonnegative number L such that

d ( F ( x , y ) , F ( u , v ) ) ≤ α max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) }
(5)

for all (x,y),(u,v)∈X×X with g(x)⪯g(u) and g(y)⪰g(v).

Theorem 2.1 Let (X,d,⪯) be an ordered metric space. Let F:X×X→X and g:X→X be mappings such that

  1. (1)

    F is an almost contractive mapping with respect to g.

  2. (2)

    F has the mixed g-monotone property on X.

  3. (3)

    There exist two elements x 0 , y 0 ∈X with g( x 0 )⪯F( x 0 , y 0 ) and g( y 0 )⪰F( y 0 , x 0 ).

  4. (4)

    F(X×X)⊆g(X) and g(X) is a complete subspace of X.

Also, suppose that X satisfies the following properties:

  1. (i)

    if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

  2. (ii)

    if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n.

Then there exist x,y∈X such that

F(x,y)=g(x)andF(y,x)=g(y),

that is, F and g have a coupled coincidence point (x,y)∈X×X.

Proof Let x 0 , y 0 ∈X be such that g( x 0 )⪯F( x 0 , y 0 ) and g( y 0 )⪰F( y 0 , x 0 ). Since F(X×X)⊆g(X), we can choose x 1 , y 1 ∈X such that g( x 1 )=F( x 0 , y 0 ) and g( y 1 )=F( y 0 , x 0 ).

In the same way, we construct g( x 2 )=F( x 1 , y 1 ) and g( y 2 )=F( y 1 , x 1 ).

Continuing in this way, we construct two sequences { x n } and { y n } in X such that

g( x n + 1 )=F( x n , y n )andg( y n + 1 )=F( y n , x n )∀n∈N∪{0}.
(6)

Since F has the mixed g-monotone property, by induction we may show that

g( x 0 )⪯g( x 1 )⪯g( x 2 )⪯⋯⪯g( x n + 1 )⪯⋯

and

g( y 0 )⪰g( y 1 )⪰g( y 2 )⪰⋯⪰g( y n + 1 )⪰⋯.

If (g( x n + 1 ),g( y n + 1 ))=(g( x n ),g( y n )) for some n∈N, then F( x n , y n )=g( x n ) and F( y n , x n )=g( y n ), that is, ( x n , y n ) is a coincidence point of F and g. So we may assume that (g( x n + 1 ),g( y n + 1 ))≠(g( x n ),g( y n )) for all n∈N. Let n∈N. Since g( x n )⪰g( x n − 1 ) and g( y n )⪯g( y n − 1 ), from (5) and (6), we have

d ( g ( x n ) , g ( x n + 1 ) ) = d ( F ( x n − 1 , y n − 1 ) , F ( x n , y n ) ) ≤ α max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) , d ( F ( x n , y n ) , g ( x n ) ) , d ( F ( x n − 1 , y n − 1 ) , g ( x n − 1 ) ) } + L min { d ( F ( x n , y n ) , g ( x n − 1 ) ) , d ( F ( x n − 1 , y n − 1 ) , g ( x n ) ) } = α max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) , d ( g ( x n + 1 ) , g ( x n ) ) , d ( g ( x n ) , g ( x n − 1 ) ) } + L min { d ( g ( x n + 1 ) , g ( x n − 1 ) ) , d ( g ( x n ) , g ( x n ) ) } = α max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) , d ( g ( x n + 1 ) , g ( x n ) ) } .

If max{d(g( x n − 1 ),g( x n )),d(g( y n − 1 ),g( y n )),d(g( x n + 1 ),g( x n ))}=d(g( x n + 1 ),g( x n )), then d(g( x n + 1 ),g( x n ))≤αd(g( x n + 1 ),g( x n )) and hence d(g( x n + 1 ),g( x n ))=0. Thus d(g( x n − 1 ),g( x n ))=d(g( y n − 1 ),g( y n ))=0. Therefore d(g( x n − 1 ),g( y n − 1 ))=d(g( x n ),g( y n )), a contradiction. Thus

max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) , d ( g ( x n + 1 ) , g ( x n ) ) } = max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) } .

