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Abstract
In this paper, we introduce the notion of almost contractive mapping F : X × X → X
with respect to the mapping g : X → X and establish some existence and uniqueness
theorems of a coupled common coincidence point in ordered complete metric
spaces. Also, we introduce an example to support our main results. Our results
generalize several well-known comparable results in the literature.
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1 Introduction and preliminaries
The existence and uniqueness theorems of a fixed point in complete metric spaces play
an important role in constructing methods for solving problems in differential equations,
matrix equations, and integral equations. Furthermore, the fixed point theory is a crucial
method in numerical analysis to present a way for solving and approximating the roots of
many equations in real analysis. One of the main theorems on a fixed point is the Banach
contraction theorem []. Many authors generalized the Banach contraction theorem in
different metric spaces in different ways. For some works on fixed point theory, we refer
the readers to [–]. The study of a coupled fixed point was initiated by Bhaskar and
Lakshmikantham []. Bhaskar and Lakshmikantham [] obtained some nice results on
a coupled fixed point and applied their results to solve a pair of differential equations. For
some results on a coupled fixed point in ordered metric spaces, we refer the reader to
[–].
The following definitions will be needed in the sequel.

Definition . Let (X,�) be a partially ordered set and F : X ×X → X. The mapping F is
said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x and
is monotone non-increasing in y, that is, for any

x, y ∈ X,x,x ∈ X, x � x ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, y � y ⇒ F(x, y) � F(x, y).
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Definition . We call an element (x, y) ∈ X × X a coupled fixed point of the mapping
F : X ×X → X if

F(x, y) = x and F(y,x) = y.

Definition . [] Let (X,�) be a partially ordered set and F : X×X → X and g : X → X.
The mapping F is said to have the mixed g-monotone property if F is monotone g-non-
decreasing in its first argument and ismonotone g-non-increasing in its second argument,
that is, for any x, y ∈ X,

x,x ∈ X, g(x) � g(x) ⇒ F(x, y) � F(x, y) ()

and

y, y ∈ X, g(y) � g(y) ⇒ F(x, y) � F(x, y). ()

Definition . An element (x, y) ∈ X × X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if

F(x, y) = g(x) and F(y,x) = g(y).

The main results of Bhaskar and Lakshmikantham in [] are the following.

Theorem . [] Let (X,�) be a partially ordered set and d be a metric on X such that
(X,d) is a complete metric space. Let F : X × X → X be a continuous mapping having the
mixed monotone property on X. Assume that there exists a k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

] ∀x� u and y � v.

If there exist two elements x, y ∈ X with

x � F(x, y) and y � F(y,x),

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Theorem . [] Let (X,�) be a partially ordered set and d be a metric on X such that
(X,d) is a complete metric space. Assume that X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n.

Let F : X × X → X be a mapping having the mixed monotone property on X . Assume that
there exists k ∈ [, ) with

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

] ∀x� u and y � v.
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If there exist two elements x, y ∈ X with

x � F(x, y) and y � F(y,x),

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y,x).

Definition . Let (X,d) be ametric space and F : X×X → X and g : X → X bemappings.
We say that F and g commute if

F
(
g(x), g(y)

)
= g

(
F(x, y)

)
for all x, y ∈ X.

Nashine and Shatanawi [] proved the following coupled coincidence point theorems.

