Skip to main content

Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions

Abstract

By using the definition of geometric-arithmetically s-convex functions in (Analysis 33:197-208, 2013) and first-order fractional integral identities in (Math. Comput. Model. 57:2403-2407, 2013; J. Appl. Math. Stat. Inform. 8:21-28, 2012; Comput. Math. Appl. 63:1147-1154, 2012), we present some interesting Riemann-Liouville fractional Hermite-Hadamard inequalities for differentiable geometric-arithmetically s-convex functions. Both beta function and incomplete beta function are used in the desired estimations.

MSC:26A33, 26A51, 26D15.

1 Introduction

Fractional integrals and derivatives arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium. In particular, the subject of fractional calculus has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics [18].

Fractional Hermite-Hadamard inequalities involving all kinds of fractional integrals have attracted by many researchers. Many authors paid attention to the study of fractional Hermite-Hadamard inequalities according to the first-order integral equalities and convex functions of different classes. For instance, the readers can refer to [911] for convex functions and [12] for nondecreasing functions, [1315] for m-convex functions and [16] for (s,m)-convex functions, [17, 18] for functions satisfying s-e-condition, [19] for (α,m)-logarithmically convex functions and the references therein.

Very recently, the authors [20] introduced the new concept of geometric-arithmetically s-convex functions and established some interesting Hermite-Hadamard type inequalities for integer integrals of such functions. However, to our knowledge, fractional Hermite-Hadamard inequalities for geometric-arithmetically s-convex functions have not been reported. Motivated by [9, 10, 13, 20], we study Riemann-Liouville fractional Hermite-Hadamard type inequalities for geometric-arithmetically s-convex functions by means of first-order fractional integral equalities.

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts.

Definition 2.1 (see [3]) Let fL[a,b]. The symbols J a + α f and J b α f denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order α R + and are defined by

( J a + α f ) (x)= 1 Γ ( α ) a x ( x t ) α 1 f(t)dt(0a<xb)

and

( J b α f ) (x)= 1 Γ ( α ) x b ( t x ) α 1 f(t)dt(0ax<b),

respectively, here Γ() is the gamma function.

Definition 2.2 (see [20])

Let f:I R + R + and s(0,1]. A function f(x) is said to be geometric-arithmetically s-convex on I if for every x,yI and t[0,1], we have

f ( x t y 1 t ) t s ( f ( x ) ) + ( 1 t ) s f(y).

Definition 2.3 (see [21])

The incomplete beta function is defined as follows:

B x (a,b)= 0 x t a 1 ( 1 t ) b 1 dt,

where x[0,1], a,b>0.

The following inequality will be used in the sequel.

Lemma 2.4 (see [19])

For t[0,1], we have

( 1 t ) n 2 1 n t n for  n [ 0 , 1 ] , ( 1 t ) n 2 1 n t n for  n [ 1 , ) .

The following elementary inequality was used in the proof directly in [20]. Here, we revisit this inequality from the point of our view and give a proof.

Lemma 2.5 For t[0,1], x,y>0, we have

tx+(1t)y y 1 t x t .

Proof If xy, then we consider the function f(z)=tz+1t z t , z1. If yx, then we consider the function g(z)=t+(1t)z z 1 t , z1. Clearly f() and g() are increasing functions for all z1, then f(z)f(1)=0 and g(z)g(1)=0. So, f( x y )0 and g( y x )0, i.e., the statement holds. □

We collect the following first-order fractional integrals identities.

Lemma 2.6 ([[9], Lemma 2])

Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f L[a,b], then the following equality for fractional integrals holds:

f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] = b a 2 0 1 [ ( 1 t ) α t α ] f ( t a + ( 1 t ) b ) d t .

Lemma 2.7 ([[10], Lemma 2.1])

Let f:[a,b]R be a differentiable mapping on (a,b). If f L[a,b], then the following equality for fractional integrals holds:

Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) = b a 2 0 1 [ h ( t ) ( 1 t ) α + t α ] f ( t a + ( 1 t ) b ) d t ,

where

h(t)={ 1 , 0 < t < 1 2 , 1 , 1 2 < t < 1 .

Lemma 2.8 ([[13], Lemma 2])

Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If f L[a,b], then the following equality for fractional integrals holds:

( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] = ( x a ) α + 1 b a 0 1 t α f ( t x + ( 1 t ) a ) d t ( b x ) α + 1 b a 0 1 t α f ( t x + ( 1 t ) b ) d t .