Therefore

d ( g ( x n + 1 ) , g ( x n ) ) ≤αmax { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) } .
(7)

Similarly, we may show that

d ( g ( y n ) , g ( y n + 1 ) ) ≤αmax { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) } .
(8)

From (7) and (8), we have

max { d ( g ( x n + 1 ) , g ( x n ) ) , d ( g ( y n ) , g ( y n + 1 ) ) } ≤ α max { d ( g ( x n − 1 ) , g ( x n ) ) , d ( g ( y n − 1 ) , g ( y n ) ) } .
(9)

Repeating (9) n-times, we get

max { d ( g ( x n + 1 ) , g ( x n ) ) , d ( g ( y n ) , g ( y n + 1 ) ) } ≤ α n max { d ( g ( x 0 ) , g ( x 1 ) ) , d ( g ( y 0 ) , g ( y 1 ) ) } .
(10)

Now, we shall prove that {g( x n )} and {g( y n )} are Cauchy sequences in g(X).

For each m≥n, we have

d ( g ( x m ) , g ( x n ) ) ≤ d ( g ( x n ) , g ( x n + 1 ) ) + d ( g ( x n + 1 ) , g ( x n + 2 ) ) + ⋯ + d ( g ( x m − 1 ) , g ( x m ) ) ≤ α n max { d ( g ( x 0 ) , g ( x 1 ) ) , d ( g ( y 0 ) , g ( y 1 ) ) } + ⋯ + α m − 1 max { d ( g ( x 0 ) , g ( x 1 ) ) , d ( g ( y 0 ) , g ( y 1 ) ) } ≤ α n 1 − α max { d ( g ( x 0 ) , g ( x 1 ) ) , d ( g ( y 0 ) , g ( y 1 ) ) } .

Letting n,m→+∞ in the above inequalities, we get that {g( x n )} is a Cauchy sequence in g(X). Similarly, we may show that {g( y n )} is a Cauchy sequence in g(X). Since g(X) is a complete subspace of X, there exists (x,y)∈X×X such that g( x n )→g(x) and g( y n )→g(y). Since {g( x n )} is a non-decreasing sequence and g( x n )→g(x) and as {g( y n )} is a non-increasing sequence and g( y n )→g(y), by the assumption we have g( x n )⪯g(x) and g( y n )⪰g(y) for all n. Since

d ( g ( x n + 1 ) , F ( x , y ) ) = d ( F ( x n , y n ) , F ( x , y ) ) ≤ α max { d ( g ( x n ) , g ( x ) ) , d ( g ( y n ) , g ( y ) ) , d ( g ( x n + 1 ) , g ( x n ) ) , d ( F ( x , y ) , g ( x ) ) } + L min { d ( g ( x n + 1 ) , g ( x ) ) , d ( F ( x , y ) , g ( x n ) ) } .

Letting n→∞ in the above inequality, we get d(g(x),F(x,y))=0. Hence g(x)=F(x,y). Similarly, one can show that g(y)=F(y,x). Thus we proved that F and g have a coupled coincidence point. □

Theorem 2.2 Let (X,⪯) be a partially ordered set and suppose that there is a metric d on X such that (X,d) is a complete metric space. Let F:X×X→X and g:X→X be mappings such that

  1. (1)

    F is an almost contractive mapping with respect to g.

  2. (2)

    F has the mixed g-monotone property on X.

  3. (3)

    There exist two elements x 0 , y 0 ∈X with g( x 0 )⪯F( x 0 , y 0 ) and g( y 0 )⪰F( y 0 , x 0 ).

  4. (4)

    F(X×X)⊆g(X).

  5. (5)

    g is continuous nondecreasing and commutes with F.

Also suppose that either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following property:

    1. (i)

      if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

    2. (ii)

      if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n.

Then there exist x,y∈X such that

F(x,y)=g(x)andF(y,x)=g(y),

that is, F and g have a coupled coincidence point (x,y)∈X×X.

Proof As in the proof of Theorem 2.1, we construct two Cauchy sequences (g x n ) and (g y n ) in X such that (g x n ) is a nondecreasing sequence in X and (g y n ) is a nonincreasing sequence in X. Since X is a complete metric space, there is (x,y)∈X×X such that g x n →x and g y n →y. Since g is continuous, we have g(g x n )→gx and g(g y n )→gy.

Suppose that (a) holds. Since F is continuous, we have F(g x n ,g y n )→F(x,y) and F(g y n ,g x n )→F(y,x). Also, since g commutes with F and g is continuous, we have F(g x n ,g y n )=gF( x n , y n )=g(g x n + 1 )→gx and F(g y n ,g x n )=gF( y n , x n )=g(g y n + 1 )→gy. By uniqueness of limit, we get gx=F(x,y) and gy=F(y,x).