Theorem . [] Let (X,d,�) be an ordered metric space. Let F : X × X → X and
g : X → X be mappings such that F has the mixed g-monotone property on X such that
there exist two elements x, y ∈ X with g(x) � F(x, y) and g(y) � F(y,x). Suppose
that there exist non-negative real numbers α, β , L with α + β <  such that

d
(
F(x, y),F(u, v)

) ≤ αmin
{
d
(
F(x, y), g(x)

)
,d

(
F(u, v), g(x)

)}
+ β min

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
()

for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further suppose that F(X ×
X) ⊆ g(X) and g(X) is a complete subspace of X. Also suppose that X satisfies the following
properties:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y,x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Theorem . [] Let (X,�) be a partially ordered set and suppose that there is a metric
d on X such that (X,d) is a complete metric space. Let F : X × X → X and g : X → X be
mappings such that F has the mixed g-monotone property on X such that there exist two
elements x, y ∈ X with g(x) � F(x, y) and g(y) � F(y,x). Suppose that there exist
non-negative real numbers α, β , L with α + β <  such that

d
(
F(x, y),F(u, v)

) ≤ αmin
{
d
(
F(x, y), g(x)

)
,d

(
F(u, v), g(x)

)}
+ βmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
()
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for all (x, y), (u, v) ∈ X×X with g(x) � g(u) and g(y) � g(v). Further suppose that F(X×X) ⊆
g(X), g is continuous nondecreasing and commutes with F , and also suppose that either
(a) F is continuous, or
(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y,x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Berinde [–] initiated the concept of almost contractions and studied many inter-
esting fixed point theorems for a Ćirić strong almost contraction. So, it is fundamental to
recall the following definition.

Definition . [] A single-valued mapping f : X × X is called a Ćirić strong almost
contraction if there exist a constant α ∈ [, ) and some L ≥  such that

d(fx, fy) ≤ αM(x, y) + Ld(y, fx)

for all x, y ∈ X, where

M(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),

d(x, fy) + d(y, fx)


}
.

The aim of this paper is to introduce the notion of almost contractive mapping F : X ×
X → X with respect to themapping g : X → X and present some uniqueness and existence
theorems of coupled fixed and coincidence point. Our results generalize Theorems .-..

2 Main theorems
We start with the following definition.

Definition . Let (X,d,�) be an ordered metric space. We say that the mapping F : X ×
X → X is an almost contractive mapping with respect to the mapping g : X → X if there
exist a real number α ∈ [, ) and a nonnegative number L such that

d
(
F(x, y),F(u, v)

)
≤ αmax

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
()

for all (x, y), (u, v) ∈ X ×X with g(x)� g(u) and g(y) � g(v).

Theorem . Let (X,d,�) be an ordered metric space. Let F : X × X → X and g : X → X
be mappings such that
() F is an almost contractive mapping with respect to g .

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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() F has the mixed g-monotone property on X .
() There exist two elements x, y ∈ X with g(x) � F(x, y) and g(y) � F(y,x).
() F(X ×X)⊆ g(X) and g(X) is a complete subspace of X .

Also, suppose that X satisfies the following properties:
(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y,x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof Let x, y ∈ X be such that g(x) � F(x, y) and g(y) � F(y,x). Since F(X ×X) ⊆
g(X), we can choose x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x).
In the same way, we construct g(x) = F(x, y) and g(y) = F(y,x).
Continuing in this way, we construct two sequences {xn} and {yn} in X such that

g(xn+) = F(xn, yn) and g(yn+) = F(yn,xn) ∀n ∈N∪ {}. ()

Since F has the mixed g-monotone property, by induction we may show that

g(x)� g(x)� g(x) � · · · � g(xn+)� · · ·

and

g(y) � g(y) � g(y)� · · · � g(yn+) � · · · .

If (g(xn+), g(yn+)) = (g(xn), g(yn)) for some n ∈ N, then F(xn, yn) = g(xn) and F(yn,xn) =
g(yn), that is, (xn, yn) is a coincidence point of F and g . So we may assume that (g(xn+),
g(yn+)) �= (g(xn), g(yn)) for all n ∈ N. Let n ∈ N. Since g(xn) � g(xn–) and g(yn) � g(yn–),
from () and (), we have

d
(
g(xn), g(xn+)

)
= d

(
F(xn–, yn–),F(xn, yn)

)
≤ αmax

{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)
,d

(
F(xn, yn), g(xn)

)
,

d
(
F(xn–, yn–), g(xn–)

)}
+ Lmin

{
d
(
F(xn, yn), g(xn–)

)
,d

(
F(xn–, yn–), g(xn)

)}
= αmax

{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)
,d

(
g(xn+), g(xn)

)
,d

(
g(xn), g(xn–)

)}
+ Lmin

{
d
(
g(xn+), g(xn–)

)
,d

(
g(xn), g(xn)

)}
= αmax

{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)
,d

(
g(xn+), g(xn)

)}
.

