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Abstract
In this article, we are concerned with a class of non-differentiable minimax fractional
programming problems and their higher-order dual model. Weak, strong and
converse duality theorems are discussed involving generalized higher-order type I
functions. The presented results extend some previously known results on
non-differentiable minimax fractional programming.

1 Introduction
In nonlinear optimization, problems, where minimization and maximization process are
performed together, are called minimax (minmax) problems. Frequently, problems of this
type arise inmany areas like game theory, Chebychev approximation, economics, financial
planning and facility location [].
The optimization problems in which the objective function is a ratio of two functions

are commonly known as fractional programming problems. In the past few years, many
authors have shown interest in the field of minimax fractional programming problems.
Schmittendorf [] first developed necessary and sufficient optimality conditions for amin-
imax programming problem. Tanimoto [] applied the necessary conditions in [] to for-
mulate a dual problem and discussed the duality results, which were extended to a frac-
tional analogue of the problem considered in [, ] by several authors [–]. Liu []
proposed the second-order duality theorems for a minimax programming problem under
generalized second-order B-invex functions. Husain et al. [] formulated two types of
second-order dual models for minimax fractional programming and derived weak, strong
and converse duality theorems under η-convexity assumptions.
Ahmad et al. [] and Husain et al. [] discussed the second-order duality results for

the following non-differentiable minimax programming problem:

Minimize sup
y∈Y

f (x, y) +
(
xTBx

)/, (P)

subject to h(x)≤ , x ∈ Rn,

whereY is a compact subset ofRl , f (·, ·) : Rn×Rl → R and h(·) : Rn → Rm are twice differen-
tiable functions. B is an n×n positive semidefinite symmetric matrices. Ahmad et al. []
formulated a unified higher-order dual of (P) and established appropriate duality theorems
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under higher-order (F ,α,ρ,d)-type I assumptions. Recently, Jayswal and Stancu-Minasian
[] obtained higher-order duality results for (P).
In this paper, we formulate a higher-order dual for a non-differentiable minimax frac-

tional programming problem and establish weak, strong and strict converse duality
theorems under generalized higher-order (F ,α,ρ,d)-type I assumptions. This paper gen-
eralizes several results that have appeared in the literature [, , –] and references
therein.

2 Preliminaries
The problem to be considered in the present analysis is the following non-differentiable
minimax fractional problem:

Minimize sup
y∈Y

f (x, y) + (xTBx)/

g(x, y) – (xTCx)/
, (NP)

subject to h(x)≤ , x ∈ Rn,

where Y is a compact subset of Rl , f (·, ·), g(·, ·) : Rn × Rl → R and h(·) : Rn → Rm are dif-
ferentiable functions. B and C are n × n positive semidefinite symmetric matrices. It is
assumed that for each (x, y) in Rn × Rl , f (x, y) + (xTBx)  ≥  and g(x, y) – (xTCx)  > .
Let X = {x ∈ Rn : h(x) ≤ } denote the set of all feasible solutions of (NP). Any point

x ∈X is called the feasible point of (NP). For each (x, y) ∈X × Y , we define

ψ(x, y) =
f (x, y) + (xTBx)/

g(x, y) – (xTCx)/

such that for each (x, y) ∈X × Y ,

f (x, y) +
(
xTBx

)/ ≥  and g(x, y) –
(
xTCx

)/ > .

For each (x, y) ∈X × Y , we define

J(x) =
{
j ∈ J : hj(x) = 

}
,

where

J = {, , . . . ,m},

Y (x) =
{
y ∈ Y :

f (x, y) + (xTBx)/

g(x, y) – (xTCx)/
= sup

z∈Y
f (x, z) + (xTBx)/

g(x, z) – (xTCx)/

}
,

S(x) =

{
(s, t, ỹ) ∈ N × Rs

+ × Rls : ≤ s ≤ n + , t = (t, t, . . . , ts) ∈ Rs
+

with
s∑
i=

ti = , ỹ = (ȳ, ȳ, . . . , ȳs) with ȳi ∈ Y (x) (i = , , . . . , s)

}
.
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Since f and g are continuously differentiable and Y is compact in Rl , it follows that for
each x∗ ∈X , Y (x∗) �= ∅, and for any ȳi ∈ Y (x∗), we have

λ◦ = φ
(
x∗, ȳi

)
=
f (x∗, ȳi) + (x∗TBx∗)/

g(x∗, ȳi) – (x∗TCx∗)/
.

