Skip to main content

Boundedness of sublinear operators and their commutators on generalized central Morrey spaces

Abstract

In this paper, we introduce the generalized central Morrey spaces B ˙ p , φ ( R n ) and get the boundedness of a large class of rough operators on them. We also consider the CBMO estimates of their commutators on generalized central Morrey spaces. As applications, we obtain the boundedness characterizations of rough Hardy-Littlewood maximal function, rough Calderón-Zygmund singular integral, rough fractional integral, etc. on generalized central Morrey spaces.

MSC:42B20, 42B25.

1 Introduction

Let Ω∈ L s ( S n − 1 ) be homogeneous of degree zero on R n , where S n − 1 denotes the unit sphere of R n and s>1. We define s ′ =s/(s−1) for any s>1. Suppose that T Ω represents a sublinear operator, which satisfies that for any f∈ L 1 ( R n ) with compact support and x∉suppf,

| T Ω f ( x ) | ≤C ∫ R n | Ω ( x − y ) | | x − y | n | f ( y ) | dy,
(1.1)

where C>0 is an absolute constant. Similarly, for any 0<α<n, we assume that T Ω , α represents a sublinear operator, which satisfies that

| T Ω , α f ( x ) | ≤C ∫ R n | Ω ( x − y ) | | x − y | n − α | f ( y ) | dy
(1.2)

for any f∈ L 1 ( R n ) with compact support and x∉suppf.

Let T be a linear operator. For a locally integrable function b on R n , we define the commutator [T,b] by

[T,b]f(x)=b(x)Tf(x)−T(bf)(x)
(1.3)

for any suitable function f.

To study the local behavior of solutions to second-order elliptic partial differential equations, Morrey [1] introduced the classical Morrey spaces L p , λ ( R n ). The readers can find more details in [2].

Let 1≤p<∞ and λ≥0. B( x 0 ,t) denotes a ball centered at x 0 of radius t. Morrey spaces L p , λ ( R n ) are defined by

L p , λ ( R n ) = { f ∈ L loc p ( R n ) : ∥ f ∥ L p , λ ( R n ) < ∞ } ,

where

∥ f ∥ L p , λ ( R n ) = sup x 0 ∈ R n , t > 0 ( 1 t λ ∫ B ( x 0 , t ) | f ( x ) | p d x ) 1 p .

When 1≤p<∞, L p , 0 ( R n )= L p ( R n ) and L p , n ( R n )= L ∞ ( R n ); when λ>n, L p , λ ( R n )={0}.

Many authors have studied the mapping properties of many operators on Morrey spaces; see [3–5] and [6]. Alvarez et al. [7], in order to study the relationship between central BMO spaces and Morrey spaces, introduced λ-central bounded mean oscillation spaces and central Morrey spaces.

Let λ< 1 n and 1<p<∞. A function f∈ L loc p ( R n ) belongs to the λ-central bounded mean oscillation spaces CBMO p , λ ( R n ) if

∥ f ∥ CBMO p , λ = sup r > 0 ( 1 | B ( 0 , r ) | 1 + λ p ∫ B ( 0 , r ) | f ( x ) − f B ( 0 , r ) | p ) 1 p <∞,

where f B ( 0 , r ) = 1 | B ( 0 , r ) | ∫ B ( 0 , r ) f(y)dy. If two functions which differ by a constant are regarded as functions in the spaces CBMO p , λ ( R n ), then CBMO p , λ ( R n ) spaces become Banach spaces. CBMO p , λ ( R n ) spaces become the spaces of constants when λ<− 1 p and they coincide with L p ( R n ) modulo constants when λ=− 1 p .

Let λ∈R and 1<p<∞. The central Morrey spaces B ˙ p , λ ( R n ) are defined by

∥ f ∥ B ˙ p , λ = sup r > 0 ( 1 | B ( 0 , r ) | 1 + λ p ∫ B ( 0 , r ) | f ( x ) | p ) 1 p <∞.

It follows that B ˙ p , λ ( R n ) spaces are Banach spaces continuously included in CBMO p , λ ( R n ) spaces. B ˙ p , λ ( R n ) spaces reduce to {0} when λ<− 1 p , and it is true that B ˙ p , − 1 p ( R n )= L p ( R n ), B ˙ p , 0 ( R n )= B ˙ p ( R n ).

Recently, Guliyev [8] introduced the generalized Morrey spaces L p , φ ( R n ), where φ(x,r) is a positive measurable function on R n ×(0,∞) and 1≤p<∞. For all functions f∈ L loc p ( R n ), the generalized Morrey spaces L p , φ ( R n ) are defined by

∥ f ∥ L p , φ ( R n ) = sup x ∈ R n , r > 0 φ ( x , r ) − 1 | B ( x , r ) | − 1 p ∥ f ∥ L p ( B ( x , r ) ) <∞.

Obviously, if φ(x,r)= r λ − n p , L p , λ ( R n )= L p , φ ( R n ).

When Ω≡1, Guliyev obtained the sufficient condition on φ 1 and φ 2

∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p + 1 dt≤C φ 2 (r)

for the boundedness of T Ω satisfying (1.1) from L p , φ 1 ( R n ) to L p , φ 2 ( R n ) in [9] and gave the condition on the pair of ( φ 1 , φ 2 )

∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q + 1 dt≤C φ 2 (r)

for the boundedness of T Ω , α satisfying (1.2) from L p , φ 1 ( R n ) to L q , φ 2 ( R n ) in [10], where 1 q = 1 p − α n .