Second, suppose that (b) holds. Since g( x n ) is a nondecreasing sequence such that g( x n )→x, g( y n ) is a nonincreasing sequence such that g( y n )→y, and g is a nondecreasing function, we get that g(g x n )⪯gx and g(g y n )⪰g(y) hold for all n∈N. By (5), we have

d ( g ( g x n + 1 ) , F ( x , y ) ) = d ( F ( g x n , g y n ) , F ( x , y ) ) ≤ α max { d ( g ( g x n ) , g ( x ) ) , d ( g ( g y n ) , g ( y ) ) , d ( g ( g x n + 1 ) , g ( g x n ) ) , d ( F ( x , y ) , g ( x ) ) } + L min { d ( g ( g x n + 1 ) , g ( x ) ) , d ( F ( x , y ) , g ( g x n ) ) } .

Letting n→+∞, we get d(g(x),F(x,y))=0 and hence g(x)=F(x,y). Similarly, one can show that g(y)=F(y,x). Thus (x,y) is a coupled coincidence point of F and g. □

Corollary 2.1 Let (X,⪯) be a partially ordered set and suppose that there is a metric d on X such that (X,d) is a complete metric space. Let F:X×X→X be a mapping such that F has the mixed monotone property on X such that there exist two elements x 0 , y 0 ∈X with x 0 ⪯F( x 0 , y 0 ) and y 0 ⪰F( y 0 , x 0 ). Suppose that there exist a real number α∈[0,1) and a nonnegative number L such that

d ( F ( x , y ) , F ( u , v ) ) ≤ α max { d ( x , u ) , d ( y , v ) , d ( F ( x , y ) , x ) , d ( F ( u , v ) , u ) } + L min { d ( F ( x , y ) , u ) , d ( F ( u , v ) , x ) }
(11)

for all (x,y),(u,v)∈X×X with x⪯u and y⪰v and also suppose that either

  1. (a)

    F is continuous, or

  2. (b)

    X has the following property:

    1. (i)

      if a nondecreasing sequence { x n } in X converges to x∈X, then x n ⪯x for all n,

    2. (ii)

      if a nonincreasing sequence { y n } in X converges to y∈X, then y n ⪰y for all n,

then there exist x,y∈X such that

F(x,y)=xandF(y,x)=y,

that is, F has a coupled fixed point (x,y)∈X×X.

Proof Follows from Theorem 2.2 by taking g=I, the identity mapping. □

Let (X,⪯) be a partially ordered set. Then we define a partial order ⪯ on the product space X×X as follows:

for (x,y),(u,v)∈X×X,(u,v)⪯(x,y)⇔x⪰u,y⪯v.

Now, we prove some uniqueness theorem of a coupled common fixed point of mappings F:X×X→X and g:X→X.

Theorem 2.3 In addition to the hypotheses of Theorem  2.1, suppose that L=0, α< 1 2 , F and g commute and for every (x,y),( y ∗ , x ∗ )∈X×X, there exists (u,v)∈X×X such that (F(u,v),F(v,u)) is comparable to (F(x,y),F(y,x)) and (F( x ∗ , y ∗ ),F( y ∗ , x ∗ )). Then F and g have a unique coupled common fixed point, that is, there exists a unique (x,y)∈X×X such that

x=g(x)=F(x,y)andy=g(y)=F(y,x).

Proof The existence of coupled coincidence points of F and g follows from Theorem 2.1. To prove the uniqueness, let (x,y) and ( x ∗ , y ∗ ) be coupled coincidence points of F and g; that is, g(x)=F(x,y), g(y)=F(y,x), g( x ∗ )=F( x ∗ , y ∗ ) and g( y ∗ )=F( y ∗ , x ∗ ). Now, we prove that

g(x)=g ( x ∗ ) andg(y)=g ( y ∗ ) .
(12)

