Skip to main content

Non-differentiable minimax fractional programming with higher-order type Ifunctions

Abstract

In this article, we are concerned with a class of non-differentiable minimaxfractional programming problems and their higher-order dual model. Weak, strongand converse duality theorems are discussed involving generalized higher-ordertype I functions. The presented results extend some previously known results onnon-differentiable minimax fractional programming.

1 Introduction

In nonlinear optimization, problems, where minimization and maximization process areperformed together, are called minimax (minmax) problems. Frequently, problems ofthis type arise in many areas like game theory, Chebychev approximation, economics,financial planning and facility location [1].

The optimization problems in which the objective function is a ratio of two functionsare commonly known as fractional programming problems. In the past few years, manyauthors have shown interest in the field of minimax fractional programming problems.Schmittendorf [2] first developed necessary and sufficient optimality conditions for aminimax programming problem. Tanimoto [3] applied the necessary conditions in [2] to formulate a dual problem and discussed the duality results, which wereextended to a fractional analogue of the problem considered in [2, 3] by several authors [410]. Liu [11] proposed the second-order duality theorems for a minimax programmingproblem under generalized second-order B-invex functions. Husain etal.[12] formulated two types of second-order dual models for minimax fractionalprogramming and derived weak, strong and converse duality theorems underη-convexity assumptions.

Ahmad et al.[13] and Husain et al.[14] discussed the second-order duality results for the followingnon-differentiable minimax programming problem:

Minimize  sup y Y f ( x , y ) + ( x T B x ) 1 / 2 , subject to  h ( x ) 0 , x R n ,
(P)

where Y is a compact subset of R l , f(,): R n × R l R and h(): R n R m are twice differentiable functions. B is ann×n positive semidefinite symmetric matrices. Ahmadet al.[15] formulated a unified higher-order dual of (P) and established appropriateduality theorems under higher-order (F,α,ρ,d)-type I assumptions. Recently, Jayswal andStancu-Minasian [16] obtained higher-order duality results for (P).

In this paper, we formulate a higher-order dual for a non-differentiable minimaxfractional programming problem and establish weak, strong and strict converseduality theorems under generalized higher-order (F,α,ρ,d)-type I assumptions. This paper generalizes severalresults that have appeared in the literature [11, 12, 1422] and references therein.

2 Preliminaries

The problem to be considered in the present analysis is the followingnon-differentiable minimax fractional problem:

Minimize  sup y Y f ( x , y ) + ( x T B x ) 1 / 2 g ( x , y ) ( x T C x ) 1 / 2 , subject to  h ( x ) 0 , x R n ,
(NP)

where Y is a compact subset of R l , f(,),g(,): R n × R l R and h(): R n R m are differentiable functions. B andC are n×n positive semidefinite symmetric matrices. It isassumed that for each (x,y) in R n × R l , f(x,y)+ ( x T B x ) 1 2 0 and g(x,y) ( x T C x ) 1 2 >0.

Let X={x R n :h(x)0} denote the set of all feasible solutions of (NP). Anypoint xX is called the feasible point of (NP). For each(x,y)X×Y, we define

ψ(x,y)= f ( x , y ) + ( x T B x ) 1 / 2 g ( x , y ) ( x T C x ) 1 / 2

such that for each (x,y)X×Y,

f(x,y)+ ( x T B x ) 1 / 2 0andg(x,y) ( x T C x ) 1 / 2 >0.

For each (x,y)X×Y, we define

J(x)= { j J : h j ( x ) = 0 } ,

where

J = { 1 , 2 , , m } , Y ( x ) = { y Y : f ( x , y ) + ( x T B x ) 1 / 2 g ( x , y ) ( x T C x ) 1 / 2 = sup z Y f ( x , z ) + ( x T B x ) 1 / 2 g ( x , z ) ( x T C x ) 1 / 2 } , S ( x ) = { ( s , t , y ˜ ) N × R + s × R l s : 1 s n + 1 , t = ( t 1 , t 2 , , t s ) R + s S ( x ) = with  i = 1 s t i = 1 , y ˜ = ( y ¯ 1 , y ¯ 2 , , y ¯ s )  with  y ¯ i Y ( x ) ( i = 1 , 2 , , s ) } .