Ifmax{d(g(xn–), g(xn)),d(g(yn–), g(yn)),d(g(xn+), g(xn))} = d(g(xn+), g(xn)), then d(g(xn+),
g(xn)) ≤ αd(g(xn+), g(xn)) and hence d(g(xn+), g(xn)) = . Thus d(g(xn–), g(xn)) =

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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d(g(yn–), g(yn)) = . Therefore d(g(xn–), g(yn–)) = d(g(xn), g(yn)), a contradiction. Thus

max
{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)
,d

(
g(xn+), g(xn)

)}
=max

{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)}
.

Therefore

d
(
g(xn+), g(xn)

) ≤ αmax
{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)}
. ()

Similarly, we may show that

d
(
g(yn), g(yn+)

) ≤ αmax
{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)}
. ()

From () and (), we have

max
{
d
(
g(xn+), g(xn)

)
,d

(
g(yn), g(yn+)

)}
≤ αmax

{
d
(
g(xn–), g(xn)

)
,d

(
g(yn–), g(yn)

)}
. ()

Repeating () n-times, we get

max
{
d
(
g(xn+), g(xn)

)
,d

(
g(yn), g(yn+)

)}
≤ αnmax

{
d
(
g(x), g(x)

)
,d

(
g(y), g(y)

)}
. ()

Now, we shall prove that {g(xn)} and {g(yn)} are Cauchy sequences in g(X).
For eachm ≥ n, we have

d
(
g(xm), g(xn)

)
≤ d

(
g(xn), g(xn+)

)
+ d

(
g(xn+), g(xn+)

)
+ · · ·

+ d
(
g(xm–), g(xm)

)
≤ αnmax

{
d
(
g(x), g(x)

)
,d

(
g(y), g(y)

)}
+ · · ·

+ αm–max
{
d
(
g(x), g(x)

)
,d

(
g(y), g(y)

)}
≤ αn

 – α
max

{
d
(
g(x), g(x)

)
,d

(
g(y), g(y)

)}
.

Letting n,m → +∞ in the above inequalities, we get that {g(xn)} is a Cauchy sequence
in g(X). Similarly, we may show that {g(yn)} is a Cauchy sequence in g(X). Since g(X) is
a complete subspace of X, there exists (x, y) ∈ X × X such that g(xn) → g(x) and g(yn) →
g(y). Since {g(xn)} is a non-decreasing sequence and g(xn) → g(x) and as {g(yn)} is a non-
increasing sequence and g(yn) → g(y), by the assumption we have g(xn) � g(x) and g(yn) �
g(y) for all n. Since

d
(
g(xn+),F(x, y)

)
= d

(
F(xn, yn),F(x, y)

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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≤ αmax
{
d
(
g(xn), g(x)

)
,d

(
g(yn), g(y)

)
,d

(
g(xn+), g(xn)

)
,d

(
F(x, y), g(x)

)}
+ Lmin

{
d
(
g(xn+), g(x)

)
,d

(
F(x, y), g(xn)

)}
.

Letting n → ∞ in the above inequality, we get d(g(x),F(x, y)) = . Hence g(x) = F(x, y).
Similarly, one can show that g(y) = F(y,x). Thus we proved that F and g have a coupled
coincidence point. �

Theorem. Let (X,�) be a partially ordered set and suppose that there is ametric d on X
such that (X,d) is a complete metric space. Let F : X ×X → X and g : X → X be mappings
such that
() F is an almost contractive mapping with respect to g .
() F has the mixed g-monotone property on X .
() There exist two elements x, y ∈ X with g(x) � F(x, y) and g(y) � F(y,x).
() F(X ×X)⊆ g(X).
() g is continuous nondecreasing and commutes with F .

