Skip to main content

Properties of multivalent functions associated with the integral operator defined by the hypergeometric function

Abstract

In this paper, we introduce a new class of multivalent functions by using a generalized integral operator defined by the hypergeometric function. Some properties such as inclusion, radius problem and integral preserving are considered.

MSC:30C45, 30C50.

1 Introduction and preliminaries

Let A p denote the class of functions f(z) of the form

f(z)= z p + n = p + 1 a n z n ( p N = { 1 , 2 , 3 , } ) ,
(1.1)

which are analytic in the open unit disc E. Also A 1 =A, the usual class of analytic functions defined in the open unit disc E={z:|z|<1}. A function f A p is a p-valent starlike function of order ρ if and only if

Re z f ( z ) f ( z ) >ρ,0ρ<p,zE.

This class of functions is denoted by S p (ρ). It is noted that S p (0)= S p . Let f(z) and g(z) be analytic in E, we say f(z) is subordinate to g(z), written fg or f(z)g(z) if there exists a Schwarz function w(z), w(0)=0 and |w(z)|<1 in E, then f(z)=g(w(z)). In particular, if g is univalent in E, then we have the following equivalence

f(z)g(z)f(0)=g(0)andf(E)g(E).

For any two analytic functions f(z) and g(z) with

f(z)= n = 0 b n z n + 1 andg(z)= n = 0 c n z n + 1 ,zE,

the convolution (the Hadamard product) is given by

(fg)(z)= n = 0 b n c n z n + 1 ,zE.

A function fA is said to be in the class, denoted by SD(k,δ) (0δ<1), if and only if

Re { z f ( z ) f ( z ) } >k| z f ( z ) f ( z ) 1|+δ,k0,zE.
(1.2)

Similarly, a function fA is said to be in the class, denoted by CD(k,δ) of k-uniformly convex of order δ (0δ<1), if

Re { 1 + z f ( z ) f ( z ) } >k| z f ( z ) f ( z ) |+δ,k0,zE.
(1.3)

Geometric interpretation The functions fSD(k,δ) and fCD(k,δ) if and only if z f ( z ) f ( z ) and z f ( z ) f ( z ) +1, respectively, take all the values in the conic domain Ω k , δ defined by

Ω k , δ = { u + i v : u > k ( u 1 ) 2 + v 2 + δ }

with p(z)= z f ( z ) f ( z ) or p(z)= z f ( z ) f ( z ) +1 and considering the functions which map E onto the conic domain Ω k , δ such that 1 Ω k , δ . One may rewrite the conditions (1.2) or (1.3) in the form

p(z) q k , δ (z).

The function q k , δ (z) plays the role of extremal for these classes and is given by

q k , δ (z)={ 1 + ( 1 2 δ ) z 1 z , k = 0 , 1 + 2 δ γ π 2 ( log 1 + z 1 z ) 2 , k = 1 , 1 + 2 δ 1 k 2 sinh 2 [ ( 2 π arccos k ) arctan h z ] , 0 < k < 1 , 1 + δ k 2 1 sin ( π 2 R ( t ) 0 u ( z ) t 1 1 x 2 1 ( t x ) 2 d x ) + δ k 2 1 , k > 1 .
(1.4)

For f(z) in A p , the operator D μ + p 1 : A p A p is defined by

D μ + p 1 f(z)= z p ( 1 z ) μ + p f(z)(μ>p),

or equivalently

D μ + p 1 f(z)= z p ( z μ 1 f ( z ) ) μ + p 1 ( μ + p 1 ) ! ,
(1.5)

where μ is any integer greater than −p. If f(z) is given by (1.1), then it follows that

D μ + p 1 f(z)= z p + n = p + 1 ( μ + n 1 ) ! ( n p ) ! ( μ + p 1 ) ! a n z n .

The symbol D μ + p 1 when p=1, was introduced by Ruscheweyh [1] and D μ + p 1 is called the (μ+p1)th order Ruscheweyh derivative. We now introduce a function ( z 2 p F 1 ( a , b , c ; z ) ) 1 given by

( z p 2 F 1 ( a , b , c ; z ) ) ( z p 2 F 1 ( a , b , c ; z ) ) 1 = z p ( 1 z ) μ + p (μ>p),

and the following linear operator

I μ , p (a,b,c)f(z)= ( z p 2 F 1 ( a , b , c ; z ) ) 1 f(z),
(1.6)

where a, b, c are real or complex numbers other than 0,1,2, , μ>p, zE and f(z) A p . This operator was recently introduced in [2]. In particular, for p=1, this operator is studied by Noor [3]. For b=1, this operator reduces to the well-known Cho-Kwon-Srivastava operator I μ , p (a,c), which was studied by Cho et al. [4], and for μ=1, b=c, a=n+p, see [5]. For a=n+p, b=c=1, this operator was investigated by Liu [6] and Liu and Noor [7].