3 Main results

In this section, we use Lemmas 2.6, 2.7 and 2.8 via geometric-arithmetically s-convex functions to derive the main results in this paper.

3.1 The first results

By using Lemma 2.6, we can obtain the main results in this section.

Theorem 3.1 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | ( b a ) ( 2 α + s | f ( b ) | | f ( a ) | | f ( b ) | ) ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | [ 0.5 B ( s + 1 , α + 1 ) B 0.5 ( α + 1 , s + 1 ) ] + ( b a ) | f ( b ) | [ B 0.5 ( s + 1 , α + 1 ) 0.5 B ( s + 1 , α + 1 ) ] ,

where

B(s+1,α+1)= 0 1 t s ( 1 t ) α dt,

and

B 0.5 (s+1,α+1)= 0 0.5 t s ( 1 t ) α dt.

Proof By using Definition 2.2, Definition 2.3, Lemma 2.5 and Lemma 2.6, we have

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 0 1 | ( 1 t ) α t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 ( ( 1 t ) α t α ) | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) | f ( a t b 1 t ) | d t + b a 2 0 1 2 ( ( 1 t ) α t α ) | f ( a t b 1 t ) | d t b a 2 1 2 1 ( t α ( 1 t ) α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t + b a 2 0 1 2 ( ( 1 t ) α t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t ( b a ) | f ( a ) | 2 1 2 1 t α + s d t ( b a ) | f ( a ) | 2 1 2 1 t s ( 1 t ) α d t ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 2 1 2 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 2 0 1 2 t α + s d t + ( b a ) | f ( a ) | 2 0 1 2 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 0 1 2 t α ( 1 t ) s d t ( b a ) | f ( a ) | 1 2 1 t α + s d t ( b a ) | f ( a ) | 1 2 1 t s ( 1 t ) α d t ( b a ) | f ( b ) | 1 2 1 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 1 2 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 0 1 t α + s d t + ( b a ) | f ( a ) | 2 0 1 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 0 1 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 0 1 t α ( 1 t ) s d t ( b a ) | f ( a ) | 1 ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | 1 α + s + 1 ( b a ) | f ( a ) | B 0.5 ( α + 1 , s + 1 ) ( b a ) | f ( b ) | 1 ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( b ) | B 0.5 ( s + 1 , α + 1 ) ( b a ) | f ( a ) | 1 α + s + 1 + ( b a ) | f ( a ) | 2 B ( s + 1 , α + 1 ) + ( b a ) | f ( b ) | 2 1 α + s + 1 ( b a ) | f ( b ) | 2 B ( s + 1 , α + 1 ) ( b a ) ( 2 α + s | f ( b ) | | f ( a ) | | f ( b ) | ) ( α + s + 1 ) 2 α + s + 1 + ( b a ) | f ( a ) | [ 0.5 B ( s + 1 , α + 1 ) B 0.5 ( α + 1 , s + 1 ) ] + ( b a ) | f ( b ) | [ B 0.5 ( s + 1 , α + 1 ) 0.5 B ( s + 1 , α + 1 ) ] .

The proof is done. □

Theorem 3.2 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 2 1 p α p α + 1 ) 1 p ,

where 1 p + 1 q =1.

Proof By using Definition 2.2, Lemma 2.5, Hölder’s inequality and Lemma 2.6, we have

| f ( a ) + f ( b ) 2 Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] | b a 2 0 1 | ( 1 t ) α t α | | f ( t a + ( 1 t ) b ) | d t b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( 0 1 | ( 1 t ) α t α | p d t ) 1 p ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 0 1 | ( 1 t ) α t α | p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( t α ( 1 t ) α ) p d t + 0 1 2 ( ( 1 t ) α t α ) p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( t p α ( 1 t ) p α ) d t + 0 1 2 ( ( 1 t ) p α t p α ) d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 2 1 p α p α + 1 ) 1 p .

The proof is done. □

3.2 The second results

By using Lemma 2.7, we can obtain the main results in this section.

Theorem 3.3 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) 0.5 ( b a ) ( | f ( a ) | + | f ( b ) | ) × ( B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) + 2 α 1 α + s + 1 + 1 s + 1 ) .

