Skip to main content

Some sharp inequalities for multilinear integral operators

Abstract

In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the ( L p , L q )-norm inequalities and Morrey spaces boundedness for the multilinear operators.

MSC:42B20, 42B25.

1 Introduction and results

In this paper, we study some multilinear operators related to some integral operators, whose definitions are as follows.

Fix n>δ0. We denote Γ(x)={(y,t) R + n + 1 :|xy|<t} and the characteristic function of Γ(x) by χ Γ ( x ) . Suppose that m j are the positive integers (j=1,,l), m 1 ++ m l =m and A j are the functions on R n (j=1,,l). Let

R m j + 1 ( A j ;x,y)= A j (x) | α | m j 1 α ! D α A j (y) ( x y ) α .

Definition 1 Let ε>0 and ψ be a fixed function which satisfies the following properties:

  1. (1)

    R n ψ(x)dx=0,

  2. (2)

    |ψ(x)|C ( 1 + | x | ) ( n + 1 δ ) ,

  3. (3)

    |ψ(x+y)ψ(x)|C | y | ε ( 1 + | x | ) ( n + 1 + ε δ ) when 2|y|<|x|.

The multilinear Littlewood-Paley operator is defined by

S ψ A (f)(x)= [ Γ ( x ) | F t A ( f ) ( x , y ) | 2 d y d t t n + 1 ] 1 / 2 ,

where

F t A (f)(x,y)= R n j = 1 l R m j + 1 ( A j ; x , z ) | x z | m ψ t (yz)f(z)dz

and ψ t (x)= t n + δ ψ(x/t) for t>0. Set F t (f)(y)=f ψ t (y). We also define that

S ψ (f)(x)= ( Γ ( x ) | F t ( f ) ( y ) | 2 d y d t t n + 1 ) 1 / 2 ,

which is the Littlewood-Paley operator (see [1]).

Let H be the Hilbert space H={h:h= ( R + n + 1 | h ( y , t ) | 2 d y d t / t n + 1 ) 1 / 2 <}. Then for each fixed x R n , F t A (f)(x,y) may be viewed as a mapping from (0,+) to H, and it is clear that

S ψ A (f)(x)= χ Γ ( x ) F t A ( f ) ( x , y ) , S ψ (f)(x)= χ Γ ( x ) F t ( f ) ( y ) .

Definition 2 Let 0<γ1 and Ω be homogeneous of degree zero on R n with S n 1 Ω( x )dσ( x )=0. Assume that Ω Lip γ ( S n 1 ), that is, there exists a constant M>0 such that for any x,y S n 1 , |Ω(x)Ω(y)|M | x y | γ . The multilinear Marcinkiewicz operator is defined by

μ S A (f)(x)= [ Γ ( x ) | F t A ( f ) ( x , y ) | 2 d y d t t n + 3 ] 1 / 2 ,

where

F t A (f)(x,y)= | y z | t j = 1 l R m j + 1 ( A j ; x , z ) | x z | m Ω ( y z ) | y z | n 1 δ f(z)dz.

Set

F t (f)(y)= | y z | t Ω ( y z ) | y z | n 1 δ f(z)dz.

We also define that

μ S (f)(x)= ( Γ ( x ) | F t ( f ) ( y ) | 2 d y d t t n + 3 ) 1 / 2 ,

which is the Marcinkiewicz operator (see [2]).

Let H be the Hilbert space H={h:h= ( R + n + 1 | h ( y , t ) | 2 d y d t / t n + 3 ) 1 / 2 <}, then for each fixed x R n , F t A (f)(x,y) may be viewed as a mapping from (0,+) to H, and it is clear that

μ S A (f)(x)= χ Γ ( x ) F t A ( f ) ( x , y ) , μ S (f)(x)= χ Γ ( x ) F t ( f ) ( y ) .

Note that when m=0, S ψ A and μ S A are just the multilinear commutators (see [3, 4]). While when m>0, S ψ A and μ S A are non-trivial generalizations of the commutators. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [59]). In [10], Hu and Yang proved a variant sharp estimate for the multilinear singular integral operators. In [1113], authors proved a sharp estimate for the multilinear commutator. The main purpose of this paper is to prove the sharp inequalities for the multilinear integral operators S ψ A and μ S A when D α A j BMO( R n ) for all α with |α|= m j . As an application, we obtain the ( L p , L q )-norm inequalities and Morrey spaces boundedness for the multilinear operators.