Inspired by the above, we consider the boundedness of sublinear operators on the following generalized central Morrey spaces and give the λ-central bounded mean oscillation estimates for linear operator commutators.

Definition 1.1 Let φ(r) be a positive measurable function on R + and 1<p<∞. We denote by B ˙ p , φ ( R n ) the generalized central Morrey spaces, the spaces of all f∈ L loc p ( R n ) with finite quasinorm

∥ f ∥ B ˙ p , φ ( R n ) = sup r > 0 φ ( r ) − 1 | B ( 0 , r ) | − 1 p ∥ f ∥ L p ( B ( 0 , r ) ) .

We can recover the spaces B ˙ p , λ ( R n ) under the choice φ(r)= r n λ .

Recall that in 1994 the doctoral thesis [11] by Guliyev (see also [12–15]) introduced the local Morrey-type space L M p θ , ω given by

∥ f ∥ L M p θ , ω = ∥ ω ( r ) ∥ f ∥ L p ( B ( 0 , r ) ) ∥ L θ ( 0 , ∞ ) <∞,

where ω is a positive measurable function defined on (0,∞). The main purpose of [11] (also of [12–15]) is to give some sufficient conditions for the boundedness of fractional integral operators and singular integral operators defined on homogeneous Lie groups in the local Morrey-type space L M p θ , ω . In a series of papers by Burenkov, H Guliyev and V Guliyev, etc. (see [16–21]), some necessary and sufficient conditions for the boundedness of fractional maximal operators, fractional integral operators and singular integral operators in local Morrey-type spaces L M p θ , ω were given.

Particularly, if θ=∞, L M p θ , ω =L M p , ω , then the generalized central Morrey spaces B ˙ p , φ ( R n ) are the same spaces as the local Morrey spaces L M p , ω with ω(r)=φ ( r ) − 1 r − n p .

The following statements were proved in [11] (see also [14]).

Theorem A Let 1<p<∞ and ( φ 1 , φ 2 ) satisfy the condition

∫ r ∞ φ 1 (t) d t t ≤C φ 2 (r),

where C does not depend on r. Then the Calderón-Zygmund operator T is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Theorem B Let 1<p<∞, 0<α< n p , 1 q = 1 p − α n and ( φ 1 , φ 2 ) satisfy the condition

∫ r ∞ t α φ 1 (t) d t t ≤C φ 2 (r),

where C does not depend on r. Then the Riesz potential I α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

From Lemmas 4.4 and 5.3 in [9] we get the following for the generalized central (local) Morrey spaces B ˙ p , φ .

Theorem C Let 1<p<∞, T be a sublinear operator satisfying that for any f∈ L 1 ( R n ) with compact support and x∉suppf,

| T f ( x ) | ≤C ∫ R n | f ( y ) | | x − y | n dy,

and bounded on f∈ L p ( R n ). Let also the pair ( φ 1 , φ 2 ) satisfy the condition

∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p + 1 dt≤C φ 2 (r),

where C does not depend on r. Then the operator T is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Theorem D Let 1<p<∞, 0<α< n p , 1 q = 1 p − α n , T α be a sublinear operator satisfying that for any f∈ L 1 ( R n ) with compact support and x∉suppf,

| T α f ( x ) | ≤C ∫ R n | f ( y ) | | x − y | n − α dy,

and bounded from f∈ L p ( R n ) to f∈ L q ( R n ). Let also the pair ( φ 1 , φ 2 ) satisfy the condition

∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q + 1 dt≤C φ 2 (r),

where C does not depend on r. Then the operator T α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

2 Sublinear operator with rough kernel

Theorem E Let ω be a positive weight function on (0,∞). The inequality

ess sup t > 0 ν 2 (t) H ω g(t)≤cess sup t > 0 ν 1 (t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A:= sup t > 0 ν 2 ( t ) t ∫ 0 t ω ( r ) d r ess sup 0 < τ < r ν 1 ( τ ) <∞,

and c≈A, where the H ω is the weighted Hardy operator

H ω g(t):= 1 t ∫ 0 t g(r)ω(r)dr,0<t<∞.

Note that Theorem E can be proved analogously to Theorem 1 in [22]; particularly, when ω≡1, it was proved in [23].

In this section we are going to discuss the boundedness of T Ω and T Ω , α on generalized central Morrey spaces.

Lemma 2.1 Let 1<p<∞, T Ω be a sublinear operator and satisfy (1.1) with Ω∈ L s ( S n − 1 ).

When s ′ ≤p and T Ω is bounded on L p ( R n ) for 1<p<∞, then the inequality

∥ T Ω f ∥ L p ( B ( 0 , r ) ) ≤C r n p ∫ 2 r ∞ t − n p − 1 ∥ f ∥ L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f∈ L loc p ( R n ); or p<s and T Ω is bounded on L p ( R n ) for 1<p<∞, then the inequality

∥ T Ω f ∥ L p ( B ( 0 , r ) ) ≤C r n p − n s ∫ 2 r ∞ t − n p + n s − 1 ∥ f ∥ L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f∈ L loc p ( R n ).

Proof Let 1<p<∞. For any r>0, set B=B(0,r) and 2B=B(0,2r). We write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and have

∥ T Ω f ∥ L p ( B ) ≤ ∥ T Ω f 1 ∥ L p ( B ) + ∥ T Ω f 2 ∥ L p ( B ) .

Since T Ω f 1 is bounded on L p ( R n ), it follows that

∥ T Ω f 1 ∥ L p ( B ) ≤ ∥ T Ω f 1 ∥ L p ( R n ) ≤C ∥ f 1 ∥ L p ( R n ) =C ∥ f ∥ L p ( 2 B ) ,

where the constant C>0 is independent of f.

