Skip to main content

Norm of an integral operator on some analytic function spaces on the unit disk

Abstract

If f is an analytic function in the unit disc , a class of integral operators is defined as follows:

I f (h)(z)= ∫ 0 z f(w) h ′ (w)dw,h∈H(D),z∈D.

The norm of I f on some analytic function spaces is computed in this paper.

MSC:47B38, 32A35.

1 Introduction

Let D={z:|z|<1} be the unit disk of a complex plane ℂ. Denote by H(D) the class of functions analytic in . Let dσ denote the normalized Lebesgue area measure in and g(a,z) the Green function with logarithmic singularity at a, i.e., g(a,z)=−log| φ a (z)|, where φ a (z)=(a−z)/(1− a ¯ z) is the Möbius transformation of .

For 0<p<∞, the Q p is the space of all functions f∈H(D), for which

∥ f ∥ Q p 2 = | f ( 0 ) | 2 + sup a ∈ D ∫ D | f ′ ( z ) | 2 ( 1 − | φ a ( z ) | 2 ) p dσ(z)<∞.
(1.1)

We know that Q 1 =BMOA, the space of all analytic functions of bounded mean oscillation [1, 2]. For all p>1, the space Q p is the same and equal to the Bloch space , consisting of analytic functions f in such that

∥ f ∥ B = | f ( 0 ) | + sup z ∈ D | f ′ ( z ) | ( 1 − | z | 2 ) <∞.
(1.2)

See [3, 4] for the theory of Bloch functions.

For α>0, the α-Bloch space, denoted by B α , is the space of all functions f in , for which

∥ f ∥ B α = | f ( 0 ) | + sup z ∈ D | f ′ ( z ) | ( 1 − | z | 2 ) α <∞.
(1.3)

Obviously, B α 1 ⫋B⫋ B α 2 for 0< α 1 <1< α 2 <∞.

For any f∈H(D), the next two integral operators on H(D) are induced as follows:

I f (h)(z)= ∫ 0 z h ′ (w)f(w)dwand J f (h)(z)= ∫ 0 z h(w) f ′ (w)dw(z∈D).

Let M f denote the multiplication operator, that is, M f (h)=fh.

Let f∈H(D). Then

( I f + J f )h=fh−f(0)h(0)= M f (h)−f(0)h(0).

If f is a constant, then all results about I f , J f or M f are trivial. In general, f is assumed to be non-constant. Both integral operators have been studied by many authors. See [5–21] and the references therein.

Norm of composition operator, weighted composition operator and some integral operators have been studied extensively by many authors, see [22–34] for example. Recently, Liu and Xiong discussed the norm of integral operators I f and J f on the Bloch space, Dirichlet space, BMOA space and so on in [35].

In this paper, we study the norm of integral operator I f . The norm of I f on several analytic function spaces is computed.

2 Main results

In this section, we state and prove our main results. In order to formulate our main results, we need an auxiliary result which is incorporated in the following lemma.

Lemma 2.1 Let 0<p<1. For any z 0 ∈D, the function

g z 0 (z)= z 0 − z 1 − z ¯ 0 z − z 0
(2.1)

is analytic in and ∥ g z 0 ∥ Q p =1/ ( p + 1 ) 1 / 2 .

Proof By (1.1) and [[1], Proposition 1, p.109], we have

∥ g z 0 ∥ Q p 2 = sup a ∈ D ∫ D | g z 0 ′ ( z ) | 2 ( 1 − | φ a ( z ) | 2 ) p d σ ( z ) = sup b ∈ D ∫ D ( 1 − | φ b ( z ) | 2 ) p d σ ( z ) ,

where b= φ z 0 (a). Taking w= φ b (z), we have

∥ g z 0 ∥ Q p 2 = sup b ∈ D ( 1 − | b | 2 ) 2 ∫ D ( 1 − | w | 2 ) p | 1 − b ¯ w | 4 dσ(w).