Simple computations yield

I μ , p (a,b,c)f(z)= z p + n = p + 1 ( c ) n ( μ + p ) n ( a ) n ( b ) n a n z n .

From (1.6), we note that

I μ , 1 ( a , b , c ) f ( z ) = I μ ( a , b , c ) f ( z ) (see [3]) , I 0 , p ( a , p , a ) f ( z ) = f ( z ) , I 1 , p ( a , p , a ) f ( z ) = z f ( z ) p .

Also, it can be easily seen that

z ( I μ , p ( a , b , c ) f ( z ) ) =(μ+p) I μ + 1 , p (a,b,c)f(z)μ I μ , p (a,b,c)f(z),
(1.7)

and

z ( I μ , p ( a + 1 , b , c ) f ( z ) ) =a I μ , p (a,b,c)f(z)(ap) I μ , p (a,b,c)f(z).

We define the following class of multivalent analytic functions by using the operator I μ , p (a,b,c)f(z) above.

Definition 1.1 Let f A p for pN. Then fU B μ , p α (a,b,c;γ,k,δ) for a,b,cR Z 0 , μ>p, α>0, k0, 0δ<1 and γ>0 if and only if

( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 q k , δ ( z ) ,
(1.8)

where g A p is such that

q(z)= I μ + 1 , p ( a , b , c ) g ( z ) I μ , p ( a , b , c ) g ( z ) P(ρ),ρ= k + δ k + 1 ,zE.
(1.9)

Furthermore, for different choices of parameters being involved, we obtain many other well-known subclasses of the class A p and A as special cases.

  1. (i)

    a=c, b=1, k=0, μ=m N 0 , we have B m , p α (γ,δ) studied in [8].

  2. (ii)

    a=c=b=p=γ=1, k=μ=0, g(z)=z, the class U B μ , p α (a,b,c;γ,k,δ) reduces to the class

    B α (δ)= { f A ( 1 ) : z f ( z ) f ( z ) ( f ( z ) z ) α P ( δ ) }

    studied in [9].

  3. (iii)

    a=c=b=p=γ=1, k=μ=0, g(z)=z, the U B μ , p α (a,b,c;γ,k,δ) reduces to B(α) is the class of Bazilevich functions investigated by Singh [10].

  4. (iv)

    a=c=b=p=α=1, γ=0, k=μ=0, g(z)=z, the class U B μ , p α (a,b,c;γ,k,δ) reduces to the class

    B δ = { f A ( 1 ) : f ( z ) z P ( δ ) } ,

the class studied by Chen [11].

Let f A p and F η , p : A p A p be defined by

F η , p (z)= ( η + p ) z η 0 z t η 1 f(t)dt,η>p.
(1.10)

We need the following lemmas which will be used in our main results.

Lemma 1.2 [12]

Let u= u 1 +i u 2 and v= v 1 +i v 2 , and let ψ:D C 2 C be a complex-valued function satisfying the conditions:

  1. (i)

    ψ(u,v) is continuous in a domain D C 2 ,

  2. (ii)

    (1,0)D and ψ(1,0)>0,

  3. (iii)

    Reψ(i u 2 , v 1 )0, whenever (i u 2 , v 1 )D and v 1 1 2 (1+ u 2 2 ).

If h(z)=1+ c 1 z+ c 2 z 2 + is analytic in E such that (h,z h )D and Reψ(h(z),z h (z))>0 for zE, then Reh(z)>0.

Lemma 1.3 [13]

Let h be convex in the unit disc E, and let A0. Suppose that B(z) is analytic in E with ReB(z)A. If g is analytic in E and g(0)=h(0). Then

A z 2 g (z)+B(z)z g (z)+g(z)h(z)implies thatg(z)h(z).

Lemma 1.4 [14]

Let F be analytic and convex in E. If f,g A p and f,gF. Then

σf+(1σ)gF,0σ1.

Lemma 1.5 [15]

Let h be convex in E with h(0)=a and βC such that Reβ0. If pH[a,n] and

p(z)+ z p ( z ) β h(z),

then p(z)q(z)h(z), where

q(z)= β n z β / n 0 z h(t) t β / n 1 dt

and q(z) is the best dominant.