It is known that x∈B, y∈ ( 2 B ) c , which implies 1 2 |y|≤|x−y|≤ 3 2 |y|. Thus

| T Ω f 2 ( x ) | ≤C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n .
  1. (i)

    When s ′ ≤p and by Fubini’s theorem, we have

    ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n = C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | ∫ | y | ∞ d t t n + 1 d y ≤ C ∫ 2 r ∞ ∫ 2 r ≤ | y | < t | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p − 1 s d t t n + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n p + 1 .

Hence, for all p∈(0,∞), the inequality

∥ T Ω f 2 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n p + 1

holds.

  1. (ii)

    When p<s, by Fubini’s theorem and the Minkowski inequality, we get

    ∥ T Ω f 2 ∥ L p ( B ) ≤ ( ∫ B | ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 | p d x ) 1 p ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | Ω ( x − y ) | p d x ) 1 p d y d t t n + 1 ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d x ) 1 s | B | 1 p − 1 s d y d t t n + 1 ≤ C r n p − n s ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n p − n s + 1 .

On the other hand, for any q>0, we have

∥ f ∥ L p ( 2 B ) =C r n q ∥ f ∥ L p ( 2 B ) ∫ 2 r ∞ d t t n q + 1 ≤C r n q ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n q + 1 .

Combining the above estimates, we complete the proof of Lemma 2.1. □

Theorem 2.2 Let 1<p<∞ and Ω∈ L s ( S n − 1 ). Let T Ω be a sublinear operator satisfying (1.1) and bounded on L p ( R n ) for p>1. If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p + 1 dt≤C φ 2 (r),
  2. (ii)

    when p<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator T Ω is bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

Proof When s ′ ≤p, by Lemma 2.1 and Theorem E, for ω≡1, p>1, we have

∥ T Ω f ∥ B ˙ p , φ 2 ≤ C sup r > 0 φ 2 ( r ) − 1 ∫ r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n p + 1 = C sup r > 0 φ 2 ( r ) − 1 ∫ 0 r − n p ∥ f ∥ L p ( B ( 0 , t − p n ) ) d t = C sup r > 0 φ 2 ( r − p n ) − 1 ∫ 0 r ∥ f ∥ L p ( B ( 0 , t − p n ) ) d t ≤ C sup r > 0 φ 1 ( r − p n ) − 1 r ∥ f ∥ L p ( B ( 0 , r − p n ) ) = C ∥ f ∥ B ˙ p , φ 1 .

For the case of p<s, we can use the same method to prove the desirable conclusion. □

The Calderón-Zygmund operator with rough kernel T ˜ Ω has the following integral expression:

T ˜ Ω f(x)= ∫ R n K(x,y)f(y)Ω(y)dy

for any test function f and x∉suppf. The kernel is a locally integral function defined away from the diagonal satisfying the size condition

K(x,y)≤C 1 | x − y | n

for all x,y∈ R n and x≠y.

f∈ L loc 1 , the rough Hardy-Littlewood maximal function M Ω is defined by

M Ω f(x)= sup t > 0 1 | B ( x , t ) | ∫ B ( x , t ) | Ω ( y ) | | f ( y ) | dy.

Then we can get the following corollary.

Corollary 2.3 Let 1<p<∞ and Ω∈ L s ( S n − 1 ). If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p + 1 ≤C φ 2 (r),
  2. (ii)

    when p<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n p − n s + 1 ≤C φ 2 (r) r n s

is satisfied, then M Ω and T ˜ Ω are both bounded from B ˙ p , φ 1 to B ˙ p , φ 2 .

In the following statements, the boundedness of T Ω , α satisfying (1.2) in generalized central Morrey spaces is proved.

Lemma 2.4 Let 0<α<n, 1<p< n α and 1 q = 1 p − α n , T Ω , α be a sublinear operator and satisfy (1.2) with Ω∈ L s ( S n − 1 ).

When s ′ ≤p and T Ω , α is bounded from L p ( R n ) to L q ( R n ), then the inequality

∥ T Ω , α f ∥ L q ( B ( 0 , r ) ) ≤C r n q ∫ 2 r ∞ t − n q − 1 ∥ f ∥ L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f∈ L loc p ( R n ); or q<s and T Ω , α is bounded from L p ( R n ) to L q ( R n ), then the inequality

∥ T Ω , α f ∥ L q ( B ( 0 , r ) ) ≤C r n q − n s ∫ 2 r ∞ t − n q + n s − 1 ∥ f ∥ L p ( B ( 0 , t ) ) dt

holds for any ball B(0,r) and for all f∈ L loc p ( R n ).

Proof Let 0<α<n, 1<p< n α and 1 q = 1 p − α n . For any r>0, set B=B(0,r) and 2B=B(0,2r). We write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and have

∥ T Ω , α f ∥ L q ( B ) ≤ ∥ T Ω , α f 1 ∥ L q ( B ) + ∥ T Ω , α f 2 ∥ L q ( B ) .

Since T Ω , α f 1 is bounded from L p ( R n ) to L q ( R n ), it follows that

∥ T Ω , α f 1 ∥ L q ( B ) ≤ ∥ T Ω , α f 1 ∥ L q ( R n ) ≤C ∥ f 1 ∥ L p ( R n ) =C ∥ f ∥ L p ( 2 B ) ,

where the constant C>0 is independent of f.