By the hypotheses, there exists (u,v)∈X×X such that (F(u,v),F(v,u)) is comparable to (F(x,y),F(y,x)) and (F( x ∗ , y ∗ ),F( y ∗ , x ∗ )). Put u 0 =u, v 0 =v. Let u 1 , v 1 ∈X be such that g( u 1 )=F( u 0 , v 0 ) and g( v 1 )=F( v 0 , u 0 ). Then as a similar proof of Theorem 2.1, we construct two sequences {g( u n )}, {g( v n )} in g(X), where g( u n + 1 )=F( u n , v n ) and g( v n + 1 )=F( v n , u n ) for all n∈N. Further, set x 0 =x, y 0 =y, x 0 ∗ = x ∗ , y 0 ∗ = y ∗ . Define the sequences {g( x n )}, {g( y n )} in the following way: define g x 1 =F( x 0 , y 0 )=F(x,y) and g y 1 =F( y 0 , x 0 )=F(y,x). Also, define g x 2 =F( x 1 , y 1 ) and g y 2 =F( y 1 , x 1 ). For each n∈N, define g x n + 1 =F( x n , y n ) and g y n + 1 =F( y n , x n ). In the same way, we define the sequences {g( x n ∗ )}, {g( y n ∗ )}. Now, we prove that

g( x n )=F(x,y)=g(x)andg( y n )=F(y,x)=g(y).

Since (x,y) is a coupled coincidence point of F and g, we have F(x,y)=g(x) and F(y,x)=g(y). Thus g( x 1 )=F( x 0 , y 0 )=F(x,y)=g(x) and g( y 1 )=F( y 0 , x 0 )=F(y,x)=g(y). Therefore g( x 1 )⪯g(x), g(x)⪯g( x 1 ), g( y 1 )⪯g(y) and g(y)⪯g( y 1 ). Since F is monotone g-non-decreasing on its first argument, g( x 1 )⪯g(x), and g(x)⪯g( x 1 ), we have F( x 1 , y 1 )⪯F(x, y 1 ) and F(x, y 1 )⪯F( x 1 , y 1 ). Therefore,

F( x 1 , y 1 )=F(x, y 1 ).
(13)

Also, since F is monotone g-non-increasing on its second argument, g( y 1 )⪯g(y) and g(y)⪯g( y 1 ), we have F(x,y)⪯F(x, y 1 ) and F(x, y 1 )⪯F(x,y). Therefore,

F(x,y)=F(x, y 1 ).
(14)

From (13) and (14), we have

g( x 2 )=F( x 1 , y 1 )=F(x,y)=g(x).

Similarly, we may show that

g( y 2 )=F( y 1 , x 1 )=F(y,x)=g(y).

Note that g( x 2 )⪯g(x), g(x)⪯g( x 2 ), g( y 2 )⪯g(y) and g(y)⪯g( y 2 ). Since F is monotone g-non-decreasing on its first argument, g( x 2 )⪯g(x), and g(x)⪯g( x 2 ), we have F( x 2 , y 2 )⪯F(x, y 2 ) and F(x, y 2 )⪯F( x 2 , y 2 ). Therefore,

F( x 2 , y 2 )=F(x, y 2 ).
(15)

Also, since F is monotone g-non-increasing on its second argument, g( y 2 )⪯g(y) and g(y)⪯g( y 2 ), we have F(x,y)⪯F(x, y 2 ) and F(x, y 2 )⪯F(x,y). Therefore,

F(x,y)=F(x, y 2 ).
(16)

From (15) and (16), we have

g( x 3 )=F( x 2 , y 2 )=F(x,y)=g(x).

Similarly, we may show that

g( y 3 )=F( y 2 , x 2 )=F(y,x)=g(y).

Continuing in the same way, we have that

g( x n )=F(x,y)=g(x)andg( y n )=F(y,x)=g(y)

hold for all n∈N. Similarly, we can show that

g ( x n ∗ ) =F ( x ∗ , y ∗ ) =g ( x ∗ ) andg ( y n ∗ ) =F ( y ∗ , x ∗ ) =g ( y ∗ ) ∀n∈N

hold for all n∈N. Since

( F ( x , y ) , F ( y , x ) ) = ( g ( x 1 ) , g ( y 1 ) ) = ( g ( x ) , g ( y ) )

and

( F ( u , v ) , F ( v , u ) ) = ( g ( u 1 ) , g ( v 1 ) )

are comparable, g(x)⪯g( u 1 ) and g(y)⪰g( v 1 ). Since F has the mixed g-monotone property of X, we have g(x)⪯g( u n ) and g(y)⪰g( v n ) for all n∈N. Also, since (g( x ∗ ),g( y ∗ )) and (F(u,v),F(v,u))=(g( u 1 ),g( v 1 )) are comparable, and F has the g-monotone property, then we can show that for n∈N, we have that (g( x ∗ ),g( y ∗ )) and (g( u n ),g( v n )) are comparable. Now, if (g(x),g(y))=(g( u k ),g( v k )) for some k∈N or (g( x ∗ ),g( y ∗ ))=(g( u k ),g( v k )) for some k∈N, then (g(x),g(y)) and (g( x ∗ ),g( y ∗ )) are comparable, say g(x)⪯g( x ∗ ) and g(y)⪰g( y ∗ ). Thus from (5) we have