Since f and g are continuously differentiable and Y iscompact in R l , it follows that for each x X, Y( x ), and for any y ¯ i Y( x ), we have

λ =ϕ ( x , y ¯ i ) = f ( x , y ¯ i ) + ( x T B x ) 1 / 2 g ( x , y ¯ i ) ( x T C x ) 1 / 2 .

Lemma 2.1 (Generalized Schwarz inequality)

Let A be a positive-semidefinite matrix of order n. Then, for allx,w R n ,

x T Aw ( x T A x ) 1 2 ( w T A w ) 1 2 .
(2.1)

The equalityAx=ξAwholds for someξ0. Clearly, if ( w T A w ) 1 2 1, we have

x T Aw ( x T A x ) 1 2 .

Let be a sublinear functional, and let d(,): R n × R n R. Let ρ=( ρ 1 , ρ 2 ), where ρ 1 =( ρ 1 1 , ρ 2 1 ,, ρ s 1 ) R s and ρ 2 =( ρ 1 2 , ρ 2 2 ,, ρ m 2 ) R m , and let α=( α 1 , α 2 ): R n × R n R + {0}. Let ψ(,): R n ×YR, h(): R n R m , K: R n ×Y× R n R and H j : R n ×Y× R n R, j=1,2,,m, be differentiable functions at x ¯ R n .

Definition 2.1 A functional F: R n × R n × R n R is said to be sublinear in its third argument if forall x, x ¯ R n ,

  1. (i)

    F(x, x ¯ ;a+b)F(x, x ¯ ;a)+F(x, x ¯ ;b), a,b R n ;

  2. (ii)

    F(x, x ¯ ;βa)=βF(x, x ¯ ;a), βR, β0, and a R n .

From (ii), it is clear that F(x, x ¯ ;0)=0.

Definition 2.2[15]

For each jJ, (ψ, h j ) is said to be higher-order (F,α,ρ,d)-pseudoquasi-type I at x ¯ R n if for all xX, p R n and y ¯ i Y(x),

ψ ( x , y ¯ i ) < ψ ( x ¯ , y ¯ i ) + K ( x ¯ , y ¯ i , p ) p T p K ( x ¯ , y ¯ i , p ) F ( x , x ¯ ; α 1 ( x , x ¯ ) ( p K ( x ¯ , y ¯ i , p ) ) ) < ρ i 1 d 2 ( x , x ¯ ) , i = 1 , 2 , , s , [ h j ( x ¯ ) + H j ( x ¯ , p ) p T p H j ( x ¯ , p ) ] 0 F ( x , x ¯ ; α 2 ( x , x ¯ ) ( p H j ( x ¯ , p ) ) ) ρ j 2 d 2 ( x , x ¯ ) , j = 1 , 2 , , m .

In the above definition, if

F ( x , x ¯ ; α 1 ( x , x ¯ ) ( p K ( x ¯ , y ¯ i , p ) ) ) ρ i 1 d 2 ( x , x ¯ ) ψ ( x , y ¯ i ) > ψ ( x ¯ , y ¯ i ) + K ( x ¯ , y ¯ i , p ) p T p K ( x ¯ , y ¯ i , p ) , i = 1 , 2 , , s ,

then we say that (ψ, g j ) is higher-order (F,α,ρ,d)-strictly pseudoquasi-type I at x ¯ .

If the functions f, g and h in problem (NP) arecontinuously differentiable with respect to x R n , then Liu [11] derived the following necessary conditions for optimalityof (NP).