Since

1 ( 1 − b ¯ w ) 2 = ∑ n = 0 ∞ Γ ( n + 2 ) n ! Γ ( 2 ) b ¯ n w n = ∑ n = 0 ∞ Γ ( n + 2 ) n ! b ¯ n w n ,

we have

∫ D ( 1 − | w | 2 ) p | 1 − b ¯ w | 4 d σ ( w ) = ∑ n = 0 + ∞ Γ ( n + 2 ) 2 ( n ! ) 2 | b | 2 n ∫ D ( 1 − | w | 2 ) p | w | 2 n d σ ( w ) = ∑ n = 0 + ∞ Γ ( n + 2 ) 2 ( n ! ) 2 | b | 2 n ∫ 0 1 ( 1 − r ) p r n d r = ∑ n = 0 + ∞ Γ ( n + 2 ) 2 ( n ! ) 2 Γ ( p + 1 ) Γ ( n + 1 ) Γ ( n + p + 2 ) | b | 2 n = ∑ n = 0 + ∞ Γ ( p + 1 ) Γ ( n + 2 ) 2 n ! Γ ( n + p + 2 ) | b | 2 n .

A simple computation shows

Γ ( p + 1 ) Γ ( n + 2 ) 2 n ! Γ ( n + p + 2 ) = ( n + 1 ) ! ( n + 1 ) ( p + 1 ) ( p + 2 ) ⋯ ( p + n + 1 ) .

Also, it is easy to see

1 p + 1 ⩽ n + 1 p + n + 1 ⩽ ( n + 1 ) ! ( n + 1 ) ( p + 1 ) ( p + 2 ) ⋯ ( p + n + 1 ) ⩽ n + 1 p + 1 .

Thus,

∥ g z 0 ∥ Q p 2 ⩽ sup b ∈ D ( 1 − | b | 2 ) 2 p + 1 ∑ n = 0 + ∞ (n+1) | b | 2 n = sup b ∈ D ( 1 − | b | 2 ) 2 p + 1 1 ( 1 − | b | 2 ) 2 = 1 p + 1 ,

and

∥ g z 0 ∥ Q p 2 ⩾ sup b ∈ D ( 1 − | b | 2 ) 2 p + 1 ∑ n = 0 + ∞ | b | 2 n = sup b ∈ D ( 1 − | b | 2 ) 2 p + 1 1 1 − | b | 2 = 1 p + 1 .

Then the proof is complete. □

First, we consider the norm of I f on Q p , 0<p<1.

Theorem 2.2 Let 0<p<1. If f∈H(D), then I f is bounded on Q p if and only if f∈ H ∞ . Moreover,

∥ I f ∥= ∥ f ∥ H ∞ .

Proof For any h∈ Q p with ∥ h ∥ Q p =1, it is trivial that ∥ I f ∥⩽ ∥ f ∥ H ∞ . To prove the converse, define c= sup z ∈ D |f(z)|. Given any ϵ>0, there exists z 1 ∈D such that |f( z 1 )|>c−ϵ. Let h(z)= g z 1 (z)/ ∥ g z 1 ∥ Q p , where

g z 1 (z)= z 1 − z 1 − z ¯ 1 z − z 1 .

It is easy to see that

∥ h ∥ Q p =1, | h ′ ( z 1 ) | ( 1 − | z 1 | 2 ) =1/ ∥ g z 1 ∥ Q p .

Henceforth,

∥ I f ∥ 2 ⩾ ∥ I f h ∥ Q p 2 = sup a ∈ D ∫ D | h ′ ( z ) f ( z ) | 2 ( 1 − | φ a ( z ) | 2 ) p d σ ( z ) = sup a ∈ D ∫ D | h ′ ( φ a ( w ) ) f ( φ a ( w ) ) φ a ′ ( w ) | 2 ( 1 − | w | 2 ) p d σ ( w ) .