d ( g ( x ) , g ( x ∗ ) ) = d ( F ( x , y ) , F ( x ∗ , y ∗ ) ) ≤ α max { d ( g ( x ) , g ( x ∗ ) ) , d ( g ( y ) , g ( y ∗ ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( x ∗ , y ∗ ) , g ( x ∗ ) ) } = α max { d ( g ( x ) , g ( x ∗ ) ) , d ( g ( y ) , g ( y ∗ ) ) }
(17)

and

d ( g ( y ∗ ) , g ( y ) ) = d ( F ( y ∗ , x ∗ ) , F ( y , x ) ) ≤ α max { d ( g ( y ) , g ( y ∗ ) ) , d ( g ( x ) , g ( x ∗ ) ) , d ( F ( y ∗ , x ∗ ) , g ( y ∗ ) ) , d ( F ( y , x ) , g ( y ) ) } = α max { d ( g ( y ) , g ( y ∗ ) ) , d ( g ( x ) , g ( y ) ) } .
(18)

From (17) and (18), we have

max { d ( g ( x ) , g ( x ∗ ) ) , d ( g ( y ) , g ( y ∗ ) ) } ≤αmax { d ( g ( y ) , g ( y ∗ ) ) , d ( g ( x ) , g ( y ) ) } .

Since α<1, we have d(g(x),g( x ∗ ))=0 and d(g(y),g( y ∗ ))=0. Therefore (12) is satisfied. Now, suppose that (g(x),g(y))≠(g( u n ),g( v n )) for all n∈N and (g( x ∗ ),g( y ∗ ))≠(g( u n ),g( v n )) for all n∈N. Let n∈N. Since g(x)⪯g( u n ) and g(y)⪰g( v n ), then from (5) we have

d ( g ( x ) , g ( u n + 1 ) ) = d ( F ( x , y ) , F ( u n , v n ) ) ≤ α max { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u n , v n ) , g ( u n ) ) } = α max { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , d ( g ( u n + 1 ) , g ( u n ) ) } ≤ α max { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , d ( g ( u n + 1 ) , g ( x ) ) + d ( g ( x ) , g ( u n ) ) } ≤ α max { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , 2 d ( g ( u n + 1 ) , g ( x ) ) , 2 d ( g ( x ) , g ( u n ) ) } = α max { 2 d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , 2 d ( g ( u n + 1 ) , g ( x ) ) } .

If

max { 2 d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) , 2 d ( g ( u n + 1 ) , g ( x ) ) } =2d ( g ( u n + 1 ) , g ( x ) )

then d(g( u n + 1 ),g(x))≤2αd(g( u n + 1 ),g(x)). Since 2α<1, we have d(g( u n + 1 ),g(x))=0. Therefore d(g(x),g( u n ))=0 and d(g(y),g( v n ))=0 and hence (g(x),g(y))=(g( u n ),g( v n )), a contradiction. Thus

d ( g ( x ) , g ( u n + 1 ) ) ≤ α max { 2 d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) } ≤ 2 α max { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) } .
(19)

Similarly, we may show that

d ( g ( v n + 1 ) , g ( y ) ) ≤2αmax { d ( g ( x ) , g ( u n ) ) , d ( g ( y ) , g ( v n ) ) } .
(20)

From (19) and (20), we have

max { d ( g ( x ) , g ( u n + 1 ) ) , d ( g ( v n + 1 ) , g ( y ) ) } ≤ 2 α max { d ( g ( v n ) , g ( y ) ) , d ( g ( u n ) , g ( x ) ) , d ( g ( u n + 1 ) } .
(21)

By repeating (21) n-times, we have

max { d ( g ( x ) , g ( u n + 1 ) ) , d ( g ( v n + 1 ) , g ( y ) ) } ≤ 2 α max { d ( g ( v n ) , g ( y ) ) , d ( g ( u n ) , g ( x ) ) } ⋮ ≤ ( 2 α ) n + 1 max { d ( g ( x ) , g ( u 0 ) ) , d ( g ( v 0 ) , g ( y ) ) } .