Theorem 2.1 (Necessary conditions)

If x is a solution of (NP) satisfying x T B x >0, x T C x >0, and h j ( x ), jJ( x )are linearly independent, then there exist(s, t , y ˜ )S( x ), λ 0 R + , w,v R n , and μ R + m such that

i = 1 s t i { f ( x , y ¯ i ) + B w λ 0 ( g ( x , y ¯ i ) C v ) } + j = 1 m μ j h j ( x ) = 0 , f ( x , y ¯ i ) + ( x T B x ) 1 2 λ 0 ( g ( x , y ¯ i ) ( x T C x ) 1 2 ) = 0 , i = 1 , 2 , , s , j = 1 m μ j h j ( x ) = 0 , t i 0 ( i = 1 , 2 , , s ) , i = 1 s t i = 1 , w T B w 1 , v T C v 1 , ( x T B x ) 1 / 2 = x T B w , ( x T C x ) 1 / 2 = x T C v .

In the above theorem, both matrices B and C are positivesemidefinite. If either x T B x or x T C x is zero, then the functions involved in the objectivefunction of problem (NP) are not differentiable. To derive these necessaryconditions under this situation, for (s, t , y ˜ )S( x ), we define

U y ˜ ( x ) ={u R n : u t h j ( x ) 0,jJ ( x )  satisfying one of the following conditions:
  1. (i)

    x T B x >0, x T C x =0

    u T ( i = 1 s t i { f ( x , y ¯ i ) + B x ( x t B x ) 1 2 λ g ( x , y ¯ i ) } ) + ( u T ( λ 2 C ) u ) 1 2 <0,
  2. (ii)

    x T B x =0, x T C x >0

    u T ( i = 1 s t i { f ( x , y ¯ i ) λ ( g ( x , y ¯ i ) C x ( x T C x ) 1 2 ) } ) + ( u T B u ) 1 2 <0,
  3. (iii)

    x T B x =0, x T C x =0

    u T ( i = 1 s t i { f ( x , y ¯ i ) λ g ( x , y ¯ i ) } ) + ( u T ( λ 2 C ) u ) 1 2 + ( u T B u ) 1 2 <0,
  4. (iv)

    x T B x >0, x T C x >0

    u T ( i = 1 s t i { f ( x , y ¯ i ) λ g ( x , y ¯ i ) } ) + ( u T ( λ 2 C ) u ) 1 2 + ( u T B u ) 1 2 <0}.

If in addition, we insert U y ˜ ( x )=, then the results of Theorem 2.1 still hold.

3 Higher-order non-differentiable fractional duality

In this section, we consider the following dual problem to (NP):

max ( s , t , y ˜ ) S ( z ) sup ( z , μ , λ , v , w , p ) L ( s , t , y ˜ ) λ,
(ND)

where L(s,t, y ˜ ) denotes the set of all (z,μ,λ,v,w,p) R n × R + m × R + × R n × R n × R n satisfying

i = 1 s t i [ p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) ] +Bw+λCv+ j = 1 m μ j p H j (z,p)=0,
(3.1)
i = 1 s t i [ f ( z , y ¯ i ) + z T B w λ ( g ( z , y ¯ i ) z T C v ) + F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) + j J 0 μ j h j ( z ) p T p { F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) } ] + j J 0 μ j H j ( z , p ) p T j J 0 μ j p H j ( z , p ) 0 ,
(3.2)
j J β μ j [ h j ( z ) + H j ( z , p ) p T p H j ( z , p ) ] 0,β=1,2,,r,
(3.3)
w T Bw1, v T Cv1,
(3.4)

where F: R n ×Y× R n R, G: R n ×Y× R n R, J β M={1,2,,m}, β=0,1,2,,r with β = 0 r J β =M and J β Jα= if βα. If for a triplet (s,t, y ˜ )S(z), the set L(s,t, y ˜ )=, then we define the supremum over it to be∞.

Theorem 3.1 (Weak duality)

Let x and(z,μ,λ,s,t,v,w, y ˜ ,p)be feasible solutions of (NP) and (ND), respectively.Suppose that

[ i = 1 s t i { f ( , y ¯ i ) + ( ) T B w λ ( g ( , y ¯ i ) z T C v ) } + j J 0 μ j h j ( ) , j j β μ j h j ( ) , β = 1 , 2 , , r ]

is higher-order(F,α,ρ,d)-pseudoquasi-type I at z and

ρ 1 1 α 1 ( x , z ) + β = 1 r ρ β 2 α 2 ( x , z ) 0.