Lemma . (Generalized Schwarz inequality) Let A be a positive-semidefinite matrix of
order n. Then, for all x,w ∈ Rn,

xTAw ≤ (
xTAx

) 

(
wTAw

) 
 . (.)

The equality Ax = ξAw holds for some ξ ≥ . Clearly, if (wTAw)  ≤ , we have

xTAw ≤ (
xTAx

) 
 .

Let F be a sublinear functional, and let d(·, ·) : Rn ×Rn → R. Let ρ = (ρ,ρ), where ρ =
(ρ

 ,ρ
, . . . ,ρ

s ) ∈ Rs and ρ = (ρ
 ,ρ

 , . . . ,ρ
m) ∈ Rm, and let α = (α,α) : Rn ×Rn → R+ \ {}.

Let ψ(·, ·) : Rn × Y → R, h(·) : Rn → Rm, K : Rn × Y × Rn → R and Hj : Rn × Y × Rn → R,
j = , , . . . ,m, be differentiable functions at x̄ ∈ Rn.

Definition . A functional F : Rn × Rn × Rn 
→ R is said to be sublinear in its third ar-
gument if for all x, x̄ ∈ Rn,

(i) F (x, x̄;a + b)≤F (x, x̄;a) +F (x, x̄;b), ∀a,b ∈ Rn;
(ii) F (x, x̄;βa) = βF (x, x̄;a), ∀β ∈ R, β ≥ , and ∀a ∈ Rn.

From (ii), it is clear that F (x, x̄; ) = .

Definition . [] For each j ∈ J , (ψ ,hj) is said to be higher-order (F ,α,ρ,d)-pseudo-
quasi-type I at x̄ ∈ Rn if for all x ∈X , p ∈ Rn and ȳi ∈ Y (x),

ψ(x, ȳi) < ψ(x̄, ȳi) +K (x̄, ȳi,p) – pT∇pK (x̄, ȳi,p)

⇒ F
(
x, x̄;α(x, x̄)

(∇pK (x̄, ȳi,p)
))

< –ρ
i d

(x, x̄), i = , , . . . , s,

–
[
hj(x̄) +Hj(x̄,p) – pT∇pHj(x̄,p)

] ≤ 

⇒ F
(
x, x̄;α(x, x̄)

(∇pHj(x̄,p)
)) ≤ –ρ

j d
(x, x̄), j = , , . . . ,m.

In the above definition, if

F
(
x, x̄;α(x, x̄)

(∇pK (x̄, ȳi,p)
)) ≥ –ρ

i d
(x, x̄)

⇒ ψ(x, ȳi) >ψ(x̄, ȳi) +K (x̄, ȳi,p) – pT∇pK (x̄, ȳi,p), i = , , . . . , s,

then we say that (ψ , gj) is higher-order (F ,α,ρ,d)-strictly pseudoquasi-type I at x̄.

If the functions f , g and h in problem (NP) are continuously differentiable with respect
to x ∈ Rn, then Liu [] derived the following necessary conditions for optimality of (NP).
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Theorem . (Necessary conditions) If x∗ is a solution of (NP) satisfying x∗TBx∗ > ,
x∗TCx∗ > , and∇hj(x∗), j ∈ J(x∗) are linearly independent, then there exist (s, t∗, ỹ) ∈ S(x∗),
λ ∈ R+, w, v ∈ Rn, and μ∗ ∈ Rm

+ such that

s∑
i=

t∗i
{∇f

(
x∗, ȳi

)
+ Bw – λ

(∇g
(
x∗, ȳi

)
–Cv

)}
+∇

m∑
j=

μ∗
j hj

(
x∗) = ,

f
(
x∗, ȳi

)
+

(
x∗TBx∗) 

 – λ
(
g
(
x∗, ȳi

)
–

(
x∗TCx∗) 


)
= , i = , , . . . , s,

m∑
j=

μ∗
j hj

(
x∗) = ,

t∗i ≥  (i = , , . . . , s),
s∑
i=

t∗i = ,

wTBw≤ , vTCv ≤ ,(
x∗TBx∗)/ = x∗TBw,

(
x∗TCx∗)/ = x∗TCv.