Also suppose that either
(a) F is continuous, or
(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n.

Then there exist x, y ∈ X such that

F(x, y) = g(x) and F(y,x) = g(y),

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof As in the proof of Theorem ., we construct two Cauchy sequences (gxn) and (gyn)
inX such that (gxn) is a nondecreasing sequence inX and (gyn) is a nonincreasing sequence
in X. Since X is a complete metric space, there is (x, y) ∈ X × X such that gxn → x and
gyn → y. Since g is continuous, we have g(gxn) → gx and g(gyn) → gy.
Suppose that (a) holds. Since F is continuous, we have F(gxn, gyn) → F(x, y) and

F(gyn, gxn) → F(y,x). Also, since g commutes with F and g is continuous, we have
F(gxn, gyn) = gF(xn, yn) = g(gxn+) → gx and F(gyn, gxn) = gF(yn,xn) = g(gyn+) → gy. By
uniqueness of limit, we get gx = F(x, y) and gy = F(y,x).
Second, suppose that (b) holds. Since g(xn) is a nondecreasing sequence such that

g(xn)→ x, g(yn) is a nonincreasing sequence such that g(yn) → y, and g is a nondecreasing
function, we get that g(gxn) � gx and g(gyn) � g(y) hold for all n ∈N. By (), we have

d
(
g(gxn+),F(x, y)

)
= d

(
F(gxn, gyn),F(x, y)

)
≤ αmax

{
d
(
g(gxn), g(x)

)
,d

(
g(gyn), g(y)

)
,d

(
g(gxn+), g(gxn)

)
,d

(
F(x, y), g(x)

)}
+ Lmin

{
d
(
g(gxn+), g(x)

)
,d

(
F(x, y), g(gxn)

)}
.

Letting n → +∞, we get d(g(x),F(x, y)) =  and hence g(x) = F(x, y). Similarly, one can
show that g(y) = F(y,x). Thus (x, y) is a coupled coincidence point of F and g . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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Corollary . Let (X,�) be a partially ordered set and suppose that there is a metric d on
X such that (X,d) is a complete metric space. Let F : X ×X → X be a mapping such that F
has the mixed monotone property on X such that there exist two elements x, y ∈ X with
x � F(x, y) and y � F(y,x). Suppose that there exist a real number α ∈ [, ) and a
nonnegative number L such that

d
(
F(x, y),F(u, v)

) ≤ αmax
{
d(x,u),d(y, v),d

(
F(x, y),x

)
,d

(
F(u, v),u

)}
+ Lmin

{
d
(
F(x, y),u

)
,d

(
F(u, v),x

)}
()

for all (x, y), (u, v) ∈ X ×X with x� u and y� v and also suppose that either
(a) F is continuous, or
(b) X has the following property:

(i) if a nondecreasing sequence {xn} in X converges to x ∈ X , then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X , then yn � y for all n,

then there exist x, y ∈ X such that

F(x, y) = x and F(y,x) = y,

that is, F has a coupled fixed point (x, y) ∈ X ×X.

Proof Follows from Theorem . by taking g = I , the identity mapping. �

Let (X,�) be a partially ordered set. Then we define a partial order � on the product
space X ×X as follows:

for (x, y), (u, v) ∈ X ×X, (u, v)� (x, y) ⇔ x � u, y� v.

Now, we prove some uniqueness theorem of a coupled common fixed point of mappings
F : X ×X → X and g : X → X.