Proof By using Definition 2.2, Lemma 2.5 and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 0 1 | h ( t ) ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 | 1 ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 | 1 ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) | f ( t a + ( 1 t ) b ) | d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) | f ( t a + ( 1 t ) b ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) | f ( a t b 1 t ) | d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) | f ( a t b 1 t ) | d t b a 2 1 2 1 ( 1 + ( 1 t ) α t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t + b a 2 0 1 2 ( 1 ( 1 t ) α + t α ) [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t ( b a ) | f ( a ) | 2 1 2 1 t α + s d t + ( b a ) | f ( a ) | 2 1 2 1 t s d t + ( b a ) | f ( a ) | 2 1 2 1 t s ( 1 t ) α d t + ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) α + s d t ( b a ) | f ( b ) | 2 1 2 1 t α ( 1 t ) s d t + ( b a ) | f ( b ) | 2 1 2 1 ( 1 t ) s d t + ( b a ) | f ( a ) | 2 0 1 2 t α + s d t ( b a ) | f ( a ) | 2 0 1 2 t s ( 1 t ) α d t + ( b a ) | f ( a ) | 2 0 1 2 t s d t ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) α + s d t + ( b a ) | f ( b ) | 2 0 1 2 t α ( 1 t ) s d t + ( b a ) | f ( b ) | 2 0 1 2 ( 1 t ) s d t ( b a ) | f ( a ) | 2 1 2 α s 1 α + s + 1 + ( b a ) | f ( a ) | 2 1 2 s 1 s + 1 + ( b a ) | f ( a ) | 2 B 0.5 ( α + 1 , s + 1 ) + ( b a ) | f ( b ) | 2 2 α s 1 α + s + 1 ( b a ) | f ( b ) | 2 B 0.5 ( s + 1 , α + 1 ) + ( b a ) | f ( b ) | 2 2 s 1 s + 1 + ( b a ) | f ( a ) | 2 2 α s 1 α + s + 1 ( b a ) | f ( a ) | 2 B 0.5 ( s + 1 , α + 1 ) + ( b a ) | f ( a ) | 2 2 s 1 s + 1 ( b a ) | f ( b ) | 2 1 2 α s 1 α + s + 1 + ( b a ) | f ( b ) | 2 1 2 s 1 s + 1 + ( b a ) | f ( b ) | 2 B 0.5 ( α + 1 , s + 1 ) ( b a ) | f ( a ) | 2 2 α s 1 α + s + 1 + ( b a ) | f ( a ) | 2 [ B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) ] + ( b a ) | f ( a ) | 2 ( s + 1 ) + ( b a ) | f ( b ) | 2 2 α s 1 α + s + 1 + ( b a ) | f ( b ) | 2 [ B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) ] + ( b a ) | f ( b ) | 2 ( s + 1 ) 0.5 ( b a ) ( | f ( a ) | + | f ( b ) | ) × ( B 0.5 ( α + 1 , s + 1 ) B 0.5 ( s + 1 , α + 1 ) + 2 α 1 α + s + 1 + 1 s + 1 ) .

The proof is done. □

Theorem 3.4 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | max { b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( ( 1 + 2 1 α ) p 2 2 p ( 1 2 p α ) ( p α + 1 ) ) 1 p , ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p } ,

where 1 p + 1 q =1.

Proof To achieve our aim, we divide our proof into two cases.

Case 1: α(0,1). By using Definition 2.2, Lemma 2.4, Lemma 2.5, Hölder’s inequality and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 0 1 | h ( t ) ( 1 t ) α + t α | | f ( t a + ( 1 t ) b ) | d t b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 0 1 | h ( t ) ( 1 t ) α + t α | p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + ( 1 t ) α ) p d t + 0 1 2 ( 1 ( 1 t ) α + t α ) p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 [ 1 t α + 2 1 α t α ] p d t + 0 1 2 [ ( 1 + t α ) ( 1 t α ) ] p d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 [ ( 1 + 2 1 α ) p 2 p t p α ] d t + 0 1 2 2 p t p α d t ) 1 p b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( ( 1 + 2 1 α ) p 2 2 p ( 1 2 p α ) ( p α + 1 ) ) 1 p .

Case 2: α[1,). By using Definition 2.2, Lemma 2.4 and Lemma 2.7, we have

| Γ ( α + 1 ) 2 ( b a ) α [ J a + α f ( b ) + J b α f ( a ) ] f ( a + b 2 ) | b a 2 ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + ( 1 t ) α ) p d t + 0 1 2 ( 1 ( 1 t ) α + t α ) p d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 ( 1 t α + 1 t α ) p d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 1 2 1 2 p ( 1 t p α ) d t ) 1 p ( b a ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p .

The proof is done. □

3.3 The third results

By using Lemma 2.8, we can obtain the main results in this section.