First, let us introduce some notations. Throughout this paper, Q will denote a cube of R n with sides parallel to the axes. For any locally integrable function f, the sharp function of f is defined by

f # (x)= sup Q x 1 | Q | Q | f ( y ) f Q | dy,

where, and in what follows, f Q = | Q | 1 Q f(x)dx. It is well-known that (see [14, 15])

f # (x)= sup Q x inf c C 1 | Q | Q | f ( y ) c | dy.

We say that f belongs to BMO( R n ) if f # belongs to L ( R n ) and f B M O = f # L . For 1p< and 0δ<n, let

M δ , p (f)(x)= sup Q x ( 1 | Q | 1 p δ / n Q | f ( y ) | p d y ) 1 / p ;

we write that M μ (f)= M n μ , 1 (f), which is the fractional maximal operator.

Fixed λ>0. For 1p<, let

f L p , λ = sup x R n , d > 0 ( 1 d λ B ( x , d ) | f ( y ) | p d y ) 1 / p ,

where B(x,d)={y R n :|xy|<d}. The Morrey spaces are defined by (see [1620])

L p , λ ( R n ) = { f L l o c 1 ( R n ) : f L p , λ < } .

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the multilinear integral operator on the Morrey space.

We shall prove the following theorems.

Theorem 1 Let D α A j BMO( R n ) for all α with |α|= m j and j=1,,l.

  1. (1)

    Then there exists a constant C>0 such that for any f C 0 ( R n ), 1<r<n/δ and x R n ,

    ( S ψ A ( f ) ) # (x)C j = 1 l ( | α j | = m j D α j A j B M O ) M δ , r (f)(x);
  2. (2)

    If 1<p<n/δ and 1/p1/q=δ/n, then S ψ A is bounded from L p ( R n ) to L q ( R n ), that is,

    S ψ A ( f ) L q C j = 1 l ( | α j | = m j D α j A j B M O ) f L p ;
  3. (3)

    If 1<p<n/δ, 0<λ<npδ, 1/q=1/pδ/(nλ), then S ψ A is bounded from L p , λ ( R n ) to L q , λ ( R n ), that is,

    S ψ A ( f ) L q , λ C j = 1 l ( | α j | = m j D α j A j B M O ) f L p , λ .

Theorem 2 Let D α A j BMO( R n ) for all α with |α|= m j and j=1,,l.

  1. (1)

    Then there exists a constant C>0 such that for any f C 0 ( R n ), 1<r<n/δ and x R n ,

    ( μ S A ( f ) ) # (x)C j = 1 l ( | α j | = m j D α j A j B M O ) M δ , r (f)(x);
  2. (2)

    If 1<p<n/δ and 1/p1/q=δ/n, then μ S A is bounded from L p ( R n ) to L q ( R n ), that is,

    μ S A ( f ) L q C j = 1 l ( | α j | = m j D α j A j B M O ) f L p ;
  3. (3)

    If 1<p<n/δ, 0<λ<npδ, 1/q=1/pδ/(nλ), then μ S A is bounded from L p , λ ( R n ) to L q , λ ( R n ), that is,

    μ S A ( f ) L q , λ C j = 1 l ( | α j | = m j D α j A j B M O ) f L p , λ .

Remark The conclusions of Theorems 1 and 2 are completely the same. Thus, they explain that the Littlewood-Paley and Marcinkiewicz operators have the many similar bondedness properties.

2 Proofs of theorems

To prove the theorems, we need the following lemmas.

Lemma 1 [7]

Let A be a function on R n and D α A L q ( R n ) for all α with |α|=m and some q>n. Then

| R m ( A ; x , y ) | C | x y | m | α | = m ( 1 | Q ˜ ( x , y ) | Q ˜ ( x , y ) | D α A ( z ) | q d z ) 1 / q ,

where Q ˜ is the cube centered at x and having side length 5 n |xy|.

Lemma 2 [21]

Suppose that 1r<p<n/δ and 1/q=1/pδ/n. Then

M δ , r ( f ) L q C f L p .

Lemma 3 [16, 17]

Let 1<p< and 0<λ<n. Then the following estimates hold:

  1. (a)

    M ( f ) L p , λ C f # L p , λ ;

  2. (b)

    M μ ( f ) L q , λ C f L p , λ for 0<μ<(nλ)/np and 1/q=1/pnη/(nλ).

Lemma 4 Let 1<p<n/δ and 1/q=1/pδ/n. Then S ψ and μ S are all bounded from L p ( R n ) to L q ( R n ).