Taking w= re i θ and by the subharmonicity of | h ′ ( φ a ( w ) ) f ( φ a ( w ) ) φ a ′ ( w ) | 2 , we obtain

∥ I f ∥ 2 ⩾ sup a ∈ D ∫ D | h ′ ( z ) f ( z ) | 2 ( 1 − | φ a ( z ) | 2 ) p d σ ( z ) = sup a ∈ D ∫ 0 1 1 π ∫ 0 2 π | h ′ ( φ a ( re i θ ) ) f ( φ a ( re i θ ) ) φ a ′ ( re i θ ) | 2 ( 1 − r 2 ) p r d r d θ ⩾ sup a ∈ D | h ′ ( a ) f ( a ) | 2 ( 1 − | a | 2 ) 2 2 ∫ 0 1 ( 1 − r 2 ) p r d r = 1 p + 1 sup a ∈ D | h ′ ( a ) f ( a ) | 2 ( 1 − | a | 2 ) 2 ⩾ 1 p + 1 | h ′ ( z 1 ) f ( z 1 ) | 2 ( 1 − | z 1 | 2 ) 2 ⩾ 1 p + 1 | f ( z 1 ) | 2 ∥ g z 1 ∥ Q p 2 .
(2.2)

By Lemma 2.1 we have

∥ I f ∥⩾ | f ( z 1 ) | >c−ϵ.

Since ϵ is arbitrary, we have ∥ I f ∥⩾ sup z ∈ D |f(z)| and the proof is complete. □

Next, we consider the norm of I f from Q p (0<p<1) to .

Theorem 2.3 Let 0<p<1. If f∈H(D), then I f is bounded from Q p space to space if and only if f∈ H ∞ . Moreover, we have

∥ I f ∥= ( p + 1 ) 1 / 2 ∥ f ∥ H ∞ .

Proof If f∈ H ∞ , then (1.2) gives

∥ I f h ∥ B = sup z ∈ D | f ( z ) h ′ ( z ) | ( 1 − | z | 2 ) ⩽ ∥ f ∥ H ∞ sup z ∈ D | h ′ ( z ) | ( 1 − | z | 2 ) .

From a part of the proof of estimate (2.2) for f≡1, we see that

sup z ∈ D | h ′ ( z ) | ( 1 − | z | 2 ) ⩽ ( p + 1 ) 1 / 2 ∥ h ∥ Q p ,

and so

∥ I f h ∥ B ⩽ ∥ f ∥ H ∞ ( p + 1 ) 1 / 2 ∥ h ∥ Q p .

This leads to

∥ I f ∥⩽ ( p + 1 ) 1 / 2 ∥ f ∥ H ∞ .

On the other hand, define c= sup z ∈ D |f(z)|. Given any ϵ>0, there exists z 1 ∈D such that |f( z 1 )|>c−ϵ. Let h(z)= g z 1 (z)/ ∥ g z 1 ∥ Q p , where

g z 1 (z)= z 1 − z 1 − z ¯ 1 z − z 1 .

This together with Lemma 2.1 gives the following:

∥ I f ∥ ⩾ ∥ I f h ∥ B = sup z ∈ D | f ( z ) h ′ ( z ) | ( 1 − | z | 2 ) ⩾ | f ( z 1 ) h ′ ( z 1 ) | ( 1 − | z 1 | 2 ) = | f ( z 1 ) | / ∥ g z 1 ∥ Q p > ( p + 1 ) 1 / 2 ( c − ϵ ) .

Since ϵ is arbitrary, we have

∥ I f ∥⩾ ( p + 1 ) 1 / 2 sup z ∈ D | f ( z ) | = ( p + 1 ) 1 / 2 ∥ f ∥ H ∞ .

The proof is complete. □

Finally, we consider the norm of the integral operator I f on B α , 0<α<1.