Since x∈B, y∈ ( 2 B ) c , thus

| T Ω , α f 2 ( x ) | ≤C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n − α .
  1. (i)

    When s ′ ≤p and by Fubini’s theorem, we have

    ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n − α = C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | ∫ | y | ∞ d t t n + 1 − α d y ≤ C ∫ 2 r ∞ ∫ 2 r ≤ | y | < t | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 − α ≤ C ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p − 1 s d t t n + 1 − α ≤ C ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n q + 1 .

Hence, for all p∈(0,∞), the inequality

∥ T Ω , α f 2 ∥ L q ( B ) ≤C r n q ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n q + 1

holds.

  1. (ii)

    When q<s, by Fubini’s theorem and the Minkowski inequality, we get

    ∥ T Ω , α f 2 ∥ L p ( B ) ≤ ( ∫ B | ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 − α | q d x ) 1 q ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | Ω ( x − y ) | q d x ) 1 q d y d t t n + 1 − α ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d x ) 1 s | B | 1 q − 1 s d y d t t n + 1 − α ≤ C r n q − n s ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s + 1 − α ≤ C r n q − n s ∫ 2 r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n q − n s + 1 .

Similarly, combining the above estimates, we finish this proof. □

Theorem 2.5 Let 0<α<n, 1<p< n α , 1 q = 1 p − α n and Ω∈ L s ( S n − 1 ). Let T Ω , α be a sublinear operator T Ω satisfying (1.2) and bounded from L p ( R n ) to L q ( R n ). If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q + 1 dt≤C φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator T Ω , α is bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

Proof When s ′ ≤p, by Lemma 2.1 and Theorem E, for 1<p< n α and 1 q = 1 p − α n , we have

∥ T Ω , α f ∥ B ˙ q , φ 2 ≤ C sup r > 0 φ 2 ( r ) − 1 ∫ r ∞ ∥ f ∥ L p ( B ( 0 , t ) ) d t t n q + 1 = C sup r > 0 φ 2 ( r ) − 1 ∫ 0 r − n q ∥ f ∥ L p ( B ( 0 , t − q n ) ) d t = C sup r > 0 φ 2 ( r − q n ) − 1 ∫ 0 r ∥ f ∥ L p ( B ( 0 , t − q n ) ) d t ≤ C sup r > 0 φ 1 ( r − q n ) − 1 r p q ∥ f ∥ L p ( B ( 0 , r − q n ) ) = C ∥ f ∥ B ˙ p , φ 1 .

For the case of q<s, we can also use the same method to prove the desirable conclusion. □

f∈ L loc 1 , the rough fractional maximal function M Ω , α and the rough fractional integral I Ω , α are defined by

M Ω , α f ( x ) = sup t > 0 1 | B ( x , t ) | 1 + α ∫ B ( x , t ) | Ω ( y ) | | f ( y ) | d y , I Ω , α f ( x ) = sup t > 0 ∫ R n Ω ( y ) f ( y ) | x − y | n − α d y

for 0<α<n.

Corollary 2.6 Let 0<α<n, 1<p< n α , 1 q = 1 p − α n and Ω∈ L s ( S n − 1 ). If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q + 1 dt≤C φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ess inf t < τ < ∞ φ 1 ( τ ) τ n p t n q − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then M Ω , α and I Ω , α are both bounded from B ˙ p , φ 1 to B ˙ q , φ 2 .

Remark 1 When s=∞, the comments in Theorem 2.2 and in Theorem 2.5 can be obtained from Lemmas 4.4 and 5.3 in [9].

3 The commutators of a linear operator with rough kernel

Let T ˜ be a Calderón-Zygmund singular integral operator and b∈BMO( R n ). The commutator operator [ T ˜ ,b] is defined by

[ T ˜ ,b]f(x)=b(x) T ˜ f(x)− T ˜ (bf)(x).

A well-known result of Coifman et al. [24] states that the commutator [ T ˜ ,b] is bounded on L p ( R n ) for 1<p<∞ if and only if b∈BMO( R n ).

Since BMO⊂ ⋂ p > 1 CBMO p , λ when λ=0, if we only assume b∈ CBMO p , λ , then [ T ˜ ,b] may not be a bounded operator on L p ( R n ). However, it has some boundedness properties on other spaces. As a matter of fact, in [25] and [26], they considered the commutators with b∈ CBMO p , λ . Here we also obtain some boundedness of the commutators with b∈ CBMO p , λ on generalized central Morrey spaces.

We need the following statement on the boundedness of the Hardy-type operator

H 1 g(t):= 1 t ∫ 0 t ln ( 1 + t r ) g(r)dr,0<t<∞.

Theorem F [27]

The inequality

ess sup t > 0 ν 2 (t) H 1 g(t)≤cess sup t > 0 ν 1 (t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A:= sup t > 0 ν 2 ( t ) t ∫ 0 t ln ( 1 + t r ) d r ess sup 0 < τ < r ν 1 ( τ ) <∞,

and c≈A.

Lemma 3.1 Let 1<p<∞, b∈ CBMO p 2 , λ , 0<λ< 1 n and 1 p = 1 p 1 + 1 p 2 , T Ω is a sublinear operator and satisfies (1.1) with Ω∈ L s ( S n − 1 ).

When s ′ ≤p and T Ω is bounded on L p ( R n ) for 1<p<∞, then the inequality

∥ [ T Ω , b ] f ∥ L p ( B ( 0 , r ) ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1

holds for any ball B(0,r) and for all f∈ L loc p 1 ( R n ); or p 1 <s and T Ω is bounded on L p ( R n ) for 1<p<∞, then the inequality

∥ [ T Ω , b ] f ∥ L p ( B ( 0 , r ) ) ≤C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1

holds for any ball B(0,r) and for all f∈ L loc p 1 ( R n ).