Then

sup y Y f ( x , y ) + ( x t B x ) 1 / 2 g ( x , y ) ( x t C x ) 1 / 2 λ.

Proof Suppose to the contrary that

sup y Y f ( x , y ) + ( x T B x ) 1 / 2 g ( x , y ) ( x T C x ) 1 / 2 <λ.

Then we have

f(x, y ¯ i )+ ( x T B x ) 1 / 2 λ ( g ( x , y ¯ i ) ( x T C x ) 1 / 2 ) <0,for all  y ¯ i Y,i=1,2,,s.

It follows from t i 0, i=1,2,,s, that

t i [ f ( x , y ¯ i ) + ( x T B x ) 1 / 2 λ ( g ( x , y ¯ i ) ( x T C x ) 1 / 2 ) ] 0,i=1,2,,s,

with at least one strict inequality, since t=( t 1 , t 2 ,, t s )0. Taking summation over i and using i = 1 s t i =1, we have

i = 1 s t i [ f ( x , y ¯ i ) + ( x T B x ) 1 / 2 λ ( g ( x , y ¯ i ) ( x T C x ) 1 / 2 ) ] <0.

It follows from the generalized Schwarz inequality and (3.4) that

i = 1 s t i [ f ( x , y ¯ i ) + x T B w λ ( g ( x , y ¯ i ) x T C v ) ] <0.
(3.5)

By the feasibility of x for (NP) and μ0, we obtain

j J 0 μ j h j (x)0.
(3.6)

The above inequality with (3.5) gives

i = 1 s t i [ f ( x , y ¯ i ) + x T B w λ ( g ( x , y ¯ i ) x T C v ) ] + j J 0 μ j h j (x)<0.
(3.7)

From (3.2) and (3.7), we have

i = 1 s t i [ f ( x , y ¯ i ) + x T B w λ ( g ( x , y ¯ i ) x T C v ) ] + j J 0 μ j h j ( x ) < i = 1 s t i [ f ( z , y ¯ i ) + z T B w λ ( g ( z , y ¯ i ) z T C v ) + F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) + j J 0 μ j h j ( z ) p T p { F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) } ] + j J 0 μ j H j ( z , p ) p T j J 0 μ j p H j ( z , p ) .
(3.8)

Also, from (3.3), we have

j j β μ j [ h j ( z ) + H j ( z , p ) p T p H j ( z , p ) ] 0,β=1,2,,r.
(3.9)

The higher second-order (F,α,ρ,d)-pseudoquasi-type I assumption on

[ i = 1 s t i { f ( , y ¯ i ) + ( ) T B w λ ( g ( , y ¯ i ) ( ) T C v ) } + j J 0 μ j h j ( ) , j j β μ j h j ( ) , β = 1 , 2 , , r ]

at z, with (3.8) and (3.9), implies

F ( x , z ; α 1 ( x , z ) i = 1 s t i { p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) } + B w + λ C v ) < ρ 1 1 d 2 ( x , z ) , F ( x , z ; α 2 ( x , z ) j j β μ j p H j ( z , p ) ) ρ β 2 d 2 ( x , z ) , β = 1 , 2 , , r .

By using α 1 (x,z)>0, α 2 (x,z)>0, and the sublinearity of in the aboveinequalities, we summarize to get

F ( x , z ; i = 1 s t i { p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) } + B w + λ C v + β = 1 r j j β μ j p H j ( z , p ) ) < ( ρ 1 1 α 1 ( x , z ) + β = 1 r ρ β 2 α 2 ( x , z ) ) d 2 ( x , z ) .

Since ( ρ 1 1 α 1 ( x , z ) + β = 1 r ρ β 2 α 2 ( x , z ) )0, therefore

F ( x , z ; i = 1 s t i { p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) } + B w + λ C v + j = 1 m μ j p H j ( z , p ) ) <0,

which contradicts (3.1), as F(x,z;0)=0. □

Theorem 3.2 (Strong duality)

Let x be an optimal solution of (NP) and let h j ( x ), jJ( x )be linearly independent. Assume that

F ( x , y ¯ i , 0 ) = 0 ; p F ( x , y ¯ i , 0 ) = f ( x , y ¯ i ) , i = 1 , 2 , , s , G ( x , y ¯ i , 0 ) = 0 ; p G ( x , y ¯ i , 0 ) = g ( x , y ¯ i ) , i = 1 , 2 , , s , H j ( x , 0 ) = 0 ; p H j ( x , 0 ) = h j ( x ) , j J .