Letting n→+∞ in the above inequalities, we get that

lim n → max { d ( g ( x ) , g ( u n + 1 ) ) , d ( g ( v n + 1 ) , g ( y ) ) } =0.

Hence

lim n → ∞ d ( g ( x ) , g ( u n + 1 ) ) =0
(22)

and

lim n → ∞ d ( g ( y ) , g ( v n + 1 ) ) =0.
(23)

Similarly, we may show that

lim n → ∞ d ( g ( x ) , g ( u n + 1 ) ) =0
(24)

and

lim n → ∞ d ( g ( y ) , g ( v n + 1 ) ) =0.
(25)

By the triangle inequality, (22), (23), (24) and (25),

d ( g ( x ) , g ( x ∗ ) ) ≤ d ( g ( x ) , g ( u n + 1 ) ) + d ( g ( x ∗ ) , g ( u n + 1 ) ) → 0 as  n → ∞ , d ( g ( y ) , g ( y ∗ ) ) ≤ d ( g ( y ) , g ( v n + 1 ) ) + d ( g ( y ∗ ) , g ( v n + 1 ) ) → 0 as  n → ∞ ,

we have g(x)=g( x ∗ ) and g(y)=g( y ∗ ). Thus we have (12). This implies that (g(x),g(y))=(g( x ∗ ),g( y ∗ )).

Since g(x)=F(x,y) and g(y)=F(y,x), by commutativity of F and g, we have

g ( g ( x ) ) =g ( F ( x , y ) ) =F ( g ( x ) , g ( y ) ) andg ( g ( y ) ) =g ( F ( y , x ) ) =F ( g ( y ) , g ( x ) ) .
(26)

Denote g(x)=z, g(y)=w. Then from (26)

g(z)=F(z,w)andg(w)=F(w,z).
(27)

Thus (z,w) is a coupled coincidence point. Then from (26) with x ∗ =z and y ∗ =w it follows g(z)=g(x) and g(w)=g(y), that is,

g(z)=zandg(w)=w.
(28)

From (27) and (28),

z=g(z)=F(z,w)andw=g(w)=F(w,z).

Therefore, (z,w) is a coupled common fixed point of F and g. To prove the uniqueness, assume that (p,q) is another coupled common fixed point. Then by (26) we have p=g(p)=g(z)=z and q=g(q)=g(w)=w. □

Corollary 2.2 In addition to the hypotheses of Corollary  2.1, suppose that L=0, α< 1 2 , and for every (x,y),( y ∗ , x ∗ )∈X×X, there exists (u,v)∈X×X such that u⪯F(u,v), v⪰F(v,u), and (F(u,v),F(v,u)) is comparable to (F(x,y),F(y,x)) and (F( x ∗ , y ∗ ),F( y ∗ , x ∗ )). Then F has a unique coupled fixed point, that is, there exist a unique (x,y)∈X×X such that

x=F(x,y)andy=F(y,x).

Proof Follows from Theorem 2.3 by taking g=I, the identity mapping. □

Theorem 2.4 In addition to the hypotheses of Theorem  2.1, if g x 0 and g y 0 are comparable and L=0, then F and g have a coupled coincidence point (x,y) such that gx=F(x,y)=F(y,x)=gy.

Proof Follow the proof of Theorem 2.1 step by step until constructing two sequences { x n } and { y n } in X such that g x n →gx and g y n →gy, where (x,y) is a coincidence point of F and g. Suppose g x 0 ⪯g y 0 , then it is an easy matter to show that

g x n ⪯g y n and âˆ€n∈N∪{0}.

Thus, by (5) we have

d ( g x n , g y n ) = d ( F ( x n − 1 , y n − 1 ) , F ( y n − 1 , x n − 1 ) ) ≤ α max { d ( g ( x n − 1 ) , g ( y n − 1 ) , d ( F ( x n − 1 , y n − 1 ) , g ( x n − 1 ) ) , d ( F ( y n − 1 , x n − 1 ) , g ( y n − 1 ) ) } = α max { d ( g ( x n − 1 ) , g ( y n − 1 ) ) , d ( g ( x n ) , g ( x n − 1 ) ) , d ( g ( y n ) , g ( y n − 1 ) ) } .

On taking the limit as n→+∞, we get d(gx,gy)=0. Hence

F(x,y)=gx=gy=F(y,x).

A similar argument can be used if g y 0 ⪯g x 0 . □

Corollary 2.3 In addition to the hypotheses of Corollary  2.1, if x 0 and y 0 are comparable and L=0, then F has a coupled fixed point of the form (x,x).