Theorem . In addition to the hypotheses of Theorem ., suppose that L = , α < 
 , F

and g commute and for every (x, y), (y∗,x∗) ∈ X × X, there exists (u, v) ∈ X × X such that
(F(u, v),F(v,u)) is comparable to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Then F and g
have a unique coupled common fixed point, that is, there exists a unique (x, y) ∈ X × X
such that

x = g(x) = F(x, y) and y = g(y) = F(y,x).

Proof The existence of coupled coincidence points of F and g follows from Theorem ..
To prove the uniqueness, let (x, y) and (x∗, y∗) be coupled coincidence points of F and g ;
that is, g(x) = F(x, y), g(y) = F(y,x), g(x∗) = F(x∗, y∗) and g(y∗) = F(y∗,x∗). Now, we prove
that

g(x) = g
(
x∗) and g(y) = g

(
y∗). ()

By the hypotheses, there exists (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable
to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Put u = u, v = v. Let u, v ∈ X be such that

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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g(u) = F(u, v) and g(v) = F(v,u). Then as a similar proof of Theorem ., we construct
two sequences {g(un)}, {g(vn)} in g(X), where g(un+) = F(un, vn) and g(vn+) = F(vn,un)
for all n ∈ N. Further, set x = x, y = y, x∗

 = x∗, y∗
 = y∗. Define the sequences {g(xn)},

{g(yn)} in the following way: define gx = F(x, y) = F(x, y) and gy = F(y,x) = F(y,x).
Also, define gx = F(x, y) and gy = F(y,x). For each n ∈ N, define gxn+ = F(xn, yn) and
gyn+ = F(yn,xn). In the same way, we define the sequences {g(x∗

n)}, {g(y∗
n)}. Now, we prove

that

g(xn) = F(x, y) = g(x) and g(yn) = F(y,x) = g(y).

Since (x, y) is a coupled coincidence point of F and g , we have F(x, y) = g(x) and F(y,x) =
g(y). Thus g(x) = F(x, y) = F(x, y) = g(x) and g(y) = F(y,x) = F(y,x) = g(y). There-
fore g(x) � g(x), g(x) � g(x), g(y) � g(y) and g(y) � g(y). Since F is monotone g-non-
decreasing on its first argument, g(x) � g(x), and g(x) � g(x), we have F(x, y) � F(x, y)
and F(x, y)� F(x, y). Therefore,

F(x, y) = F(x, y). ()

Also, since F is monotone g-non-increasing on its second argument, g(y) � g(y) and
g(y) � g(y), we have F(x, y)� F(x, y) and F(x, y)� F(x, y). Therefore,

F(x, y) = F(x, y). ()

From () and (), we have

g(x) = F(x, y) = F(x, y) = g(x).

Similarly, we may show that

g(y) = F(y,x) = F(y,x) = g(y).

Note that g(x) � g(x), g(x) � g(x), g(y) � g(y) and g(y) � g(y). Since F is monotone
g-non-decreasing on its first argument, g(x) � g(x), and g(x) � g(x), we have F(x, y) �
F(x, y) and F(x, y) � F(x, y). Therefore,

F(x, y) = F(x, y). ()

Also, since F is monotone g-non-increasing on its second argument, g(y) � g(y) and
g(y) � g(y), we have F(x, y) � F(x, y) and F(x, y) � F(x, y). Therefore,

F(x, y) = F(x, y). ()

From () and (), we have

g(x) = F(x, y) = F(x, y) = g(x).
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Similarly, we may show that

g(y) = F(y,x) = F(y,x) = g(y).