Then there exist( s , t , y ˜ )Sand( x , μ , λ , v , w , p )L( s , t , y ˜ )such that( x , μ , λ , v , w , s , t , y ˜ , p =0)is a feasible solution of (ND) and the two objectives have the samevalues. Furthermore, if the assumptions of weak duality(Theorem  3.1) hold for all feasible solutions of (NP)and (ND), then( x , μ , λ , v , w , s , t , y ˜ , p =0)is an optimal solution of (ND).

Proof Since x is an optimal solution of (NP) and h j ( x ), jJ( x ) are linearly independent, by Theorem 2.1, thereexist ( s , t , y ˜ )S and ( x , μ , λ , v , w , p )L( s , t , y ˜ ) such that ( x , μ , λ , v , w , s , t , y ˜ , p =0) is a feasible solution of (ND) and problems (NP) and(ND) have the same objectives values and

λ = f ( x , y ¯ i ) + ( x T B x ) 1 / 2 g ( x , y ¯ i ) ( x T C x ) 1 / 2 .

 □

Theorem 3.3 (Strict converse duality)

Let x and( z , μ , λ , s , t , v , w , y ˜ , p )be the optimal solutions of (NP) and (ND), respectively.Suppose that

[ i = 1 s t i { f ( , y ¯ i ) + ( ) T B w λ ( g ( , y ¯ i ) ( ) T C v ) } + j J 0 μ j h j ( ) , j j β μ j h j ( ) , β = 1 , 2 , , r ]

is higher-order(F,α,ρ,d)-strictly pseudoquasi-type I at z with

ρ 1 1 α 1 ( x , z ) + β = 1 r ρ β 2 α 2 ( x , z ) 0,

and that h j ( x ), jJ( x )are linearly independent. Then z = x ; that is, z is an optimal solution of (NP).

Proof We assume that z x and reach a contradiction. From the strong dualitytheorem (Theorem 3.2), it follows that

sup y Y f ( x , y ˜ ) + ( x T B x ) 1 / 2 g ( x , y ˜ ) ( x T C x ) 1 / 2 = λ .
(3.10)

Now, proceeding as in Theorem 3.1, we get

i = 1 s t i [ f ( x , y ¯ i ) + x T B w λ ( g ( x , y ¯ i ) x T C v ) ] + j J 0 μ j h j ( x ) <0.
(3.11)

The feasibility of x for (NP), μ 0 and (3.3) imply

j J β μ j h j ( x ) 0 j J β μ j [ h j ( z ) + H j ( z , p ) p T p H j ( z , p ) ] ,

which along with the second part of higher-order (F,α,ρ,d)-strictly pseudoquasi-type I assumption on

[ i = 1 s t i { f ( , y ¯ i ) + ( ) T B w λ ( g ( , y ¯ i ) ( ) T C v ) } + j J 0 μ j h j ( ) , j j β μ j h j ( ) , β = 1 , 2 , , r ]

at z gives

F ( x , z ; α 2 ( x , z ) j j β μ j p H j ( z , p ) ) < ρ β 2 d 2 ( x , z ) ,β=1,2,,r.

As α 2 ( x , z )>0 and as is sublinear, it follows that

F ( x , z ; j j β μ j p H j ( z , p ) ) < ρ β 2 α 2 ( x , z ) d 2 ( x , z ) ,β=1,2,,r.
(3.12)

From (3.1), (3.12) and the sublinearity of , we have

F ( x , z ; i = 1 s t i [ p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) ] + B w + λ C v + j j 0 μ j p H j ( z , p ) ) β = 1 r ρ β 2 α 2 ( x , z ) d 2 ( x , z ) .