Proof Follows from Theorem 2.4 by taking g=I, the identity mapping. □

Now, we introduce the following example to support our results.

Example 2.1 Let X=[0,1]. Then (X,≤) is a partially ordered set with the natural ordering of real numbers. Define the metric d on X by

d(x,y)= { max { x , y } if  x ≠ y ; 0 if  x = y .

Define g:X→X by g(x)= x 2 and F:X×X→X by

F(x,y)= { 3 ( x 2 − y 2 ) 4 , x > y ; 0 , x ≤ y .

Then

  1. (1)

    g(X) is a complete subset of X.

  2. (2)

    F(X×X)⊆g(X).

  3. (3)

    X satisfies (i) and (ii) of Theorem 2.1.

  4. (4)

    F has the mixed g-monotone property.

  5. (5)

    For any L∈[0,+∞), F and g satisfy that

    d ( F ( x , y ) , F ( u , v ) ) ≤ 3 4 max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) }

for all g(x)≤g(u) and g(y)≥g(v) holds for all x,y,u,v∈X with g(x)≤g(u) and g(y)≥g(v).

Thus, by Theorem 2.1, F has a coupled fixed point. Moreover, (0,0) is a coupled coincidence point of F.

Proof The proof of (1)-(4) is clear. We divide the proof of (5) into the following cases.

Case 1: If g(x)≤g(y) and g(u)≤g(v), then x≤y and u≤v. Hence

d ( F ( x , y ) , F ( u , v ) ) = d ( 0 , 0 ) = 0 ≤ 3 4 max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) } .

Case 2: If g(x)≤g(y) and g(u)>g(v), then x≤y and u>v. Hence

d ( F ( x , y ) , F ( u , v ) ) = d ( 0 , 3 ( u 2 − v 2 ) 4 ) = 3 4 ( u 2 − v 2 ) ≤ 3 4 u 2 = 3 4 max { 3 4 ( u 2 − v 2 ) , u 2 } = 3 4 max { F ( u , v ) , g ( u ) } = 3 4 d ( F ( u , v ) , g ( u ) ) ≤ 3 4 max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) } .

Case 3: If g(x)>g(y) and g(u)≤g(v), then x>y and u≤v. Hence v≤y<x≤u≤v. Therefore v<v, which is impossible.

Case 4: If g(x)>g(y) and g(u)>g(v), then x>y and u>v. Thus v≤y<x≤u.

Subcase I: x=u and y=v. Here, we have

d ( F ( x , y ) , F ( u , v ) ) = d ( 0 , 0 ) = 0 ≤ 3 4 max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) } .

Subcase II: x≠u or y≠v. Here, we have u 2 − v 2 > x 2 − y 2 . Therefore

d ( F ( x , y ) , F ( u , v ) ) = d ( 3 ( x 2 − y 2 ) 4 , 3 ( u 2 − v 2 ) 4 ) = 3 4 ( u 2 − v 2 ) ≤ 3 4 u 2 = 3 4 max { 3 4 ( u 2 − v 2 ) , u 2 } = 3 4 max { F ( u , v ) , g ( u ) } = 3 4 d ( F ( u , v ) , g ( u ) ) ≤ 3 4 max { d ( g ( x ) , g ( u ) ) , d ( g ( y ) , g ( v ) ) , d ( F ( x , y ) , g ( x ) ) , d ( F ( u , v ) , g ( u ) ) } + L min { d ( F ( x , y ) , g ( u ) ) , d ( F ( u , v ) , g ( x ) ) } .

 □

Note that the mappings F and g satisfy all the hypotheses of Theorem 2.1 for α= 3 4 and any L≥0. Thus F and g have a coupled coincidence point. Here (0,0) is a coupled coincidence point of F and g.

Remarks

  1. (1)

    Theorem 1.1 is a special case of Corollary 2.1.

  2. (2)

    Theorem 1.2 is a special case of Corollary 2.1.

  3. (3)

    Theorem 1.3 is a special case of Theorem 2.1.

  4. (4)

    Theorem 1.4 is a special case of Theorem 2.2.