Continuing in the same way, we have that

g(xn) = F(x, y) = g(x) and g(yn) = F(y,x) = g(y)

hold for all n ∈N. Similarly, we can show that

g
(
x∗
n
)
= F

(
x∗, y∗) = g

(
x∗) and g

(
y∗
n
)
= F

(
y∗,x∗) = g

(
y∗) ∀n ∈N

hold for all n ∈N. Since

(
F(x, y),F(y,x)

)
=

(
g(x), g(y)

)
=

(
g(x), g(y)

)
and

(
F(u, v),F(v,u)

)
=

(
g(u), g(v)

)
are comparable, g(x) � g(u) and g(y) � g(v). Since F has the mixed g-monotone prop-
erty of X, we have g(x) � g(un) and g(y) � g(vn) for all n ∈ N. Also, since (g(x∗), g(y∗)) and
(F(u, v),F(v,u)) = (g(u), g(v)) are comparable, and F has the g-monotone property, then
we can show that for n ∈ N, we have that (g(x∗), g(y∗)) and (g(un), g(vn)) are comparable.
Now, if (g(x), g(y)) = (g(uk), g(vk)) for some k ∈ N or (g(x∗), g(y∗)) = (g(uk), g(vk)) for some
k ∈ N, then (g(x), g(y)) and (g(x∗), g(y∗)) are comparable, say g(x) � g(x∗) and g(y) � g(y∗).
Thus from () we have

d
(
g(x), g

(
x∗))

= d
(
F(x, y),F

(
x∗, y∗))

≤ αmax
{
d
(
g(x), g

(
x∗)),d(

g(y), g
(
y∗)),d(

F(x, y), g(x)
)
,d

(
F
(
x∗, y∗), g(x∗))}

= αmax
{
d
(
g(x), g

(
x∗)),d(

g(y), g
(
y∗))} ()

and

d
(
g
(
y∗), g(y))

= d
(
F
(
y∗,x∗),F(y,x))

≤ αmax
{
d
(
g(y), g

(
y∗)),d(

g(x), g
(
x∗)),d(

F
(
y∗,x∗), g(y∗)),d(

F(y,x), g(y)
)}

= αmax
{
d
(
g(y), g

(
y∗)),d(

g(x), g(y)
)}
. ()

From () and (), we have

max
{
d
(
g(x), g

(
x∗)),d(

g(y), g
(
y∗))} ≤ αmax

{
d
(
g(y), g

(
y∗)),d(

g(x), g(y)
)}
.
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Since α < , we have d(g(x), g(x∗)) =  and d(g(y), g(y∗)) = . Therefore () is satisfied.Now,
suppose that (g(x), g(y)) �= (g(un), g(vn)) for all n ∈N and (g(x∗), g(y∗)) �= (g(un), g(vn)) for all
n ∈N. Let n ∈N. Since g(x)� g(un) and g(y) � g(vn), then from () we have

d
(
g(x), g(un+)

)
= d

(
F(x, y),F(un, vn)

)
≤ αmax

{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
,d

(
F(x, y), g(x)

)
,d

(
F(un, vn), g(un)

)}
= αmax

{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
,d

(
g(un+), g(un)

)}
≤ αmax

{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
,d

(
g(un+), g(x)

)
+ d

(
g(x), g(un)

)}
≤ αmax

{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
, d

(
g(un+), g(x)

)
, d

(
g(x), g(un)

)}
= αmax

{
d

(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
, d

(
g(un+), g(x)

)}
.

If

max
{
d

(
g(x), g(un)

)
,d

(
g(y), g(vn)

)
, d

(
g(un+), g(x)

)}
= d

(
g(un+), g(x)

)
then d(g(un+), g(x))≤ αd(g(un+), g(x)). Since α < , we have d(g(un+), g(x)) = . There-
fore d(g(x), g(un)) =  and d(g(y), g(vn)) =  and hence (g(x), g(y)) = (g(un), g(vn)), a contra-
diction. Thus

d
(
g(x), g(un+)

) ≤ αmax
{
d

(
g(x), g(un)

)
,d

(
g(y), g(vn)

)}
≤ αmax

{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)}
. ()

Similarly, we may show that

d
(
g(vn+), g(y)

) ≤ αmax
{
d
(
g(x), g(un)

)
,d

(
g(y), g(vn)

)}
. ()

From () and (), we have

max
{
d
(
g(x), g(un+)

)
,d

(
g(vn+), g(y)

)}
≤ αmax

{
d
(
g(vn), g(y)

)
,d

(
g(un), g(x)

)
,d(g(un+)

}
. ()

By repeating () n-times, we have

max
{
d
(
g(x), g(un+)

)
,d

(
g(vn+), g(y)

)}
≤ αmax

{
d
(
g(vn), g(y)

)
,d

(
g(un), g(x)

)}
...