In view of ( ρ 1 1 α 1 ( x , z ) + β = 1 r ρ β 2 α 2 ( x , z ) )0, α 1 ( x , z )>0 and the sublinearity of , the above inequalitybecomes

F ( x , z ; α 1 ( x , z ) i = 1 s t i [ p ( F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) ) ] + B w + λ C v + j j 0 μ j p H j ( z , p ) ) ρ 1 1 d 2 ( x , z ) .

By using the first part of the said assumption imposed on

[ i = 1 s t i { f ( , y ¯ i ) + ( ) T B w λ ( g ( , y ¯ i ) ( ) T C v ) } + j J 0 μ j h j ( ) , j j β μ j h j ( ) , β = 1 , 2 , , r ]

at z , it follows that

i = 1 s t i [ f ( x , y ¯ i ) + x T B w λ ( g ( x , y ¯ i ) x T C v ) ] + j J 0 μ j h j ( x ) > i = 1 s t i [ f ( z , y ¯ i ) + z T B w λ ( g ( z , y ¯ i ) z T C v ) + F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) + j J 0 μ j h j ( z ) p T p { F ( z , y ¯ i , p ) λ G ( z , y ¯ i , p ) } ] + j J 0 μ j H j ( z , p ) p T j J 0 μ j p H j ( z , p ) 0 (by (3.2)) ,

which contradicts (3.11). Hence the result. □

4 Special cases

Let J 0 =, F(z, y ¯ i ,p)= p T f(z, y ¯ i )+ 1 2 p T 2 f(z, y ¯ i ), G(z, y ¯ i ,p)= p T g(z, y ¯ i )+ 1 2 p T 2 g(z, y ¯ i ), i=1,2,,s and H j (z,p)= p T h j (z)+ 1 2 p T 2 h j (z)p, j=1,2,,m. Then (ND) becomes the second-order dual studied in [17, 22]. If, in addition, p=0, then we obtain the dual formulated by Ahmad etal.[20].

5 Conclusion

The notion of higher-order (F,α,ρ,d)-pseudoquasi-type I is adopted, which includes manyother generalized convexity concepts in mathematical programming as special cases.This concept is appropriate to discuss the weak, strong and strict converse dualitytheorems for a higher-order dual (ND) of a non-differentiable minimax fractionalprogramming problem (NP). The results of this paper can be discussed by formulatinga unified higher-order dual involving support functions on the lines of Ahmad [23].

References

  1. Du D, Pardalos PM, Wu WZ: Minimax and Applications. Kluwer Academic, Dordrecht; 1995.

    Book  MATH  Google Scholar 

  2. Schmitendorff WE: Necessary conditions and sufficient conditions for static minimaxproblems. J. Math. Anal. Appl. 1977, 57: 683–693. 10.1016/0022-247X(77)90255-4

    Article  MathSciNet  Google Scholar 

  3. Tanimoto S: Duality for a class of nondifferentiable mathematical programmingproblems. J. Math. Anal. Appl. 1981, 79: 283–294.

    Article  MathSciNet  Google Scholar 

  4. Ahmad I, Husain Z: Optimality conditions and duality in nondifferentiable minimax fractionalprogramming with generalized convexity. J. Optim. Theory Appl. 2006, 129: 255–275. 10.1007/s10957-006-9057-0

    Article  MATH  MathSciNet  Google Scholar 

  5. Chandra S, Kumar V: Duality in fractional minimax programming. J. Aust. Math. Soc. A 1995, 58: 376–386. 10.1017/S1446788700038362

    Article  MATH  MathSciNet  Google Scholar 

  6. Lai HC, Liu JC, Tanaka K: Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl. 1999, 230: 311–328. 10.1006/jmaa.1998.6204

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu JC, Wu CS: On minimax fractional optimality conditions and invexity. J. Math. Anal. Appl. 1998, 219: 21–35. 10.1006/jmaa.1997.5786

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu JC, Wu CS:On minimax fractional optimality conditions with (F,ρ)-convexity. J. Math. Anal. Appl. 1998, 219: 36–51. 10.1006/jmaa.1997.5785

    Article  MATH  MathSciNet  Google Scholar 

  9. Yadav SR, Mukherjee RN: Duality in fractional minimax programming problems. J. Aust. Math. Soc. A 1990, 31: 484–492.

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang XM, Hou SH: On minimax fractional optimality conditions and duality with generalizedconvexity. J. Glob. Optim. 2005, 31: 235–252. 10.1007/s10898-004-5698-4

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu JC: Second-order duality for minimax programming. Util. Math. 1999, 56: 53–63.