Proof For S ψ , by Minkowski inequality and the condition of ψ, we have

S ψ ( f ) ( x ) R n | f ( z ) | ( Γ ( x ) | ψ t ( y z ) | 2 d y d t t 1 + n ) 1 / 2 d z C R n | f ( z ) | ( 0 | x y | t t 2 n + 2 δ ( 1 + | y z | / t ) 2 n + 2 2 δ d y d t t 1 + n ) 1 / 2 d z C R n | f ( z ) | ( 0 | x y | t 2 2 n + 2 t 1 n ( 2 t + | y z | ) 2 n + 2 2 δ d y d t ) 1 / 2 d z ,

noting that 2t+|yz|2t+|xz||xy|t+|xz| when |xy|t and

0 t d t ( t + | x z | ) 2 n + 2 2 δ =C | x z | 2 n + 2 δ ,

we obtain

S ψ ( f ) ( x ) C R n | f ( z ) | ( 0 t d t ( t + | x z | ) 2 n + 2 2 δ ) 1 / 2 d z = C R n | f ( z ) | | x z | n δ d z .

For μ S , note that |xz|2t, |yz||xz|t|xz|3t when |xy|t, |yz|t, we have

μ S ( f ) ( x ) R n [ | x y | t ( | Ω ( y z ) f ( z ) | | y z | n 1 δ ) 2 χ Γ ( z ) ( y , t ) d y d t t n + 3 ] 1 / 2 d z C R n | f ( z ) | [ | x y | t χ Γ ( z ) ( y , t ) t n 3 ( | x z | 3 t ) 2 n 2 2 δ d y d t ] 1 / 2 d z C R n | f ( z ) | | x z | 3 / 2 [ | x z | / 2 d t ( | x z | 3 t ) 2 n 2 ] 1 / 2 d z C R n | f ( z ) | | x z | n δ d z .

Thus, the lemma follows from [21]. □

Proof of Theorem 1 (1) It suffices to prove for f C 0 ( R n ) and some constant C 0 , the following inequality holds:

1 | Q | Q | S ψ A ( f ) ( x ) C 0 | dxC j = 1 l ( | α j | = m j D α j A j B M O ) M δ , r (f)(x).

Without loss of generality, we may assume l=2. Fix a cube Q=Q( x 0 ,d) and x ˜ Q. Let Q ˜ =5 n Q and A ˜ j (x)= A j (x) | α | = m j 1 α ! ( D α A j ) Q ˜ x α , then R m j ( A j ;x,y)= R m j ( A ˜ j ;x,y) and D α A ˜ j = D α A j ( D α A j ) Q ˜ for |α|= m j . We write, for f 1 =f χ Q ˜ and f 2 =f χ R n Q ˜ ,

F t A ( f ) ( x , y ) = R n j = 1 2 R m j + 1 ( A ˜ j ; x , z ) | x z | m ψ t ( y z ) f ( z ) d z = R n j = 1 2 R m j + 1 ( A ˜ j ; x , z ) | x z | m ψ t ( y z ) f 2 ( z ) d z + R n j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m ψ t ( y z ) f 1 ( z ) d z | α 1 | = m 1 1 α 1 ! R n R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 | x z | m D α 1 A ˜ 1 ( z ) ψ t ( y z ) f 1 ( z ) d z | α 2 | = m 2 1 α 2 ! R n R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 | x z | m D α 2 A ˜ 2 ( z ) ψ t ( y z ) f 1 ( z ) d z + | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! R n ( x z ) α 1 + α 2 D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) | x z | m ψ t ( y z ) f 1 ( z ) d z ,

then

| S ψ A ( f ) ( x ) S ψ A ˜ ( f 2 ) ( x 0 ) | = | χ Γ ( x ) F t A ( f ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) | χ Γ ( x ) F t A ( f ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) χ Γ ( x ) R n j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m ψ t ( y z ) f 1 ( z ) d z + χ Γ ( x ) | α 1 | = m 1 1 α 1 ! R n R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 | x z | m D α 1 A ˜ 1 ( z ) ψ t ( y z ) f 1 ( z ) d z + χ Γ ( x ) | α 2 | = m 2 1 α 2 ! R n R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 | x z | m D α 2 A ˜ 2 ( z ) ψ t ( y z ) f 1 ( z ) d z + χ Γ ( x ) | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! R n ( x z ) α 1 + α 2 D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) | x z | m ψ t ( y z ) f 1 ( z ) d z + χ Γ ( x ) F t A ˜ ( f 2 ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) : = I 1 ( x ) + I 2 ( x ) + I 3 ( x ) + I 4 ( x ) + I 5 ( x ) ,

thus,

1 | Q | Q | S ψ A ( f ) ( x ) S ψ A ˜ ( f 2 ) ( x 0 ) | d x 1 | Q | Q I 1 ( x ) d x + C | Q | Q I 2 ( x ) d x + C | Q | Q I 3 ( x ) d x + C | Q | Q I 4 ( x ) d x + 1 | Q | Q I 5 ( x ) d x : = I 1 + I 2 + I 3 + I 4 + I 5 .