Proof Let 1<p<∞, b∈ CBMO p 2 , λ and 1 p = 1 p 1 + 1 p 2 . For any r>0, set B=B(0,r) and 2B=B(0,2r). We can write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and

[ T Ω , b ] f ( x ) = ( b ( x ) − b B ) T Ω f 1 ( x ) − T Ω ( ( b ( ⋅ ) − b B ) f 1 ) ( x ) + ( b ( x ) − b B ) T Ω f 2 ( x ) − T Ω ( ( b ( ⋅ ) − b B ) f 2 ) ( x ) = : I 1 + I 2 + I 3 + I 4 .

Hence, we have

∥ [ T Ω , b ] f ∥ L p ( B ) ≤ ∥ I 1 ∥ L p ( B ) + ∥ I 2 ∥ L p ( B ) + ∥ I 3 ∥ L p ( B ) + ∥ I 4 ∥ L p ( B ) .

Since T Ω is bounded on L p ( R n ), it follows that

∥ I 1 ∥ L p ( B ) = ( ∫ B | b ( x ) − b B | p | T Ω f 1 ( x ) | p d x ) 1 p ≤ ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | T Ω f 1 ( x ) | p 1 d x ) 1 p 1 ≤ C r n p 2 + n λ ∥ b ∥ CBMO p 2 , λ ∥ f ∥ L p 1 ( 2 B ) ,

where the constant C>0 is independent of f.

For I 2 , we have

∥ I 2 ∥ L p ( B ) = ( ∫ B | T Ω ( ( b ( ⋅ ) − b B ) f 1 ) ( x ) | p d x ) 1 p ≤ C ( ∫ R n | b ( x ) − b B | p | f 1 ( x ) | p d x ) 1 p ≤ C ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | f ( x ) | p 1 d x ) 1 p 1 ≤ C r n p 2 + n λ ∥ b ∥ CBMO p 2 , λ ∥ f ∥ L p 1 ( 2 B ) .

For I 3 , it is known that x∈B, y∈ ( 2 B ) c , which implies 1 2 |y|≤|x−y|≤ 3 2 |y|.

  1. (i)

    When s ′ ≤p and by Fubini’s theorem, we have

    | T Ω f 2 ( x ) | ≤ C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n = C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | ∫ | y | ∞ d t t n + 1 d y = C ∫ 2 r ∞ ∫ 2 r ≤ | y | < t | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p 1 − 1 s d t t n + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

thus

∥ I 3 ∥ L p ( B ) ≤ C ( ∫ B | b ( x ) − b B | p d x ) 1 p ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ≤ C r n p + n λ ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ≤ C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .
  1. (ii)

    When p 1 <s, by Fubini’s theorem and the Minkowski inequality, we get

    ∥ I 3 ∥ L p ( B ) ≤ ( ∫ B | ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( x ) − b B | | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 | p d x ) 1 p ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | b ( x ) − b B | p | Ω ( x − y ) | p d x ) 1 p d y d t t n + 1 ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | Ω ( x − y ) | p 1 d x ) 1 p 1 d y d t t n + 1 ≤ C r n p 2 + n λ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d x ) 1 s | B | 1 p 1 − 1 s d y d t t n + 1 ≤ C r n p − n s + n λ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1 .

On the other hand, for I 4 , by Fubini’s theorem, we have

| [ T Ω , b ] f 2 ( x ) | ≤ C ∫ ( 2 B ) c | b ( y ) − b B | | f ( y ) | | Ω ( x − y ) | d y | y | n ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B | | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 + C ∫ 2 r ∞ ∫ B ( 0 , t ) | b B ( 0 , r ) − b B ( 0 , t ) | | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 = : I 41 + I 42 .
  1. (i)

    When s ′ ≤p, we obtain

    I 41 ≤ C ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | p | f ( y ) | p d y ) 1 p ⋅ ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p − 1 s d t t n + 1 ≤ C ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | p 2 d y ) 1 p 2 ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p + 1 ≤ C ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

then

∥ I 41 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .

Moreover,

I 42 ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | | Ω ( x − y ) | d y d t t n + 1 ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ( ∫ B ( 0 , t ) | f ( y ) | p 1 d y ) 1 p 1 ⋅ ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p 1 − 1 s d t t n + 1 ≤ C ∫ 2 r ∞ ( 1 + ln t r ) t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 ,

then

∥ I 42 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .

By estimating I 41 and I 42 , we obtain

∥ I 4 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 + 1 .
  1. (ii)

    When p 1 <s, by the Minkowski inequality, we get

    ∥ I 41 ∥ L p ( B ) ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | ( ∫ B | Ω ( x − y ) | p d x ) 1 p d y d t t n + 1 ≤ C r n p − n s ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | d y d t t n − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | p 2 d y ) 1 p 2 ∥ f ∥ L p 1 ( B ( 0 , t ) ) t n − n p d t t n − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1

and

∥ I 42 ∥ L p ( B ) ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | Ω ( x − y ) | p d x ) 1 p d y d t t n + 1 ≤ C r n p − n s ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1 .

Hence, we have

∥ I 4 ∥ L p ( B ) ≤C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n p 1 − n s + 1 .