2 Main results

Theorem 2.1 Let fU B μ , p α (a,b,c;γ,k,δ) for a,b,cR Z 0 , μ>p, pN, α>0, k0, 0δ<1 and γ>0. Then fU B μ , p α (a,b,c;0,k,δ).

Proof Consider

h(z)= ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α ,
(2.1)

where h is analytic in E with h(0)=1, and g A p satisfies condition (1.9). Differentiating (2.1) logarithmically and using (1.7), we have

z h ( z ) h ( z ) =α(μ+p) { ( I μ + 1 , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) I μ , p ( a , b , c ) g ( z ) ) } .

Using (2.1) and simplifying, we obtain

h ( z ) + γ z h ( z ) α ( μ + p ) q ( z ) = ( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 .

Since fU B μ , p α (a,b,c;γ,k,δ), therefore, we can write

h(z)+ γ z h ( z ) α ( μ + p ) q ( z ) q k , δ (z),zE.

Now using Lemma 1.3 for A=0 and B(z)= γ α ( μ + p ) q ( z ) with Req(z)>0, we have ReB(z)0, therefore, h(z) q k , δ (z). Hence fU B μ , p α (a,b,c;0,k,δ). □

Theorem 2.2 Let fU B μ , p α (a,b,c;γ,0,δ) for a,b,cR Z 0 , μ>p, pN. Then fU B μ , p α (a,b,c;0,0, δ 1 ), where

δ 1 = 2 α δ ( p + μ ) | q ( z ) | 2 + γ ρ 2 α ( p + μ ) | q ( z ) | 2 + γ ρ .

Proof Consider

h(z)= 1 ( 1 δ 1 ) { ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α δ 1 } ,
(2.2)

where h is analytic in E with h(0)=1, and g A p satisfies condition (1.9). Differentiating (2.2), we have

( 1 δ 1 ) α h ( z ) = ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 × { ( I μ , p ( a , b , c ) f ( z ) ) I μ , p ( a , b , c ) g ( z ) I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) g ( z ) ) I μ , p ( a , b , c ) g ( z ) } .

Using (1.7) and simplifying, we obtain

( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 = ( 1 δ 1 ) h ( z ) + δ 1 + γ ( 1 δ 1 ) z h ( z ) α ( p + μ ) q ( z ) .

Since fU B μ , p α (a,b,c;γ,0,δ), therefore we have

(1 δ 1 )h(z)+ δ 1 + γ ( 1 δ 1 ) z h ( z ) α ( p + μ ) q ( z ) 1 + ( 1 2 δ ) z 1 z ,0δ<1,zE.

This implies that

1 1 δ { ( 1 δ 1 ) h ( z ) + δ 1 δ + γ ( 1 δ 1 ) z h ( z ) α ( p + μ ) q ( z ) } q 0 , 0 (E)=P.

To obtain our desired result, we show that hP, for zE. Let u= u 1 +i u 2 , v= v 1 +i v 2 , and let Ψ:D C 2 C be a complex-valued function such that u=h(z), v=z h (z). Then

Ψ(u,v)=(1 δ 1 )u+ δ 1 δ+ γ ( 1 δ 1 ) v α ( p + μ ) q ( z ) .

The first two conditions of Lemma 1.2 are easily verified. To verify the third condition, we consider

Re Ψ ( i u 2 , v 1 ) = Re { ( 1 δ 1 ) i u 2 + δ 1 δ + γ ( 1 δ 1 ) v 1 α ( p + μ ) q ( z ) } = δ 1 δ + Re γ ( 1 δ 1 ) v 1 α ( p + μ ) q ( z ) δ 1 δ Re γ ( 1 δ 1 ) ( 1 + u 2 2 ) q ( z ) ¯ 2 α ( p + μ ) | q ( z ) | 2 δ 1 δ γ ( 1 δ 1 ) ( 1 + u 2 2 ) ρ 2 α ( p + μ ) | q ( z ) | 2 = A + B u 2 C ,

where A=2α(p+μ)( δ 1 δ)|q(z) | 2 γρ(1 δ 1 ), B=γρ(1 δ 1 )0 if 0 δ 1 <1 and C=2α(p+μ)|q(z) | 2 >0. From the relation δ 1 = 2 α δ ( p + μ ) | q ( z ) | 2 + γ ρ 2 α ( p + μ ) | q ( z ) | 2 + γ ρ , we have A0. This implies that ReΨ(i u 2 , v 1 )0. Using Lemma 1.2, we have hP for zE. This completes the proof. □

Theorem 2.3 Let a,b,cR Z 0 , μ>p, pN, α>0, k0 and 0δ<1. Then

U B μ , p α (a,b,c; γ 2 ,k,δ)U B μ , p α (a,b,c; γ 1 ,k,δ),0 γ 1 < γ 2 ,zE.