In the above theorem, both matrices B and C are positive semidefinite. If either x∗TBx∗

or x∗TCx∗ is zero, then the functions involved in the objective function of problem (NP) are
not differentiable. To derive these necessary conditions under this situation, for (s, t∗, ỹ) ∈
S(x∗), we define

Uỹ
(
x∗) = {u ∈ Rn : ut∇hj

(
x∗) ≤ , j ∈ J

(
x∗) satisfying one of the following conditions:

(i) x∗TBx∗ > , x∗TCx∗ = 

⇒ uT
( s∑

i=

ti
{
∇f

(
x∗, ȳi

)
+

Bx∗

(x∗tBx∗) 
– λ◦∇g

(
x∗, ȳi

)})
+

(
uT

(
λ

◦C
)
u
) 
 < ,

(ii) x∗TBx∗ = , x∗TCx∗ > 

⇒ uT
( s∑

i=

ti
{
∇f

(
x∗, ȳi

)
– λ◦

(
∇g

(
x∗, ȳi

)
–

Cx∗

(x∗TCx∗) 

)})
+

(
uTBu

) 
 < ,

(iii) x∗TBx∗ = , x∗TCx∗ = 

⇒ uT
( s∑

i=

ti
{∇f

(
x∗, ȳi

)
– λ◦∇g

(
x∗, ȳi

)})
+

(
uT

(
λ

◦C
)
u
) 
 +

(
uTBu

) 
 < ,

(iv) x∗TBx∗ > , x∗TCx∗ > 

⇒ uT
( s∑

i=

ti
{∇f

(
x∗, ȳi

)
– λ◦∇g

(
x∗, ȳi

)})
+

(
uT

(
λ

◦C
)
u
) 
 +

(
uTBu

) 
 < }.

If in addition, we insert Uỹ(x∗) = ø, then the results of Theorem . still hold.
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3 Higher-order non-differentiable fractional duality
In this section, we consider the following dual problem to (NP):

max
(s,t,ỹ)∈S(z)

sup
(z,μ,λ,v,w,p)∈L(s,t,ỹ)

λ, (ND)

where L(s, t, ỹ) denotes the set of all (z,μ,λ, v,w,p) ∈ Rn×Rm
+ ×R+×Rn×Rn×Rn satisfying

s∑
i=

ti
[∇p

(
F(z, ȳi,p) – λG(z, ȳi,p)

)]
+ Bw + λCv +

m∑
j=

μj∇pHj(z,p) = , (.)

s∑
i=

ti
[
f (z, ȳi) + zTBw – λ

(
g(z, ȳi) – zTCv

)
+ F(z, ȳi,p) – λG(z, ȳi,p) +

∑
j∈J

μjhj(z)

– pT∇p
{
F(z, ȳi,p) – λG(z, ȳi,p)

}]

+
∑
j∈J

μjHj(z,p) – pT
∑
j∈J

μj∇pHj(z,p) ≥ , (.)

∑
j∈Jβ

μj
[
hj(z) +Hj(z,p) – pT∇pHj(z,p)

] ≥ , β = , , . . . , r, (.)

wTBw≤ , vTCv ≤ , (.)

where F : Rn × Y × Rn → R, G : Rn × Y × Rn → R, Jβ ⊆ M = {, , . . . ,m}, β = , , , . . . , r
with

⋃r
β= Jβ =M and Jβ ∩ Jα = ∅ if β �= α. If for a triplet (s, t, ỹ) ∈ S(z), the set L(s, t, ỹ) =∅,

then we define the supremum over it to be ∞.

Theorem . (Weak duality) Let x and (z,μ,λ, s, t, v,w, ỹ,p) be feasible solutions of (NP)
and (ND), respectively. Suppose that

[ s∑
i=

ti
{
f (·, ȳi) + (·)TBw – λ

(
g(·, ȳi) – zTCv

)}
+

∑
j∈J

μjhj(·),
∑
j∈jβ

μjhj(·),β = , , . . . , r

]

is higher-order (F ,α,ρ,d)-pseudoquasi-type I at z and

ρ


α(x, z)
+

r∑
β=

ρ
β

α(x, z)
≥ .