    MATH  MathSciNet  Google Scholar 

  12. Husain Z, Ahmad I, Sharma S: Second order duality for minimax fractional programming. Optim. Lett. 2009, 3: 277–286. 10.1007/s11590-008-0107-4

    Article  MATH  MathSciNet  Google Scholar 

  13. Ahmad I, Husain Z, Sharma S: Second-order duality in nondifferentiable minmax programming involving type Ifunctions. J. Comput. Appl. Math. 2008, 215: 91–102. 10.1016/j.cam.2007.03.022

    Article  MATH  MathSciNet  Google Scholar 

  14. Husain Z, Jayswal A, Ahmad I: Second-order duality for nondifferentiable minimax programming withgeneralized convexity. J. Glob. Optim. 2009, 44: 509–608. 10.1007/s10898-008-9354-2

    Article  MathSciNet  Google Scholar 

  15. Ahmad I, Husain Z, Sharma S: Higher-order duality in nondifferentiable minimax programming withgeneralized type I functions. J. Optim. Theory Appl. 2009, 141: 1–12. 10.1007/s10957-008-9474-3

    Article  MATH  MathSciNet  Google Scholar 

  16. Jayswal A, Stancu-Minasian I: Higher-order duality in nondifferentiable minimax programming problem withgeneralized convexity. Nonlinear Anal., Theory Methods Appl. 2011, 74: 616–625. 10.1016/j.na.2010.09.016

    Article  MATH  MathSciNet  Google Scholar 

  17. Ahmad I: Second order nondifferentiable minimax fractional programming with squareroot terms. Filomat 2013, 27: 126–133.

    Google Scholar 

  18. Ahmad I: Higher-order duality in nondifferentiable minimax fractional programminginvolving generalized convexity. J. Inequal. Appl. 2012., 2012: Article ID 306

    Google Scholar 

  19. Ahmad I, Husain Z: Duality in nondifferentiable minimax fractional programming with generalizedconvexity. Appl. Math. Comput. 2006, 176: 545–551. 10.1016/j.amc.2005.10.002

    Article  MATH  MathSciNet  Google Scholar 

  20. Ahmad I, Gupta SK, Kailey N, Agarwal RP: Duality in nondifferentiable minimax fractional programming with B - (p,r) -invexity. J. Inequal. Appl. 2011., 2011: Article ID 75

    Google Scholar 

  21. Gupta SK, Dangar D: On second-order duality for nondifferentiable minimax fractionalprogramming. J. Comput. Appl. Math. 2014, 255: 878–886.

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu Q, Chen Y, Jian J: Second-order duality for nondifferentiable minimax fractional programming. Int. J. Comput. Math. 2012, 89: 11–16. 10.1080/00207160.2011.631529

    Article  MATH  MathSciNet  Google Scholar 

  23. Ahmad I: Unified higher order duality in nondifferentiable multiobjectiveprogramming. Math. Comput. Model. 2012, 55: 419–425. 10.1016/j.mcm.2011.08.020

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deanship of Scientific Research Unit,University of Tabuk, Tabuk, Kingdom of Saudi Arabia. The authors are grateful tothe anonymous referee for a careful checking of the details and for helpfulcomments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Muhiuddin.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors carried out the proof. All authors conceived of the study andparticipated in its design and coordination. All authors read and approved the finalmanuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Muhiuddin, G., Al-roqi, A.M. & Ahmad, I. Non-differentiable minimax fractional programming with higher-order type Ifunctions. J Inequal Appl 2013, 484 (2013). https://doi.org/10.1186/1029-242X-2013-484

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-484

Keywords