Now, let us estimate I 1 , I 2 , I 3 , I 4 and I 5 , respectively. First, for xQ and z Q ˜ , by Lemma 1, we get

R m j ( A ˜ j ;x,z)C | x y | m j | α j | = m j D α j A j B M O .

Thus, by the ( L r , L q )-boundedness of S ψ , for 1<r<n/δ and 1/q=1/rδ/n, we obtain

I 1 C j = 1 2 ( | α j | = m j D α j A j B M O ) 1 | Q | Q | S ψ ( f 1 ) ( x ) | d x C j = 1 2 ( | α j | = m j D α j A j B M O ) ( 1 | Q | Q | S ψ ( f 1 ) ( x ) | q d x ) 1 / q C j = 1 2 ( | α j | = m j D α j A j B M O ) | Q | 1 / q ( Q | f 1 ( x ) | r d x ) 1 / r C j = 1 2 ( | α j | = m j D α j A j B M O ) M δ , r ( f ) ( x ˜ ) .

For I 2 , denoting r=pq for 1<p<n/δ, q>1, 1/q+1/ q =1 and 1/s=1/pδ/n, we have, by Hölder’s inequality,

I 2 C | α 2 | = m 2 D α 2 A 2 B M O | α 1 | = m 1 1 | Q | Q | S ψ ( D α 1 A ˜ 1 f 1 ) ( x ) | d x C | α 2 | = m 2 D α 2 A 2 B M O | α 1 | = m 1 ( 1 | Q | R n | S ψ ( D α 1 A ˜ 1 f 1 ) ( x ) | s d x ) 1 / s C | α 2 | = m 2 D α 2 A 2 B M O | α 1 | = m 1 | Q | 1 / s ( R n | D α 1 A ˜ 1 ( x ) f 1 ( x ) | p d x ) 1 / p C | α 2 | = m 2 D α 2 A 2 B M O × | α 1 | = m 1 ( 1 | Q | Q ˜ | D α 1 A ˜ 1 ( x ) | p q d x ) 1 / p q ( 1 | Q | 1 r δ / n Q ˜ | f ( x ) | p q d x ) 1 / p q C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

For I 3 , similar to the proof of I 2 , we get

I 3 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r (f)( x ˜ ).

Similarly, for I 4 , denoting r=p q 3 for 1<p<n/δ, q 1 , q 2 , q 3 >1, 1/ q 1 +1/ q 2 +1/ q 3 =1 and 1/s=1/pδ/n, we obtain

I 4 C | α 1 | = m 1 , | α 2 | = m 2 1 | Q | Q | S ψ ( D α 1 A ˜ 1 D α 2 A ˜ 2 f 1 ) ( x ) | d x C | α 1 | = m 1 , | α 2 | = m 2 ( 1 | Q | R n | S ψ ( D α 1 A ˜ 1 D α 2 A ˜ 2 f 1 ) ( x ) | s d x ) 1 / s C | α 1 | = m 1 , | α 2 | = m 2 | Q | 1 / s ( R n | D α 1 A ˜ 1 ( x ) D α 2 A ˜ 2 ( x ) f 1 ( x ) | p d x ) 1 / p C | α 1 | = m 1 , | α 2 | = m 2 ( 1 | Q | Q ˜ | D α 1 A ˜ 1 ( x ) | p q 1 d x ) 1 / p q 1 ( 1 | Q | Q ˜ | D α 2 A ˜ 2 ( x ) | p q 2 d x ) 1 / p q 2 × ( 1 | Q | 1 r δ / n Q ˜ | f ( x ) | p q 3 d x ) 1 / p q 3 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