Moreover, for any q>0, we have

r n p 2 + n λ ∥ f ∥ L p 1 ( 2 B ) = C r n p 2 + n λ + n q ∥ f ∥ L p 1 ( 2 B ) ∫ 2 r ∞ d t t n q + 1 ≤ C r n p 2 + n q ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ≤ C r n p 2 + n q ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

Now combining all the above estimates, we end the proof. □

Then we have the following conclusions.

Theorem 3.2 Let 1<p<∞, b∈ CBMO p 2 , λ , 0<λ< 1 n , 1 p = 1 p 1 + 1 p 2 and Ω∈ L s ( S n − 1 ). Let T Ω be a linear operator satisfying (1.1) and bounded on L p ( R n ) for p>1. If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n p 1 + 1 dt≤C φ 2 (r),
  2. (ii)

    when p 1 <s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n p 1 − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator [ T Ω ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Corollary 3.3 Let 1<p<∞, b∈ CBMO p 2 , λ , 0<λ< 1 n , 1 p = 1 p 1 + 1 p 2 and Ω∈ L s ( S n − 1 ). If either of the two conditions

  1. (i)

    when s ′ ≤p, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n p 1 + 1 dt≤C φ 2 (r),
  2. (ii)

    when p 1 <s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n p 1 − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator [ T ˜ Ω ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

About the commutator of linear operator T Ω , α satisfying (1.2), we get the following corresponding results.

Lemma 3.4 Let 0<α<n, 1< p 1 < n α , b∈ CBMO p 2 , λ , 0<λ< 1 n , p 1 ′ < p 2 <∞ and let

1 p = 1 p 1 + 1 p 2 − α n , 1 q = 1 p 1 − α n , 1 h = 1 p 1 + 1 p 2 .

T Ω − α is a sublinear operator and satisfies (1.2) with Ω∈ L s ( S n − 1 ).

When s ′ ≤h, T Ω , α is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α and 1 m = 1 t − α n , then the inequality

∥ [ T Ω , α , b ] f ∥ L p ( B ( 0 , r ) ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1

holds for any ball B(0,r) and all f∈ L loc p 1 ( R n ); or q<s, T Ω , α is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α and 1 m = 1 t − α n , then the inequality

∥ [ T Ω , α , b ] f ∥ L p ( B ( 0 , r ) ) ≤C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1

holds for any ball B(0,r) and all f∈ L loc p 1 ( R n ).

Proof Let 0<α<n, 1< p 1 < n α , b∈ CBMO p 2 , λ , 0<λ< 1 n . For any r>0, set B=B(0,r) and 2B=B(0,2r). We also write

f(x)=f(x) χ 2 B (x)+f(x) χ ( 2 B ) c (x):= f 1 (x)+ f 2 (x)

and

[ T Ω , α , b ] f ( x ) = ( b ( x ) − b B ) T Ω , α f 1 ( x ) − T Ω , α ( ( b ( ⋅ ) − b B ) f 1 ) ( x ) + ( b ( x ) − b B ) T Ω , α f 2 ( x ) − T Ω , α ( ( b ( ⋅ ) − b B ) f 2 ) ( x ) = : II 1 + II 2 + II 3 + II 4 .

Hence, we have

∥ [ T Ω , α , b ] f ∥ L p ( B ) ≤ ∥ II 1 ∥ L p ( B ) + ∥ II 2 ∥ L p ( B ) + ∥ II 3 ∥ L p ( B ) + ∥ II 4 ∥ L p ( B ) .

Since T Ω , α is bounded from L p 1 ( R n ) to L q ( R n ) and 1 q = 1 p 1 − α n , it follows that

∥ II 1 ∥ L p ( B ) = ( ∫ B | b ( x ) − b B | p | T Ω , α f 1 ( x ) | p d x ) 1 p ≤ ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | T Ω , α f 1 ( x ) | q d x ) 1 q ≤ C r n p 2 + n λ ∥ b ∥ CBMO p 2 , λ ∥ f ∥ L p 1 ( 2 B ) ,

where the constant C>0 is independent of f.

For II 2 , 1 p = 1 h − α n and 1 h = 1 p 1 + 1 p 2 ,

∥ II 2 ∥ L p ( B ) = ( ∫ B | T Ω , α ( ( b ( ⋅ ) − b B ) f 1 ) ( x ) | p d x ) 1 p ≤ ( ∫ R n | b ( x ) − b B | h | f 1 ( x ) | h d x ) 1 h ≤ ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | f ( x ) | p 1 d x ) 1 p 1 ≤ C r n p 2 + n λ ∥ b ∥ CBMO p 2 , λ ∥ f ∥ L p 1 ( 2 B ) .

For I 3 ,

  1. (i)

    when s ′ ≤h, by Fubini’s theorem, since x∈B, we have

    | T Ω , α f 2 ( x ) | ≤ C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | d y | y | n − α = C ∫ ( 2 B ) c | f ( y ) | | Ω ( x − y ) | ∫ | y | ∞ d t t n − α + 1 d y = C ∫ 2 r ∞ ∫ 2 r ≤ | y | < t | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p 1 − 1 s d t t n − α + 1 ≤ C ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

thus

∥ I 3 ∥ L p ( B ) ≤ C ( ∫ B | b ( x ) − b B | p d x ) 1 p ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ≤ C ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 r n q ∫ 2 r ∞ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ≤ C r n p + n λ ∫ 2 r ∞ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ≤ C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ;
  1. (ii)

    when q<s, by Fubini’s theorem and the Minkowski inequality, we get

    ∥ I 3 ∥ L p ( B ) ≤ ( ∫ B | ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( x ) − b B | | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 | p d x ) 1 p ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | b ( x ) − b B | p | Ω ( x − y ) | p d x ) 1 p d y d t t n − α + 1 ≤ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | b ( x ) − b B | p 2 d x ) 1 p 2 ( ∫ B | Ω ( x − y ) | q d x ) 1 q d y d t t n − α + 1 ≤ C r n p 2 + n λ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d x ) 1 s | B | 1 q − 1 s d y d t t n − α + 1 ≤ C r n p − n s + n λ ∫ 2 r ∞ ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s − α + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1 .