References

  1. Banach S: Sur les opérations dans les ensembles absraites et leurs applications. Fundam. Math. 1922, 3: 133–181.

    Google Scholar 

  2. Abdeljawad T, Karapınar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 63: 716–719. 10.1016/j.camwa.2011.11.035

    Article  MathSciNet  Google Scholar 

  3. Abdeljawad T, Karapınar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014

    Article  MathSciNet  Google Scholar 

  4. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 1–8. 10.1080/00036810701714164

    Article  MathSciNet  Google Scholar 

  5. Amini-Harandi A, Emami H: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 2010, 72(5):2238–2242. 10.1016/j.na.2009.10.023

    Article  MathSciNet  Google Scholar 

  6. Je Cho Y, Saadati R, Wang S: Common fixed point theorems on generalized distance in ordered cone metric spaces. Comput. Math. Appl. 2011, 61: 1254–1260. 10.1016/j.camwa.2011.01.004

    Article  MathSciNet  Google Scholar 

  7. Drici Z, McRae FA, Vasundhara Devi J: Fixed point theorems in partially ordered metric spaces for operators with PPF dependence. Nonlinear Anal. 2007, 67(2):641–647. 10.1016/j.na.2006.06.022

    Article  MathSciNet  Google Scholar 

  8. Ćirić LB, Cakić N, Rajović M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 131294

    Google Scholar 

  9. Nieto JJ, Lopez RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

  10. Nieto JJ, Lopez RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0

    Article  MathSciNet  Google Scholar 

  11. O’regan D, Petrutel A: Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341(2):1241–1252. 10.1016/j.jmaa.2007.11.026

    Article  MathSciNet  Google Scholar 

  12. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132(5):1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  Google Scholar 

  13. Karapınar E, Erhan İ: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

    Article  MathSciNet  Google Scholar 

  14. Shatanawi W, Samet B:On (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 2011. 10.1016/j.camwa.2011.08.033

    Google Scholar 

  15. Shatanawi W: Fixed point theorems for nonlinear weakly C -contractive mappings in metric spaces. Math. Comput. Model. 2011. 10.1016/j.mcm.2011.06.069

    Google Scholar 

  16. Wu Y: New fixed point theorems and applications of mixed monotone operator. J. Math. Anal. Appl. 2008, 341(2):883–893. 10.1016/j.jmaa.2007.10.063

    Article  MathSciNet  Google Scholar 

  17. Wu Y, Liang Z: Existence and uniqueness of fixed points for mixed monotone operators with applications. Nonlinear Anal. 2006, 65(10):1913–1924. 10.1016/j.na.2005.10.045

    Article  MathSciNet  Google Scholar 

  18. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  19. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011. 10.1016/j.mcm.2011.05.059

    Google Scholar 

  20. Lakshmikanthama V, Ćirić LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  21. Karapınar E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59(12):3656–3668. 10.1016/j.camwa.2010.03.062

    Article  MathSciNet  Google Scholar 

  22. Nashine HK, Shatanawi W: Coupled common fixed point theorems for pair of commuting mappings in partially ordered complete metric spaces. Comput. Math. Appl. 2011. 10.1016/j.camwa.2011.06.042

    Google Scholar 

  23. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

    Article  MathSciNet  Google Scholar 

  24. Shatanawi W: Some common coupled fixed point results in cone metric spaces. Int. J. Math. Anal. 2010, 4: 2381–2388.

    MathSciNet  Google Scholar 

  25. Shatanawi W: Partially ordered cone metric spaces and coupled fixed point results. Comput. Math. Appl. 2010, 60: 2508–2515. 10.1016/j.camwa.2010.08.074

    Article  MathSciNet  Google Scholar 

  26. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput. Math. Appl. 2011, 62(4):1969–1978. 10.1016/j.camwa.2011.06.040

    Article  MathSciNet  Google Scholar 

  27. Berinde V: Some remarks on a fixed point theorem for Ćirić-type almost contractions. Carpath. J. Math. 2009, 25: 157–162.

    MathSciNet  Google Scholar 

  28. Berinde V: Approximation fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9: 43–53.

    MathSciNet  Google Scholar 

  29. Berinde V: On the approximation fixed points of weak contractive mappings. Carpath. J. Math. 2003, 19: 7–22.

    MathSciNet  Google Scholar 

  30. Berinde V: General contractive fixed point theorems for Ćirić-type almost contraction in metric spaces. Carpath. J. Math. 2008, 24: 10–19.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonkil Park.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Shatanawi, W., Saadati, R. & Park, C. Almost contractive coupled mapping in ordered complete metric spaces. J Inequal Appl 2013, 565 (2013). https://doi.org/10.1186/1029-242X-2013-565

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-565

Keywords