For I 5 , we write

χ Γ ( x ) F t A ˜ ( f 2 ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) = R n ( χ Γ ( x ) χ Γ ( x 0 ) ) j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m ψ t ( y z ) f 2 ( z ) d z + χ Γ ( x 0 ) R n ( 1 | x z | m 1 | x 0 z | m ) j = 1 2 R m j ( A ˜ j ; x , z ) ψ t ( y z ) f 2 ( z ) d z + χ Γ ( x 0 ) R n ( R m 1 ( A ˜ 1 ; x , z ) R m 1 ( A ˜ 1 ; x 0 , z ) ) R m 2 ( A ˜ 2 ; x , z ) | x 0 z | m ψ t ( y z ) f 2 ( z ) d z + χ Γ ( x 0 ) R n ( R m 2 ( A ˜ 2 ; x , z ) R m 2 ( A ˜ 2 ; x 0 , z ) ) R m 1 ( A ˜ 1 ; x 0 , z ) | x 0 z | m ψ t ( y z ) f 2 ( z ) d z | α 1 | = m 1 1 α 1 ! R n [ R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 χ Γ ( x ) | x z | m R m 2 ( A ˜ 2 ; x 0 , z ) ( x 0 z ) α 1 χ Γ ( x 0 ) | x 0 z | m ] × D α 1 A ˜ 1 ( z ) ψ t ( y z ) f 2 ( z ) d z | α 2 | = m 2 1 α 2 ! R n [ R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 χ Γ ( x ) | x z | m R m 1 ( A ˜ 1 ; x 0 , z ) ( x 0 z ) α 2 χ Γ ( x 0 ) | x 0 z | m ] × D α 2 A ˜ 2 ( z ) ψ t ( y z ) f 2 ( z ) d z + | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! R n [ ( x z ) α 1 + α 2 χ Γ ( x ) | x z | m ( x 0 z ) α 1 + α 2 χ Γ ( x 0 ) | x 0 z | m ] × D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) ψ t ( y z ) f 2 ( z ) d z = I 5 ( 1 ) + I 5 ( 2 ) + I 5 ( 3 ) + I 5 ( 4 ) + I 5 ( 5 ) + I 5 ( 6 ) + I 5 ( 7 ) .

By Lemma 1 and the following inequality (see [15])

| b Q 1 b Q 2 |Clog ( | Q 2 | / | Q 1 | ) b B M O for  Q 1 Q 2 ,

we know that, for xQ and z 2 k + 1 Q ˜ 2 k Q ˜ ,

| R m ( A ˜ ; x , z ) | C | x z | m | α | = m ( D α A B M O + | ( D α A ) Q ˜ ( x , z ) ( D α A ) Q ˜ | ) C k | x z | m | α | = m D α A B M O .

Note that |xz|| x 0 z| for xQ and z R n Q ˜ , we obtain, similar to the proof of Lemma 4,

I 5 ( 1 ) R n ( R + n + 1 [ j = 1 2 | R m j ( A ˜ j ; x , z ) | | ψ t ( y z ) | | f 2 ( z ) | | x z | m I 5 ( 1 ) × | χ Γ ( x ) ( y , t ) χ Γ ( x 0 ) ( y , t ) | ] 2 d y d t t n + 1 ) 1 / 2 d z I 5 ( 1 ) C R n j = 1 2 | R m j ( A ˜ j ; x , z ) | | f 2 ( z ) | | x 0 z | m I 5 ( 1 ) × | Γ ( x ) t 1 n d y d t ( t + | y z | ) 2 n + 2 2 δ Γ ( x 0 ) t 1 n d y d t ( t + | y z | ) 2 n + 2 2 δ | 1 / 2 d z I 5 ( 1 ) C R n j = 1 2 | R m j ( A ˜ j ; x , z ) | | f 2 ( z ) | | x 0 z | m I 5 ( 1 ) × ( | y | t | 1 ( t + | x + y z | ) 2 n + 2 2 δ 1 ( t + | x 0 + y z | ) 2 n + 2 2 δ | d y d t t n 1 ) 1 / 2 d z I 5 ( 1 ) C R n j = 1 2 | R m j ( A ˜ j ; x , z ) | | f 2 ( z ) | | x 0 z | m ( | y | t | x x 0 | t 1 n d y d t ( t + | x + y z | ) 2 n + 3 2 δ ) 1 / 2 d z I 5 ( 1 ) C R n j = 1 2 R m j ( A ˜ j ; x , z ) | f 2 ( z ) | | x x 0 | 1 / 2 | x 0 z | m + n + 1 / 2 δ d z I 5 ( 1 ) C j = 1 2 ( | α | = m j D α A j B M O ) k = 0 2 k + 1 Q ˜ 2 k Q ˜ k 2 | x x 0 | 1 / 2 | x 0 z | n + 1 / 2 δ | f ( z ) | d z I 5 ( 1 ) C j = 1 2 ( | α | = m j D α A j B M O ) k = 1 k 2 2 k / 2 1 | 2 k Q ˜ | 1 δ / n 2 k Q ˜ | f ( z ) | d z I 5 ( 1 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) ; I 5 ( 2 ) C R n | x x 0 | | x 0 z | m + n + 1 δ j = 1 2 | R m j ( A ˜ j ; x , z ) | | f 2 ( z ) | d z I 5 ( 2 ) C j = 1 2 ( | α | = m j D α A j B M O ) k = 0 2 k + 1 Q ˜ 2 k Q ˜ k 2 | x x 0 | | x 0 z | n + 1 δ | f ( z ) | d z I 5 ( 2 ) C j = 1 2 ( | α | = m j D α A j B M O ) k = 1 k 2 2 k 1 | 2 k Q ˜ | 1 δ / n 2 k Q ˜ | f ( z ) | d z I 5 ( 2 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