Then

sup
y∈Y

f (x, y) + (xtBx)/

g(x, y) – (xtCx)/
≥ λ.

Proof Suppose to the contrary that

sup
y∈Y

f (x, y) + (xTBx)/

g(x, y) – (xTCx)/
< λ.
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Then we have

f (x, ȳi) +
(
xTBx

)/ – λ
(
g(x, ȳi) –

(
xTCx

)/) < , for all ȳi ∈ Y , i = , , . . . , s.

It follows from ti ≥ , i = , , . . . , s, that

ti
[
f (x, ȳi) +

(
xTBx

)/ – λ
(
g(x, ȳi) –

(
xTCx

)/)] ≤ , i = , , . . . , s,

with at least one strict inequality, since t = (t, t, . . . , ts) �= . Taking summation over i and
using

∑s
i= ti = , we have

s∑
i=

ti
[
f (x, ȳi) +

(
xTBx

)/ – λ
(
g(x, ȳi) –

(
xTCx

)/)] < .

It follows from the generalized Schwarz inequality and (.) that

s∑
i=

ti
[
f (x, ȳi) + xTBw – λ

(
g(x, ȳi) – xTCv

)]
< . (.)

By the feasibility of x for (NP) and μ ≥ , we obtain

∑
j∈J

μjhj(x)≤ . (.)

The above inequality with (.) gives

s∑
i=

ti
[
f (x, ȳi) + xTBw – λ

(
g(x, ȳi) – xTCv

)]
+

∑
j∈J

μjhj(x) < . (.)

From (.) and (.), we have

s∑
i=

ti
[
f (x, ȳi) + xTBw – λ

(
g(x, ȳi) – xTCv

)]
+

∑
j∈J

μjhj(x)

<
s∑
i=

ti
[
f (z, ȳi) + zTBw – λ

(
g(z, ȳi) – zTCv

)
+ F(z, ȳi,p) – λG(z, ȳi,p) +

∑
j∈J

μjhj(z)

– pT∇p
{
F(z, ȳi,p) – λG(z, ȳi,p)

}]
+

∑
j∈J

μjHj(z,p) – pT
∑
j∈J

μj∇pHj(z,p). (.)

Also, from (.), we have

∑
j∈jβ

μj
[
hj(z) +Hj(z,p) – pT∇pHj(z,p)

] ≥ , β = , , . . . , r. (.)

The higher second-order (F ,α,ρ,d)-pseudoquasi-type I assumption on

[ s∑
i=

ti
{
f (·, ȳi) + (·)TBw – λ

(
g(·, ȳi) – (·)TCv)} +∑

j∈J
μjhj(·),

∑
j∈jβ

μjhj(·),β = , , . . . , r

]

#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF


Muhiuddin et al. Journal of Inequalities and Applications #CITATION Page 7 of 11
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

at z, with (.) and (.), implies

F
(
x, z;α(x, z)

s∑
i=

ti
{∇p

(
F(z, ȳi,p) – λG(z, ȳi,p)

)}
+ Bw + λCv

)
< –ρ

d
(x, z),

F
(
x, z;α(x, z)

∑
j∈jβ

μj∇pHj(z,p)
)

≤ –ρ
βd

(x, z), β = , , . . . , r.

By using α(x, z) > , α(x, z) > , and the sublinearity of F in the above inequalities, we
summarize to get

F
(
x, z;

s∑
i=

ti
{∇p

(
F(z, ȳi,p) – λG(z, ȳi,p)

)}
+ Bw + λCv +

r∑
β=

∑
j∈jβ

μj∇pHj(z,p)

)

< –

(
ρ


α(x, z)
+

r∑
β=

ρ
β

α(x, z)

)
d(x, z).