Proof Since fU B μ , p α (a,b,c; γ 2 ,k,δ), therefore, we have

( 1 γ 2 ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ 2 I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 = h 1 ( z ) q k , δ ( z ) ,
(2.3)

where g A p satisfies condition (1.9). From Theorem 2.1, we write

( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α = h 2 (z) q k , δ (z),zE.
(2.4)

Now, for γ 1 0, we obtain

( 1 γ 1 ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ 1 I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 = ( 1 γ 1 γ 2 ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ 1 γ 2 { ( 1 γ 2 ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ 2 I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 } = γ 1 γ 2 h 1 ( z ) + ( 1 γ 1 γ 2 ) h 2 ( z ) .

Using the convexity of the class of the function q k , δ (z) and Lemma 1.4, we write

γ 1 γ 2 h 1 (z)+ ( 1 γ 1 γ 2 ) h 2 (z) q k , δ (z),zE,

where h 1 and h 2 are given by (2.3) and (2.4), respectively. This implies that fU B μ , p α (a,b,c; γ 1 ,k,δ). Hence the proof of the theorem is completed. □

Theorem 2.4 Let fU B μ , p 1 (a,b,c;γ,k,δ), a,b,cR Z 0 , μ>p, pN, α>0, k0, γ1 and 0δ<1. Then fU B μ + 1 , p 1 (a,b,c;1,k,δ).

Proof Since fU B μ , p 1 (a,b,c;γ,k,δ), therefore, we have

(1γ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) +γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) q k , δ (z).

Now, consider

γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) = ( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) + ( γ 1 ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) .

This implies that

I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) = 1 γ { ( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) } + ( 1 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) .

Using Theorem 2.1, Lemma 1.4 and the convexity of q k , δ (z), we have the required result. □

Now, using the operators I μ , p (a,b,c) and F η , p defined by (1.7) and (1.10), respectively, we have

z ( I p μ ( a , b , c ) F η , p ( f ) ( z ) ) =(p+η) I p μ (a,b,c)f(z)η I p μ (a,b,c) F η , p (f)(z),η>p.
(2.5)

Theorem 2.5 Let f A p and F η , p be given by (1.10). If

(1γ) I μ , p ( a , b , c ) F η , p ( f ) ( z ) z p +γ I μ , p ( a , b , c ) ( f ( z ) ) z p q k , δ (z),zE,
(2.6)

with a,b,cR Z 0 , μ,η>p, pN, γ>0, then

I μ , p ( a , b , c ) F η , p ( f ( z ) ) z p h(z) q k , δ (z),zE,

where

h(z)= p + η γ z ( p + η ) / γ 0 z q k , δ (z) t ( p + η ) / γ 1 dt.

Proof Let

I μ , p ( a , b , c ) F η , p ( f ( z ) ) z p = h 1 (z),zE,

where h 1 is analytic in E with h 1 (0)=1. Then

z ( I μ , p ( a , b , c ) F η , p ( f ( z ) ) ) =p z p h 1 (z)+ z p + 1 h 1 (z).

Using (2.5), we have

γ(p+η) I μ , p ( a , b , c ) f ( z ) z p γη I μ , p ( a , b , c ) F η , p ( f ) ( z ) z p =pγ h 1 (z)+γz h 1 (z).

Thus,

(1γ) I μ , p ( a , b , c ) F η , p ( f ( z ) ) z p +γ I μ , p ( a , b , c ) ( f ( z ) ) z p = h 1 (z)+γ z h 1 ( z ) p + η .
(2.7)

From (2.7), it follows that

h 1 (z)+γ z h 1 ( z ) p + η q k , δ (z),zE.

Using Lemma 1.5, for β 1 = p + η γ , n=1 and a=1, we obtain h 1 (z)h(z) q k , δ (z). That is, I μ , p ( a , b , c ) F η , p ( f ( z ) ) z p q k , δ (z). □

Theorem 2.6 Let fU B μ , p α (a,b,c;0,0,δ) for a,b,cR Z 0 , μ>p, pN, α,γ>0, 0δ<1. Then fU B μ , p α (a,b,c;γ,0,δ), for |z|< r 0 , where

r 0 = α ( p + μ)+γ γ 2 + 2 α γ ( p + μ ) α(p+μ).
(2.8)

Proof Let fU B μ , p α (a,b,c;0,0,δ). Then we have

( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α =(1δ)h(z)+δ,
(2.9)

where g A p satisfies the condition

q(z)= I μ + 1 , p ( a , b , c ) g ( z ) I μ , p ( a , b , c ) g ( z ) P,zE

and hP. Differentiating (2.9) and then using (1.7), we obtain

γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 γ ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α = γ ( p δ ) z h ( z ) α ( p + μ ) q ( z ) .