For I 5 ( 3 ) and I 5 ( 4 ) , by the formula (see [7])

R m ( A ˜ ;x,z) R m ( A ˜ ; x 0 ,z)= | β | < m 1 β ! R m | β | ( D β A ˜ ; x , x 0 ) ( x z ) β

and Lemma 1, we have

| R m ( A ˜ ; x , z ) R m ( A ˜ ; x 0 , z ) | C | β | < m | α | = m | x x 0 | m | β | | x z | | β | D α A B M O .

Thus, similar to the proof of Lemma 4,

I 5 ( 3 ) C j = 1 2 ( | α | = m j D α A j B M O ) k = 0 2 k + 1 Q ˜ 2 k Q ˜ k | x x 0 | | x 0 z | n + 1 δ | f ( y ) | d y I 5 ( 3 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) ; I 5 ( 4 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

Similarly, we get

I 5 ( 5 ) C | α 1 | = m 1 R n [ R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 χ Γ ( x ) | x z | m R m 2 ( A ˜ 2 ; x 0 , z ) ( x 0 z ) α 1 χ Γ ( x 0 ) | x 0 z | m ] I 5 ( 5 ) × ψ t ( y z ) | D α 1 A ˜ 1 ( z ) | | f 2 ( z ) | d z I 5 ( 5 ) C | α | = m 2 D α A 2 B M O | α 1 | = m 1 k = 1 k ( 2 k / 2 + 2 k ) I 5 ( 5 ) × ( 1 | 2 k Q ˜ | 2 k Q ˜ | D α 1 A ˜ 1 ( y ) | r d y ) 1 / r ( 1 | 2 k Q ˜ | 1 r δ / n 2 k Q ˜ | f ( y ) | r d y ) 1 / r I 5 ( 5 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) ; I 5 ( 6 ) C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

For I 5 ( 7 ) , taking q 1 , q 2 >1 such that 1/r+1/ q 1 +1/ q 2 =1, then

I 5 ( 7 ) C | α 1 | = m 1 , | α 2 | = m 2 R n [ ( x z ) α 1 + α 2 χ Γ ( x ) | x z | m ( x 0 z ) α 1 + α 2 χ Γ ( x 0 ) | x 0 z | m ] ψ t ( y z ) × | D α 1 A ˜ 1 ( z ) | | D α 2 A ˜ 2 ( z ) | | f 2 ( z ) | d z C | α 1 | = m 1 , | α 2 | = m 2 k = 1 k ( 2 k / 2 + 2 k ) ( 1 | 2 k Q ˜ | 1 p δ / n 2 k Q ˜ | f ( y ) | r d y ) 1 / r × ( 1 | 2 k Q ˜ | 2 k Q ˜ | D α 1 A ˜ 1 ( y ) | q 1 d y ) 1 / q 1 ( 1 | 2 k Q ˜ | 2 k Q ˜ | D α 2 A ˜ 2 ( y ) | q 2 d y ) 1 / q 2 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) .

Thus

I 5 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r (f)( x ˜ ).

We choose 1<r<p in (1), then (2) follows from Lemma 2. For (3), taking 1<r<min(p,(nλ)/pδ) in (1) and by Lemma 3, we obtain

S ψ A ( f ) L q , λ C M ( S ψ A ( f ) ) L q , λ C ( S ψ A ( f ) ) # L q , λ C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) L q , λ C j = 1 2 ( | α | = m j D α A j B M O ) ( M r δ / n ( | f | r ) ) 1 / r L q , λ C j = 1 2 ( | α | = m j D α A j B M O ) M r δ / n ( | f | r ) L q / r , λ 1 / r C j = 1 2 ( | α | = m j D α A j B M O ) | f | r L p / r , λ 1 / r C j = 1 2 ( | α | = m j D α A j B M O ) f L p , λ .