Since ( ρ
α(x,z) +

∑r
β=

ρβ
α(x,z) ) ≥ , therefore

F
(
x, z;

s∑
i=

ti
{∇p

(
F(z, ȳi,p) – λG(z, ȳi,p)

)}
+ Bw + λCv +

m∑
j=

μj∇pHj(z,p)

)
< ,

which contradicts (.), as F (x, z; ) = . �

Theorem . (Strong duality) Let x∗ be an optimal solution of (NP) and let ∇hj(x∗), j ∈
J(x∗) be linearly independent. Assume that

F
(
x∗, ȳ∗

i , 
)
= ; ∇pF

(
x∗, ȳ∗

i , 
)
=∇f

(
x∗, ȳ∗

i
)
, i = , , . . . , s,

G
(
x∗, ȳ∗

i , 
)
= ; ∇pG

(
x∗, ȳ∗

i , 
)
=∇g

(
x∗, ȳ∗

i
)
, i = , , . . . , s,

Hj
(
x∗, 

)
= ; ∇pHj

(
x∗, 

)
=∇hj

(
x∗), j ∈ J .

Then there exist (s∗, t∗, ỹ∗) ∈ S and (x∗,μ∗,λ∗, v∗,w∗,p∗) ∈ L(s∗, t∗, ỹ∗) such that (x∗,μ∗,λ∗,
v∗,w∗, s∗, t∗, ỹ∗,p∗ = ) is a feasible solution of (ND) and the two objectives have the same
values. Furthermore, if the assumptions of weak duality (Theorem .) hold for all feasible
solutions of (NP) and (ND), then (x∗,μ∗,λ∗, v∗,w∗, s∗, t∗, ỹ∗,p∗ = ) is an optimal solution
of (ND).

Proof Since x∗ is an optimal solution of (NP) and ∇hj(x∗), j ∈ J(x∗) are linearly indepen-
dent, by Theorem ., there exist (s∗, t∗, ỹ∗) ∈ S and (x∗,μ∗,λ∗, v∗,w∗,p∗) ∈ L(s∗, t∗, ỹ∗) such
that (x∗,μ∗,λ∗, v∗,w∗, s∗, t∗, ỹ∗,p∗ = ) is a feasible solution of (ND) and problems (NP) and
(ND) have the same objectives values and

λ∗ =
f (x∗, ȳ∗

i ) + (x∗TBx∗)/

g(x∗, ȳ∗
i ) – (x∗TCx∗)/

. �
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Theorem . (Strict converse duality) Let x∗ and (z∗,μ∗,λ∗, s∗, t∗, v∗,w∗, ỹ∗,p∗) be the op-
timal solutions of (NP) and (ND), respectively. Suppose that

[ s∑
i=

t∗i
{
f
(·, ȳ∗

i
)
+ (·)TBw∗ – λ

(
g
(·, ȳ∗

i
)
– (·)TCv∗)} +∑

j∈J
μ∗
j hj(·),

∑
j∈jβ

μ∗
j hj(·),β = , , . . . , r

]

is higher-order (F ,α,ρ,d)-strictly pseudoquasi-type I at z∗ with

ρ


α(x∗, z∗)
+

r∑
β=

ρ
β

α(x∗, z∗)
≥ ,

and that ∇hj(x∗), j ∈ J(x∗) are linearly independent. Then z∗ = x∗; that is, z∗ is an optimal
solution of (NP).

Proof We assume that z∗ �= x∗ and reach a contradiction. From the strong duality theorem
(Theorem .), it follows that

sup
y∈Y

f (x∗, ỹ∗) + (x∗TBx∗)/

g(x∗, ỹ∗) – (x∗TCx∗)/
= λ∗. (.)

Now, proceeding as in Theorem ., we get

s∑
i=

t∗i
[
f
(
x∗, ȳ∗

i
)
+ x∗TBw∗ – λ∗(g(x∗, ȳ∗

i
)
– x∗TCv∗)] +∑

j∈J
μ∗
j hj

(
x∗) < . (.)