≤ (α)n+max
{
d
(
g(x), g(u)

)
,d

(
g(v), g(y)

)}
.

Letting n → +∞ in the above inequalities, we get that

lim
n→ max

{
d
(
g(x), g(un+)

)
,d

(
g(vn+), g(y)

)}
= .
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Hence

lim
n→∞d

(
g(x), g(un+)

)
=  ()

and

lim
n→∞d

(
g(y), g(vn+)

)
= . ()

Similarly, we may show that

lim
n→∞d

(
g(x), g(un+)

)
=  ()

and

lim
n→∞d

(
g(y), g(vn+)

)
= . ()

By the triangle inequality, (), (), () and (),

d
(
g(x), g

(
x∗)) ≤ d

(
g(x), g(un+)

)
+ d

(
g
(
x∗), g(un+)) →  as n → ∞,

d
(
g(y), g

(
y∗)) ≤ d

(
g(y), g(vn+)

)
+ d

(
g
(
y∗), g(vn+)) →  as n→ ∞,

we have g(x) = g(x∗) and g(y) = g(y∗). Thus we have (). This implies that (g(x), g(y)) =
(g(x∗), g(y∗)).
Since g(x) = F(x, y) and g(y) = F(y,x), by commutativity of F and g , we have

g
(
g(x)

)
= g

(
F(x, y)

)
= F

(
g(x), g(y)

)
and g

(
g(y)

)
= g

(
F(y,x)

)
= F

(
g(y), g(x)

)
. ()

Denote g(x) = z, g(y) = w. Then from ()

g(z) = F(z,w) and g(w) = F(w, z). ()

Thus (z,w) is a coupled coincidence point. Then from () with x∗ = z and y∗ = w it follows
g(z) = g(x) and g(w) = g(y), that is,

g(z) = z and g(w) = w. ()

From () and (),

z = g(z) = F(z,w) and w = g(w) = F(w, z).

Therefore, (z,w) is a coupled common fixed point of F and g . To prove the uniqueness,
assume that (p,q) is another coupled common fixed point. Then by () we have p = g(p) =
g(z) = z and q = g(q) = g(w) = w. �

Corollary . In addition to the hypotheses of Corollary ., suppose that L = , α < 
 , and

for every (x, y), (y∗,x∗) ∈ X ×X, there exists (u, v) ∈ X ×X such that u � F(u, v), v� F(v,u),

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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and (F(u, v),F(v,u)) is comparable to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Then F has
a unique coupled fixed point, that is, there exist a unique (x, y) ∈ X ×X such that

x = F(x, y) and y = F(y,x).

Proof Follows from Theorem . by taking g = I , the identity mapping. �

Theorem . In addition to the hypotheses of Theorem ., if gx and gy are comparable
and L = , then F and g have a coupled coincidence point (x, y) such that gx = F(x, y) =
F(y,x) = gy.

Proof Follow the proof of Theorem . step by step until constructing two sequences {xn}
and {yn} in X such that gxn → gx and gyn → gy, where (x, y) is a coincidence point of F
and g . Suppose gx � gy, then it is an easy matter to show that

gxn � gyn and ∀n ∈ N∪ {}.