On the other hand, for I 4 , by Fubini’s theorem, we have

| [ T Ω , α , b ] f 2 ( x ) | ≤ C ∫ ( 2 B ) c | b ( y ) − b B | | f ( y ) | | Ω ( x − y ) | d y | y | n − α ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B | | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 + C ∫ 2 r ∞ ∫ B ( 0 , t ) | b B ( 0 , r ) − b B ( 0 , t ) | | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 = : I 41 + I 42 .
  1. (i)

    When s ′ ≤h, we obtain

    I 41 ≤ C ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | h | f ( y ) | h d y ) 1 h ⋅ ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 h − 1 s d t t n − α + 1 ≤ C ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | p 2 d y ) 1 p 2 ∥ f ∥ L p 1 ( B ( 0 , t ) ) t n − n h d t t n − α + 1 ≤ C ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

then

∥ I 41 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

For I 42 , we have

I 42 ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | | Ω ( x − y ) | d y d t t n − α + 1 ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ( ∫ B ( 0 , t ) | f ( y ) | p 1 d y ) 1 p 1 ⋅ ( ∫ B ( 0 , t ) | Ω ( x − y ) | s d y ) 1 s | B ( 0 , t ) | 1 − 1 p 1 − 1 s d t t n − α + 1 ≤ C ∫ 2 r ∞ ( 1 + ln t r ) t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 ,

then

∥ I 42 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 .

Then, by estimating I 41 and I 42 , we obtain

∥ I 4 ∥ L p ( B ) ≤C r n p ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q + 1 .
  1. (ii)

    When q<s, by the Minkowski inequality, we get

    ∥ I 41 ∥ L p ( B ) ≤ C ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | ( ∫ B | Ω ( x − y ) | p d x ) 1 p d y d t t n − α + 1 ≤ C r n p − n s ∫ 2 r ∞ ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | | f ( y ) | d y d t t n − n s − α + 1 ≤ C r n p − n s ∫ 2 r ∞ ( ∫ B ( 0 , t ) | b ( y ) − b B ( 0 , t ) | p 2 d y ) 1 p 2 ∥ f ∥ L p 1 ( B ( 0 , t ) ) t n − n h d t t n − n s − α + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1

and

∥ I 42 ∥ L p ( B ) ≤ C ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | ( ∫ B | Ω ( x − y ) | p d x ) 1 p d y d t t n − α + 1 ≤ C r n p − n s ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∫ B ( 0 , t ) | f ( y ) | d y d t t n − n s − α + 1 ≤ C r n p − n s ∫ 2 r ∞ | b B ( 0 , r ) − b B ( 0 , t ) | ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1 ≤ C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1 .

Hence, we have

∥ I 4 ∥ L p ( B ) ≤C r n p − n s ∫ 2 r ∞ t n λ ( 1 + ln t r ) ∥ f ∥ L p 1 ( B ( 0 , t ) ) d t t n q − n s + 1 .

Then we end this proof. □

Theorem 3.5 Let 0<α<n, 1< p 1 < n α , b∈ CBMO p 2 , λ , 0<λ< 1 n , p 1 ′ < p 2 <∞ and

1 p = 1 p 1 + 1 p 2 − α n , 1 q = 1 p 1 − α n , 1 h = 1 p 1 + 1 p 2 .

Let T Ω , α be a linear operator satisfying (1.2) with Ω∈ L s ( S n − 1 ), which is bounded from L t ( R n ) to L m ( R n ) for any 1<t< n α , 1 m = 1 t − α n . If either of the two conditions

  1. (i)

    when s ′ ≤h, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n q + 1 dt≤C φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n q − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator [ T Ω , α ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Corollary 3.6 Let 0<α<n, 1< p 1 < n α , b∈ CBMO p 2 , λ , 0<λ< 1 n , p 1 ′ < p 2 <∞, Ω∈ L s ( S n − 1 ) and

1 p = 1 p 1 + 1 p 2 − α n , 1 q = 1 p 1 − α n , 1 h = 1 p 1 + 1 p 2 .

If either of the two conditions

  1. (i)

    when s ′ ≤h, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n q + 1 dt≤C φ 2 (r),
  2. (ii)

    when q<s, ( φ 1 , φ 2 ) satisfies the condition

    ∫ r ∞ ( 1 + ln t r ) t n λ ess inf t < τ < ∞ φ 1 ( τ ) τ n p 1 t n q − n s + 1 dt≤C φ 2 (r) r n s

is satisfied, then the operator [ I Ω , α ,b] is bounded from B ˙ p 1 , φ 1 to B ˙ p , φ 2 .

Remark 2 In our main results, if we let φ 1 = r n λ 1 and φ 2 = r n λ 2 , then by calculating we can recover some known results in [7] and [25].

Author’s contributions

The author contributed to all the main results in this paper.