The feasibility of x∗ for (NP), μ∗ ≥  and (.) imply

∑
j∈Jβ

μ∗
j hj

(
x∗) ≤  ≤

∑
j∈Jβ

μ∗
j
[
hj

(
z∗) +Hj

(
z∗,p∗) – p∗T∇pHj

(
z∗,p∗)],

which along with the second part of higher-order (F ,α,ρ,d)-strictly pseudoquasi-type I
assumption on

[ s∑
i=

t∗i
{
f
(·, ȳ∗

i
)
+ (·)TBw∗ – λ

(
g
(·, ȳ∗

i
)
– (·)TCv∗)} +∑

j∈J
μ∗
j hj(·),

∑
j∈jβ

μ∗
j hj(·),β = , , . . . , r

]

at z∗ gives

F
(
x∗, z∗;α(x∗, z∗)∑

j∈jβ
μ∗
j ∇pHj

(
z∗,p∗)) < –ρ

βd
(x∗, z∗), β = , , . . . , r.
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As α(x∗, z∗) >  and as F is sublinear, it follows that

F
(
x∗, z∗;

∑
j∈jβ

μ∗
j ∇pHj

(
z∗,p∗)) < –

ρ
β

α(x∗, z∗)
d(x∗, z∗), β = , , . . . , r. (.)

From (.), (.) and the sublinearity of F , we have

F
(
x∗, z∗;

s∑
i=

t∗i
[∇p

(
F
(
z∗, ȳ∗

i ,p
∗) – λG

(
z∗, ȳ∗

i ,p
∗))] + Bw∗ + λ∗Cv∗

+
∑
j∈j

μ∗
j ∇pHj

(
z∗,p∗)) ≥

∑r
β= ρ


β

α(x∗, z∗)
d(x∗, z∗).

In view of ( ρ
α(x∗ ,z∗) +

∑r
β= ρβ

α(x∗ ,z∗) ) ≥ , α(x∗, z∗) >  and the sublinearity of F , the above in-
equality becomes

F
(
x∗, z∗;α(x∗, z∗) s∑

i=

t∗i
[∇p

(
F
(
z∗, ȳ∗

i ,p
∗) – λG

(
z∗, ȳ∗

i ,p
∗))] + Bw∗ + λ∗Cv∗

+
∑
j∈j

μ∗
j ∇pHj

(
z∗,p∗)) ≥ –ρ

d
(x∗, z∗).

By using the first part of the said assumption imposed on

[ s∑
i=

t∗i
{
f
(·, ȳ∗

i
)
+ (·)TBw∗ – λ∗(g(·, ȳ∗

i
)
– (·)TCv∗)} +∑

j∈J
μ∗
j hj(·),

∑
j∈jβ

μ∗
j hj(·),β = , , . . . , r

]

at z∗, it follows that

s∑
i=

t∗i
[
f
(
x∗, ȳ∗

i
)
+ x∗TBw∗ – λ∗(g(x∗, ȳ∗

i
)
– x∗TCv∗)] +∑

j∈J
μ∗
j hj

(
x∗)

>
s∑
i=

t∗i

[
f
(
z∗, ȳ∗

i
)
+ z∗TBw∗ – λ∗(g(z∗, ȳ∗

i
)
– z∗TCv∗) + F

(
z∗, ȳ∗

i ,p
∗)

– λG
(
z∗, ȳ∗

i ,p
∗) +∑

j∈J
μ∗
j hj

(
z∗) – p∗T∇p

{
F
(
z∗, ȳ∗

i ,p
∗) – λ∗G

(
z∗, ȳ∗

i ,p
∗)}]

+
∑
j∈J

μ∗
j Hj

(
z∗,p∗) – p∗T ∑

j∈J
μ∗
j ∇pHj

(
z∗,p∗)

≥  (by (.)),

which contradicts (.). Hence the result. �
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4 Special cases
Let J =∅, F(z, ȳi,p) = pT∇f (z, ȳi) + 

p
T∇f (z, ȳi), G(z, ȳi,p) = pT∇g(z, ȳi) + 

p
T∇g(z, ȳi),

i = , , . . . , s and Hj(z,p) = pT∇hj(z) + 
p

T∇hj(z)p, j = , , . . . ,m. Then (ND) becomes
the second-order dual studied in [, ]. If, in addition, p = , then we obtain the dual
formulated by Ahmad et al. [].

5 Conclusion
The notion of higher-order (F ,α,ρ,d)-pseudoquasi-type I is adopted, which includes
many other generalized convexity concepts in mathematical programming as special
cases. This concept is appropriate to discuss the weak, strong and strict converse du-
ality theorems for a higher-order dual (ND) of a non-differentiable minimax fractional
programming problem (NP). The results of this paper can be discussed by formulating a
unified higher-order dual involving support functions on the lines of Ahmad [].
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