Theorem 2.4 Let 0<α<1 and f∈H(D). Then the integral operator I f is bounded on B α if and only if f∈ H ∞ . Moreover,

∥ I f ∥= ∥ f ∥ H ∞ .

Proof For any h∈ B α with ∥ h ∥ B α =1, by (1.3) we have

∥ I f h ∥ B α = sup z ∈ D ( 1 − | z | 2 ) α | f ( z ) | | h ′ ( z ) | ⩽ ∥ h ∥ B α ⋅ ∥ f ∥ H ∞ .

This implies ∥ I f ∥⩽ ∥ f ∥ H ∞ .

Now we need to show the reverse inequality. Define c= sup z ∈ D |f(z)|. Given any ϵ>0, there exists z 1 ∈D such that |f( z 1 )|>c−ϵ. Put

h(z)= ∫ Γ ( z ) ( 1 − | z 1 | 2 ) α ( 1 − z ¯ 1 ζ ) 2 α dζ,
(2.3)

where Γ(z) is any path in from 0 to z, and a single-valued analytic branch is specified. By Theorem 13.11 in [[36], p.274], we know h is an analytic function in and h ′ (z)= ( 1 − | z 1 | 2 ) α / ( 1 − z ¯ 1 z ) 2 α . Also, it is easy to check ∥ h ∥ B α =1. In fact,

∥ h ∥ B α = sup z ∈ D | h ′ ( z ) | ( 1 − | z | 2 ) α = sup z ∈ D ( 1 − | z 1 | 2 ) α | 1 − z ¯ 1 z | 2 α ( 1 − | z | 2 ) α ⩽ sup z ∈ D ( 1 − | z 1 | 2 ) α ( 1 − | z | 2 ) α ( 1 − | z 1 | | z | ) 2 α ⩽ 1 .
(2.4)

On the other hand, we have

∥ h ∥ B α = sup z ∈ D | h ′ ( z ) | ( 1 − | z | 2 ) α = sup z ∈ D ( 1 − | z 1 | 2 ) α | 1 − z ¯ 1 z | 2 α ( 1 − | z | 2 ) α ⩾ ( 1 − | z 1 | 2 ) α ( 1 − | z 1 | 2 ) 2 α ( 1 − | z 1 | 2 ) α = 1 .
(2.5)

Hence, the assertion follows by (2.4) and (2.5). Thus

∥ I f ∥ ⩾ ∥ I f h ∥ B α = sup z ∈ D | f ( z ) h ′ ( z ) | ( 1 − | z | 2 ) α ⩾ | f ( z 1 ) h ′ ( z 1 ) | ( 1 − | z 1 | 2 ) α ⩾ | f ( z 1 ) | ( 1 − | z 1 | 2 ) α ( 1 − | z 1 | 2 ) 2 α ( 1 − | z 1 | 2 ) α = | f ( z 1 ) | > c − ϵ .

Since the ϵ is arbitrary, the proof is complete. □

References

  1. Aulaskari R, Xiao J, Zhao R: On subspaces and subsets of BMOA and UBC. Analysis 1995, 15: 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  2. Xiao J Lecture Notes in Math. 1767. In Holomorphic $\mathcal{Q}$ Classes. Springer, Berlin; 2001.

    Chapter  Google Scholar 

  3. Zhu K: Operator Theory in Function Spaces. Dekker, New York; 1990.

    MATH  Google Scholar 

  4. Zhu K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 1993, 23: 1143–1177. 10.1216/rmjm/1181072549

    Article  MATH  MathSciNet  Google Scholar 

  5. Aleman A, Siskakis A:An integral operator on H p . Complex Var. Theory Appl. 1995, 28: 140–158.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aleman A, Siskakis A: Integral operators on Bergman spaces. Indiana Univ. Math. J. 1997, 46: 337–356.