Theorem 3.5 Let f:[0,b]R be a differentiable mapping. If | f | is measurable and | f | is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<x<b, then the following inequality for fractional integrals holds:

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a [ | f ( a ) | α + s + 1 + | f ( b ) | B ( α + 1 , s + 1 ) ] ,

where

B(s+1,α+1)= 0 1 t s ( 1 t ) α dt.

Proof By using Definition 2.2, Lemma 2.5 and Lemma 2.8, we have

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( t x + ( 1 t ) a ) | d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( x t a 1 t ) | d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α [ t s | f ( a ) | + ( 1 t ) s | f ( b ) | ] d t | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 [ t α + s | f ( a ) | + t α ( 1 t ) s | f ( b ) | ] d t | ( x a ) α + 1 ( b x ) α + 1 | b a [ | f ( a ) | α + s + 1 + | f ( b ) | B ( α + 1 , s + 1 ) ] .

The proof is done. □

Theorem 3.6 Let f:[0,b]R be a differentiable mapping and 1<q<. If | f | q is measurable and | f | q is decreasing and geometric-arithmetically s-convex on [0,b] for some fixed α(0,), s(0,1], 0a<b, then the following inequality for fractional integrals holds:

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | b a 2 ( p α + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q .

Proof By using Definition 2.2, Lemma 2.5, Hölder’s inequality and Lemma 2.8, we have

| ( x a ) α + ( b x ) α b a f ( x ) Γ ( α + 1 ) b a [ J x α f ( a ) + J x + α f ( b ) ] | | ( x a ) α + 1 ( b x ) α + 1 | b a 0 1 t α | f ( t x + ( 1 t ) a ) | d t b a 2 ( 0 1 t p α d t ) 1 p ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 | f ( t a + ( 1 t ) b ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 | f ( a t b 1 t ) | q d t ) 1 q b a 2 ( p α + 1 ) ( 0 1 [ t s | f ( a ) | q + ( 1 t ) s | f ( b ) | q ] d t ) 1 q b a 2 ( p α + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q ,

where 1 p + 1 q =1. The proof is done. □

4 Applications to special means

Consider the following special means (see Pearce and Pec̆arić [22]) for arbitrary real numbers α, β, αβ as follows:

  1. (i)

    H(α,β)= 2 1 α + 1 β , α,βR{0};

  2. (ii)

    A(α,β)= α + β 2 , α,βR;

  3. (iii)

    L(α,β)= β α ln | β | ln | α | , |α||β|, αβ0;

  4. (iv)

    L n (α,β)= [ β n + 1 α n + 1 ( n + 1 ) ( β α ) ] 1 n , nZ{1,0}, α,βR, αβ.

Next, we apply the obtained results to give some applications to special means of real numbers.

Theorem 4.1 For some s(0,1], nZ{1,0}, 0a<b, the following inequality for fractional integrals holds:

|A ( a n , b n ) L n n ( a n , b n ) | n ( b a ) 2 ( a ( n 1 ) q + b ( n 1 ) q s + 1 ) 1 q ( 2 2 1 p p + 1 ) 1 p ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.2 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.2 For some s(0,1], nZ{1,0}, 0a<b, the following inequality for fractional integrals holds:

| L n n ( a n , b n ) A n ( a , b ) | ( b a ) ( a ( n 1 ) q + b ( n 1 ) q s + 1 ) 1 q max { ( 2 p 2 2 p 1 0.5 p + 1 ) 1 p , ( 2 p 1 2 p 0.5 p + 1 ) 1 p } ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.4 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.3 For some s(0,1], nZ{1,0}, 1<q<, 0a<x<b, the following inequality for fractional integrals holds:

| L n n ( a n , b n ) x n | b a 2 ( p + 1 ) ( | f ( a ) | q + | f ( b ) | q s + 1 ) 1 q .

Proof Applying Theorem 3.6 for f(x)= x n , α=1, one can obtain the result immediately. □

Theorem 4.4 For some s(0,1], 0a<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 L ( a , b ) | b a 2 ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q ( 2 2 1 p p + 1 ) 1 p ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.2 for f(x)= x 1 , α=1, one can obtain the result immediately. □

Theorem 4.5 For some s(0,1], 0a<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 A ( a , b ) | ( b a ) ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q max { ( ( 1 + 2 1 α ) p 4 2 p 1 ( 1 2 p α ) ( p α + 1 ) ) 1 p , ( 2 p 1 2 p ( 1 2 p α 1 ) p α + 1 ) 1 p } ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.4 for f(x)= x 1 , α=1, one can obtain the result immediately. □

Theorem 4.6 For some s(0,1], 0a<x<b, the following inequality for fractional integrals holds:

| 1 H ( a , b ) 1 x | b a 2 ( p + 1 ) ( a 2 q + b 2 q ( s + 1 ) a 2 q b 2 q ) 1 q ,

where

1 p + 1 q =1,1<q<.