This completes the proof of Theorem 1. □

Proof of Theorem 2 It is only to prove (1). Let Q, Q ˜ , A ˜ j (x), f 1 and f 2 be the same as the proof of Theorem 1. We write

F t A ( f ) ( x , y ) = R n j = 1 2 R m j + 1 ( A ˜ j ; x , z ) | x z | m Ω ( y z ) | y z | n 1 δ f 2 ( z ) d z + R n j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z | α 1 | = m 1 1 α 1 ! R n R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 D α 1 A ˜ 1 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z | α 2 | = m 2 1 α 2 ! R n R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 D α 2 A ˜ 2 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z + | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! R n ( x z ) α 1 + α 2 D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z ,

then

1 | Q | Q | μ S A ( f ) ( x ) μ S A ˜ ( f 2 ) ( x 0 ) | d x 1 | Q | Q χ Γ ( x ) F t A ( f ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) d x 1 | Q | Q χ Γ ( x ) R n j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z d x + 1 | Q | Q χ Γ ( x ) | α 1 | = m 1 1 α 1 ! × R n R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 D α 1 A ˜ 1 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z d x + 1 | Q | Q χ Γ ( x ) | α 2 | = m 2 1 α 2 ! × R n R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 D α 2 A ˜ 2 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z d x + 1 | Q | Q χ Γ ( x ) | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! × R n ( x z ) α 1 + α 2 D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) | x z | m Ω ( y z ) | y z | n 1 δ f 1 ( z ) d z d x + 1 | Q | Q χ Γ ( x ) F t A ˜ ( f 2 ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) d x : = J 1 + J 2 + J 3 + J 4 + J 5 .

Similar to the proof of Theorem 1, we get

J 1 C j = 1 2 ( | α j | = m j D α j A j B M O ) 1 | Q | Q | μ S ( f 1 ) ( x ) | d x J 1 C j = 1 2 ( | α j | = m j D α j A j B M O ) ( 1 | Q | Q | μ S ( f 1 ) ( x ) | q d x ) 1 / q J 1 C j = 1 2 ( | α j | = m j D α j A j B M O ) M δ , r ( f ) ( x ˜ ) ; J 2 C | α 2 | = m 2 D α 2 A 2 B M O | α 1 | = m 1 1 | Q | Q | μ S ( D α 1 A ˜ 1 f 1 ) ( x ) | d x J 2 C | α 2 | = m 2 D α 2 A 2 B M O | α 1 | = m 1 ( 1 | Q | R n | μ S ( D α 1 A ˜ 1 f 1 ) ( x ) | s d x ) 1 / s J 2 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) ; J 3 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r ( f ) ( x ˜ ) ; J 4 C | α 1 | = m 1 , | α 2 | = m 2 1 | Q | Q | μ S ( D α 1 A ˜ 1 D α 2 A ˜ 2 f 1 ) ( x ) | d x J 4 C | α 1 | = m 1 , | α 2 | = m 2 ( 1 | Q | R n | μ S ( D α 1 A ˜ 1 D α 2 A ˜ 2 f 1 ) ( x ) | s d x ) 1 / s J 4 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , p ( f ) ( x ˜ ) .

For J 5 , we write

χ Γ ( x ) F t A ˜ ( f 2 ) ( x , y ) χ Γ ( x 0 ) F t A ˜ ( f 2 ) ( x 0 , y ) = R n ( χ Γ ( x ) χ Γ ( x 0 ) ) j = 1 2 R m j ( A ˜ j ; x , z ) | x z | m Ω ( y z ) | y z | n 1 δ f 2 ( z ) d z + χ Γ ( x 0 ) R n ( 1 | x z | m 1 | x 0 z | m ) j = 1 2 R m j ( A ˜ j ; x , z ) Ω ( y z ) | y z | n 1 δ f 2 ( z ) d z + χ Γ ( x 0 ) R n ( R m 1 ( A ˜ 1 ; x , z ) R m 1 ( A ˜ 1 ; x 0 , z ) ) R m 2 ( A ˜ 2 ; x , z ) | x 0 z | m Ω ( y z ) | y z | n 1 δ f 2 ( z ) d z + χ Γ ( x 0 ) R n ( R m 2 ( A ˜ 2 ; x , z ) R m 2 ( A ˜ 2 ; x 0 , z ) ) R m 1 ( A ˜ 1 ; x 0 , z ) | x 0 z | m Ω ( y z ) | y z | n 1 δ f 2 ( z ) d z | α 1 | = m 1 1 α 1 ! R n [ R m 2 ( A ˜ 2 ; x , z ) ( x z ) α 1 χ Γ ( x ) | x z | m R m 2 ( A ˜ 2 ; x 0 , z ) ( x 0 z ) α 1 χ Γ ( x 0 ) | x 0 z | m ] × Ω ( y z ) | y z | n 1 δ D α 1 A ˜ 1 ( z ) f 2 ( z ) d z | α 2 | = m 2 1 α 2 ! R n [ R m 1 ( A ˜ 1 ; x , z ) ( x z ) α 2 χ Γ ( x ) | x z | m R m 1 ( A ˜ 1 ; x 0 , z ) ( x 0 z ) α 2 χ Γ ( x 0 ) | x 0 z | m ] × Ω ( y z ) | y z | n 1 δ D α 2 A ˜ 2 ( z ) f 2 ( z ) d z + | α 1 | = m 1 , | α 2 | = m 2 1 α 1 ! α 2 ! R n [ ( x z ) α 1 + α 2 χ Γ ( x ) | x z | m ( x 0 z ) α 1 + α 2 χ Γ ( x 0 ) | x 0 z | m ] × Ω ( y z ) | y z | n 1 δ D α 1 A ˜ 1 ( z ) D α 2 A ˜ 2 ( z ) f 2 ( z ) d z .