This implies that

1 1 δ { ( 1 γ ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α + γ I μ + 1 , p ( a , b , c ) f ( z ) I μ + 1 , p ( a , b , c ) g ( z ) ( I μ , p ( a , b , c ) f ( z ) I μ , p ( a , b , c ) g ( z ) ) α 1 δ } = h ( z ) + γ z h ( z ) α ( p + μ ) q ( z ) , z E .
(2.10)

Now, using the well-known distortion result for class P, we have

|z h (z)| 2 r Re h ( z ) 1 r 2 andReh(z) 1 r 1 + r ,|z|<r<1,zE.

Thus, due to the applications of these inequalities, we have

Re ( h ( z ) + γ z h ( z ) α ( p + μ ) q ( z ) ) Re h ( z ) γ | z h ( z ) | α ( p + μ ) | q ( z ) | Re h ( z ) ( 1 2 γ r α ( p + μ ) ( 1 r ) 2 ) = Re h ( z ) ( α ( p + μ ) ( 1 r ) 2 2 γ r α ( p + μ ) ( 1 r ) 2 ) .

For |z|< r 0 , where r 0 is given in (2.8), the inequality above is positive. Sharpness of the result follows by taking h(z)= 1 + z 1 z . Hence from (2.10), we have the required result. □

References

  1. Ruscheweyh S: New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49: 109–115. 10.1090/S0002-9939-1975-0367176-1

    Article  MATH  MathSciNet  Google Scholar 

  2. Ul-Haq, W: Some Classes of Generalized Convex and Related Functions. Ph.D. thesis, COMSATS Institute of Information Technology, Islamabad, Pakistan (2011)

    Google Scholar 

  3. Noor KI: Integral operators defined by convolution with hypergometric functions. Appl. Math. Comput. 2006, 182: 1872–1881. 10.1016/j.amc.2006.06.023

    Article  MATH  MathSciNet  Google Scholar 

  4. Cho NE, Kwon OS, Srivastava HM: Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators. J. Math. Anal. Appl. 2004, 292: 470–483.

    Article  MATH  MathSciNet  Google Scholar 

  5. Patel J, Cho NE: Some classes of analytic functions involving Noor integral operator. J. Math. Anal. Appl. 2005, 312: 564–575. 10.1016/j.jmaa.2005.03.047

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu J-L: The Noor integral and strongly starlike functions. J. Math. Anal. Appl. 2001, 261: 441–447. 10.1006/jmaa.2001.7489

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu J-L, Noor KI: Some properties of Noor integral operator. J. Nat. Geom. 2002, 21: 81–90.

    MATH  MathSciNet  Google Scholar 

  8. Patel J, Rout S: Properties of certain analytic functions involving Ruscheweyh’s derivatives. Math. Jpn. 1994, 39: 509–518.

    MATH  MathSciNet  Google Scholar 

  9. Ponnusamy S, Karanukaran V: Differential subordination and conformal mappings. Complex Var. Theory Appl. 1988, 11: 70–86.

    Google Scholar 

  10. Singh R: On Bazilevič functions. Proc. Am. Math. Soc. 1973, 38: 261–271.

    MATH  Google Scholar 

  11. Chen MP:On the regular functions satisfying Ref(z)/z. Bull. Inst. Math. Acad. Sin. 1975, 3: 65–70.

    MATH  Google Scholar 

  12. Miller SS, Mocanu PT: Differential subordination and inequalities in the complex plane. J. Differ. Equ. 1987, 67: 199–211. 10.1016/0022-0396(87)90146-X

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller SS, Mocanu PT: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65: 289–305. 10.1016/0022-247X(78)90181-6

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu M-S: On certain subclass of analytic functions. J. South China Normal Univ. Natur. Sci. Ed. 2002, 4: 15–20. (in Chinese)

    Google Scholar 

  15. Hallenbeck DJ, Ruscheweyh S: Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52: 191–195. 10.1090/S0002-9939-1975-0374403-3

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsan Raza.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MR and SNM jointly discussed and presented the ideas of this article. MR made the text file and corresponded it to the journal. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Raza, M., Malik, S.N. Properties of multivalent functions associated with the integral operator defined by the hypergeometric function. J Inequal Appl 2013, 458 (2013). https://doi.org/10.1186/1029-242X-2013-458

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-458

Keywords