References

  1. Morrey CB: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43: 126–166. 10.1090/S0002-9947-1938-1501936-8

    Article  MathSciNet  Google Scholar 

  2. Peetre J:On the theory of M p , λ . J. Funct. Anal. 1969, 4: 71–87. 10.1016/0022-1236(69)90022-6

    Article  MathSciNet  Google Scholar 

  3. Chiarenza J, Frasca M: Morrey spaces and Hardy-Littlewood maximal functions. Rend. Mat. Appl. 1987, 7: 273–279.

    MathSciNet  Google Scholar 

  4. Nakai E: Hardy-Littlewood maximal operator, singular integral operator and Riesz potentials on generalized Morrey spaces. Math. Nachr. 1994, 166: 95–103. 10.1002/mana.19941660108

    Article  MathSciNet  Google Scholar 

  5. Satorn S: Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces. Hokkaido Math. J. 2006, 35: 683–696.

    Article  MathSciNet  Google Scholar 

  6. Cao XN, Chen DX: The boundedness of Toeplitz-type operators on vanishing Morrey space. Anal. Theory Appl. 2011, 27: 309–319. 10.1007/s10496-011-0309-y

    Article  MathSciNet  Google Scholar 

  7. Alvarez J, Lakey J, Guzmán-Partuda M: Spaces of bounded λ -central mean oscillation, Morrey spaces, and λ -central Careson measures. Collect. Math. 2000, 51: 1–47.

    MathSciNet  Google Scholar 

  8. Guliyev VS: Boundedness of maximal operator, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009., 2009: Article ID 503948

    Google Scholar 

  9. Guliyev VS, Aliyev SS, Karaman T, Shukurov PS: Boundedness of sublinear operator and commutators on generalized Morrey spaces. Integral Equ. Oper. Theory 2011, 71: 327–355. 10.1007/s00020-011-1904-1

    Article  MathSciNet  Google Scholar 

  10. Akbulut A, Guliyev VS, Mustafayev R: On the boundedness of the maximal operators and singular integral operators in generalized Morrey spaces. Math. Bohem. 2012, 137: 27–43.

    MathSciNet  Google Scholar 

  11. Guliyev, VS: Integral operators on function spaces on the homogeneous groups and on domains in R n . Doctor’s degree dissertation, Mat. Inst. Steklov, Moscow (1994)

  12. Guliyev VS: Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications. Casioglu, Baku; 1999.

    Google Scholar 

  13. Guliyev VS: Some properties of the anisotropic Riesz-Bessel potential. Anal. Math. 2000, 26: 99–118. 10.1023/A:1005632315360

    Article  MathSciNet  Google Scholar 

  14. Guliyev VS, Mustafayev RC: Integral operators of potential type in spaces of homogeneous type. Dokl. Ross. Akad. Nauk. Mat. 1997, 354: 730–732.

    Google Scholar 

  15. Guliyev VS, Mustafayev RC: Fractional integrals in spaces of functions defined on spaces of homogeneous type. Anal. Math. 1998, 24: 181–200. 10.1007/BF02771082

    Article  MathSciNet  Google Scholar 

  16. Burenkov VI, Gogatishvili A, Guliyev VS, Mustafayev RC: Boundedness of the Riesz potential in local Morrey-type spaces. Potential Anal. 2011, 35: 327–355.

    Article  MathSciNet  Google Scholar 

  17. Burenkov VI, Guliyev HV: Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey type spaces. Stud. Math. 2004, 163: 157–176. 10.4064/sm163-2-4

    Article  MathSciNet  Google Scholar 

  18. Burenkov VI, Guliyev HV, Guliyev VS: Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey type spaces. J. Comput. Appl. Math. 2007, 208: 280–301. 10.1016/j.cam.2006.10.085

    Article  MathSciNet  Google Scholar 

  19. Burenkov VI, Guliyev HV, Guliyev VS: On boundedness of the fractional maximal operator from complementary Morrey type spaces. Contemp. Math. 424. In The Interaction of Analysis and Geometry. Am. Math. Soc., Providence; 2007:17–32.

    Chapter  Google Scholar 

  20. Burenkov VI, Guliyev VS: Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey type spaces. Potential Anal. 2009, 30: 211–249. 10.1007/s11118-008-9113-5

    Article  MathSciNet  Google Scholar 

  21. Burenkov VI, Guliyev VS, Serbetci A, Tararykova TV: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey type spaces. Eurasian Math. J. 2010, 1: 32–53.

    MathSciNet  Google Scholar 

  22. Mustafayev RC: On boundedness of sublinear operators in weighted Morrey spaces. Azerb. J. Math. 2012, 2: 66–79.

    MathSciNet  Google Scholar 

  23. Carro M, Pick L, Soria J, Stepanov VD: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 2001, 4: 397–428.

    MathSciNet  Google Scholar 

  24. Coifman RR, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611–635. 10.2307/1970954

    Article  MathSciNet  Google Scholar 

  25. Fu ZW, Lin Y, Lu SZ: λ -Central BMO estimates for commutators of singular integral operators with rough kernel. Acta Math. Sin. 2008, 24: 373–386. 10.1007/s10114-007-1020-y

    Article  MathSciNet  Google Scholar 

  26. Tao XX, Shi YL: Multilinear commutators of Calderón-Zygmund operator on λ -central Morrey spaces. Adv. Math. 2011, 40: 47–59.

    MathSciNet  Google Scholar 

  27. Guliyev VS: Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J. 2012, 3: 33–61.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of Zhejiang Province (No. LQ13A010005). The author thanks the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Fan.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Fan, Y. Boundedness of sublinear operators and their commutators on generalized central Morrey spaces. J Inequal Appl 2013, 411 (2013). https://doi.org/10.1186/1029-242X-2013-411

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-411

Keywords