Then, similar to the proof of Lemma 4 and Theorem 1, we get

J 5 C j = 1 2 ( | α | = m j D α A j B M O ) M δ , r (f)( x ˜ ).

The same argument as the proof of Theorem 1 will give the proof of (2) and (3), we omit the details and finish the proof. □

References

  1. Torchinsky A Pure and Applied Math. 123. In Real Variable Methods in Harmonic Analysis. Academic Press, New York; 1986.

    Google Scholar 

  2. Torchinsky A, Wang S: A note on the Marcinkiewicz integral. Colloq. Math. 1990, 60/61: 235–243.

    MathSciNet  MATH  Google Scholar 

  3. Liu LZ: Weighted weak type estimates for commutators of Littlewood-Paley operator. Jpn. J. Math. 2003, 29(1):1–13.

    MathSciNet  MATH  Google Scholar 

  4. Liu LZ: The continuity of commutators on Triebel-Lizorkin spaces. Integral Equ. Oper. Theory 2004, 49: 65–75. 10.1007/s00020-002-1186-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen J:A sharp estimate for a multilinear singular integral on R n . Indiana Univ. Math. J. 1981, 30: 693–702. 10.1512/iumj.1981.30.30053

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen J, Gosselin J:On multilinear singular integral operators on R n . Stud. Math. 1982, 72: 199–223.

    MathSciNet  MATH  Google Scholar 

  7. Cohen J, Gosselin J: A BMO estimate for multilinear singular integral operators. Ill. J. Math. 1986, 30: 445–465.

    MathSciNet  MATH  Google Scholar 

  8. Coifman R, Meyer Y Cambridge Studies in Advanced Math. 48. In Wavelets, Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge; 1997.

    Google Scholar 

  9. Ding Y, Lu SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin. 2001, 17: 517–526.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu G, Yang DC: A variant sharp estimate for multilinear singular integral operators. Stud. Math. 2000, 141: 25–42.

    MathSciNet  MATH  Google Scholar 

  11. Perez C: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal. 1995, 128: 163–185. 10.1006/jfan.1995.1027

    Article  MathSciNet  MATH  Google Scholar 

  12. Pérez C, Pradolini G: Sharp weighted endpoint estimates for commutators of singular integral operators. Mich. Math. J. 2001, 49: 23–37. 10.1307/mmj/1008719033

    Article  MATH  Google Scholar 

  13. Pérez C, Trujillo-Gonzalez R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672–692. 10.1112/S0024610702003174

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia-Cuerva J, Rubio de Francia JL North-Holland Math. 116. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.

    Google Scholar 

  15. Stein EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton; 1993.

    MATH  Google Scholar 

  16. Chiarenza F, Frasca M: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. 1987, 7: 273–279.

    MathSciNet  MATH  Google Scholar 

  17. Fan DS, Lu SZ, Yang DC: Boundedness of operators in Morrey spaces on homogeneous spaces and its applications. Acta Math. Sin. 1998, 14: 625–634.

    MathSciNet  MATH  Google Scholar 

  18. Di FaZio G, Ragusa MA: Commutators and Morrey spaces. Boll. Unione Mat. Ital. 1991, 7(5-A):323–332.

    MathSciNet  MATH  Google Scholar 

  19. Di Fazio G, Ragusa MA: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112: 241–256. 10.1006/jfan.1993.1032

    Article  MathSciNet  MATH  Google Scholar 

  20. Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis, Proceedings of a Conference Held in Sendai, Japan 1990, 183–189.

    Google Scholar 

  21. Chanillo S: A note on commutators. Indiana Univ. Math. J. 1982, 31: 7–16. 10.1512/iumj.1982.31.31002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Lu.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lu, D. Some sharp inequalities for multilinear integral operators. J Inequal Appl 2013, 445 (2013). https://doi.org/10.1186/1029-242X-2013-445

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-445

Keywords