Proof Applying Theorem 3.6 for f(x)= x 1 , α=1, one can obtain the result immediately. □

References

  1. Baleanu D, Machado JAT, Luo ACJ: Fractional Dynamics and Control. Springer, Berlin; 2012.

    Book  Google Scholar 

  2. Diethelm K Lecture Notes in Mathematics. The Analysis of Fractional Differential Equations 2010.

    Chapter  Google Scholar 

  3. Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  4. Lakshmikantham V, Leela S, Devi JV: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009.

    Google Scholar 

  5. Miller KS, Ross B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York; 1993.

    Google Scholar 

  6. Michalski MW Dissertationes Mathematicae CCCXXVIII. In Derivatives of Noninteger Order and Their Applications. Inst. Math., Polish Acad. Sci., Warsaw; 1993.

    Google Scholar 

  7. Podlubny I: Fractional Differential Equations. Academic Press, San Diego; 1999.

    Google Scholar 

  8. Tarasov VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin; 2011.

    Google Scholar 

  9. Sarikaya MZ, Set E, Yaldiz H, Başak N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57: 2403–2407. 10.1016/j.mcm.2011.12.048

    Article  Google Scholar 

  10. Zhu C, Fečkan M, Wang J: Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8: 21–28.

    Google Scholar 

  11. Latif MA, Dragomir SS, Matouk AE: New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals. J. Fract. Calc. Appl. 2012, 2: 1–15.

    Google Scholar 

  12. Wang, J, Li, X, Zhu, C: Refinements of Hermite-Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin (2013, in press)

  13. Set E: New inequalities of Ostrowski type for mappings whose derivatives are s -convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63: 1147–1154. 10.1016/j.camwa.2011.12.023

    Article  MathSciNet  Google Scholar 

  14. Wang J, Deng J, Fečkan M: Hermite-Hadamard type inequalities for r -convex functions via Riemann-Liouville fractional integrals. Ukr. Math. J. 2013, 65: 193–211. 10.1007/s11253-013-0773-y

    Article  Google Scholar 

  15. Zhang Y, Wang J: On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl. 2013., 2013: Article ID 220

    Google Scholar 

  16. Wang J, Li X, Fečkan M, Zhou Y: Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2012. 10.1080/00036811.2012.727986

    Google Scholar 

  17. Wang, J, Deng, J, Fečkan, M: Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca (2013, in press)

  18. Wang J, Zhu C, Zhou Y: New generalized Hermite-Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013., 2013: Article ID 325

    Google Scholar 

  19. Deng J, Wang J:Fractional Hermite-Hadamard inequalities for (α,m)-logarithmically convex functions. J. Inequal. Appl. 2013., 2013: Article ID 364

    Google Scholar 

  20. Shuang Y, Yin HP, Qi F: Hermite-Hadamard type integral inequalities for geometric-arithmetically s -convex functions. Analysis 2013, 33: 197–208. 10.1524/anly.2013.1192

    Article  MathSciNet  Google Scholar 

  21. DiDonato AR, Jarnagin MP: The efficient calculation of the incomplete beta-function ratio for half-integer values of the parameters. Math. Comput. 1967, 21: 652–662.

    MathSciNet  Google Scholar 

  22. Pearce CEM, Pečarić JE: Inequalities for differentiable mappings with application to special means and quadrature formula. Appl. Math. Lett. 2000, 13: 51–55.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11201091), Key Projects of Science and Technology Research in the Chinese Ministry of Education (211169), Key Support Subject (Applied Mathematics) and Key project on the reforms of teaching contents and course system of Guizhou Normal College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

This work was carried out in collaboration between all authors. JRW raised these interesting problems in this research. YML, JHD and JRW proved the theorems, interpreted the results and wrote the article. All authors defined the research theme, read and approved the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Liao, Y., Deng, J. & Wang, J. Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions. J Inequal Appl 2013, 443 (2013). https://doi.org/10.1186/1029-242X-2013-443

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-443

Keywords