Thus, by () we have

d(gxn, gyn)

= d
(
F(xn–, yn–),F(yn–,xn–)

)
≤ αmax

{
d(g(xn–), g(yn–),d

(
F(xn–, yn–), g(xn–)

)
,d

(
F(yn–,xn–), g(yn–)

)}
= αmax

{
d
(
g(xn–), g(yn–)

)
,d

(
g(xn), g(xn–)

)
,d

(
g(yn), g(yn–)

)}
.

On taking the limit as n→ +∞, we get d(gx, gy) = . Hence

F(x, y) = gx = gy = F(y,x).

A similar argument can be used if gy � gx. �

Corollary . In addition to the hypotheses of Corollary ., if x and y are comparable
and L = , then F has a coupled fixed point of the form (x,x).

Proof Follows from Theorem . by taking g = I , the identity mapping. �

Now, we introduce the following example to support our results.

Example . Let X = [, ]. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Define the metric d on X by

d(x, y) =

{
max{x, y} if x �= y;
 if x = y.

Define g : X → X by g(x) = x and F : X ×X → X by

F(x, y) =

{
(x–y)

 , x > y;
, x ≤ y.

http://www.journalofinequalitiesandapplications.com/content/2013/1/565
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Then
() g(X) is a complete subset of X .
() F(X ×X) ⊆ g(X).
() X satisfies (i) and (ii) of Theorem ..
() F has the mixed g-monotone property.
() For any L ∈ [, +∞), F and g satisfy that

d
(
F(x, y),F(u, v)

)
≤ 


max

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
for all g(x)≤ g(u) and g(y) ≥ g(v) holds for all x, y,u, v ∈ X with g(x)≤ g(u) and
g(y) ≥ g(v).

Thus, by Theorem ., F has a coupled fixed point. Moreover, (, ) is a coupled coinci-
dence point of F .

Proof The proof of ()-() is clear. We divide the proof of () into the following cases.
Case : If g(x) ≤ g(y) and g(u) ≤ g(v), then x≤ y and u≤ v. Hence

d
(
F(x, y),F(u, v)

)
= d(, ) = 

≤ 

max

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
.

Case : If g(x)≤ g(y) and g(u) > g(v), then x ≤ y and u > v. Hence

d
(
F(x, y),F(u, v)

)
= d

(
,

(u – v)


)

=



(
u – v

)
≤ 


u

=


max

{



(
u – v

)
,u

}

=


max

{
F(u, v), g(u)

}
=



d
(
F(u, v), g(u)

)
≤ 


max

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
.

Case : If g(x) > g(y) and g(u) ≤ g(v), then x > y and u ≤ v. Hence v ≤ y < x ≤ u ≤ v.
Therefore v < v, which is impossible.
Case : If g(x) > g(y) and g(u) > g(v), then x > y and u > v. Thus v≤ y < x ≤ u.
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Subcase I: x = u and y = v. Here, we have

d
(
F(x, y),F(u, v)

)
= d(, ) = 

≤ 

max

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
.

Subcase II: x �= u or y �= v. Here, we have u – v > x – y. Therefore

d
(
F(x, y),F(u, v)

)
= d

(
(x – y)


,
(u – v)



)

=



(
u – v

)
≤ 


u

=


max

{



(
u – v

)
,u

}

=


max

{
F(u, v), g(u)

}
=



d
(
F(u, v), g(u)

)
≤ 


max

{
d
(
g(x), g(u)

)
,d

(
g(y), g(v)

)
,d

(
F(x, y), g(x)

)
,d

(
F(u, v), g(u)

)}
+ Lmin

{
d
(
F(x, y), g(u)

)
,d

(
F(u, v), g(x)

)}
. �

Note that the mappings F and g satisfy all the hypotheses of Theorem . for α = 


and any L ≥ . Thus F and g have a coupled coincidence point. Here (, ) is a coupled
coincidence point of F and g .

Remarks
() Theorem . is a special case of Corollary ..
() Theorem . is a special case of Corollary ..
() Theorem . is a special case of Theorem ..
() Theorem . is a special case of Theorem ..
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