    Article  MathSciNet  MATH  Google Scholar 

  7. Austin, A: Multiplication and integral operators on Banach spaces of analytic functions. Ph.D. thesis, University of Hawai (2010)

    Google Scholar 

  8. Krantz S, Stević S: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 2009, 71: 1772–1795. 10.1016/j.na.2009.01.013

    Article  MATH  MathSciNet  Google Scholar 

  9. Li S, Stević S: Volterra-type operators on Zygmund spaces. J. Inequal. Appl. 2007., 2007: Article ID 32124

    Google Scholar 

  10. Li S, Stević S: Integral type operators from mixed-norm spaces to α -Bloch spaces. Integral Transforms Spec. Funct. 2007, 18(7):485–493. 10.1080/10652460701320703

    Article  MathSciNet  MATH  Google Scholar 

  11. Li S, Stević S: Riemann-Stieltjes operators between different weighted Bergman spaces. Bull. Belg. Math. Soc. Simon Stevin 2008, 15(4):677–686.

    MathSciNet  MATH  Google Scholar 

  12. Li S, Stević S:Products of composition and integral type operators from H ∞ to the Bloch space. Complex Var. Elliptic Equ. 2008, 53(5):463–474. 10.1080/17476930701754118

    Article  MathSciNet  MATH  Google Scholar 

  13. Li S, Stević S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 2008, 338: 1282–1295. 10.1016/j.jmaa.2007.06.013

    Article  MathSciNet  MATH  Google Scholar 

  14. Li S, Stević S: Products of integral-type operators and composition operators between Bloch-type spaces. J. Math. Anal. Appl. 2009, 349: 596–610. 10.1016/j.jmaa.2008.09.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Li S:On an integral-type operator from the Bloch space into the Q K (p,q) space. Filomat 2012, 26: 125–133.

    MathSciNet  Google Scholar 

  16. Pan C: On an integral-type operator from Q K (p,q)spaces to α -Bloch space. Filomat 2011, 25: 163–173.

    Article  MathSciNet  Google Scholar 

  17. Pommerenke C: Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation. Comment. Math. Helv. 1977, 52: 591–602. 10.1007/BF02567392

    Article  MathSciNet  MATH  Google Scholar 

  18. Stević S: On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball. Appl. Math. Comput. 2008, 206: 313–320. 10.1016/j.amc.2008.09.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Stević S: On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball. Discrete Dyn. Nat. Soc. 2008., 2008: Article ID 154263

    Google Scholar 

  20. Stević S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 2009, 354: 426–434. 10.1016/j.jmaa.2008.12.059

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu X:An integral-type operator from H ∞ to Zygmund-type spaces. Bull. Malays. Math. Soc. 2012, 35: 679–686.

    MATH  MathSciNet  Google Scholar 

  22. Bourdon P, Fry E, Hammond C, Spofford C: Norms of linear-fractional composition operators. Trans. Am. Math. Soc. 2003, 356: 2459–2480.

    Article  MathSciNet  MATH  Google Scholar 

  23. Colonna F, Easley G, Singman D:Norm of the multiplication operators from H ∞ to the Bloch space of a bounded symmetric domain. J. Math. Anal. Appl. 2011, 382: 621–630. 10.1016/j.jmaa.2011.04.064

    Article  MathSciNet  MATH  Google Scholar 

  24. Hammond C: The norm of a composition operator with linear symbol acting on the Dirichlet space. J. Math. Anal. Appl. 2005, 303: 499–508. 10.1016/j.jmaa.2004.08.049

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu J, Lou Z, Xiong C: Essential norms of integral operators on spaces of analytic functions. Nonlinear Anal. 2012, 75: 5145–5156. 10.1016/j.na.2012.04.030

    Article  MathSciNet  MATH  Google Scholar 

  26. Martín M: Norm-attaining composition operators on the Bloch spaces. J. Math. Anal. Appl. 2010, 369: 15–21. 10.1016/j.jmaa.2010.02.028

    Article  MathSciNet  MATH  Google Scholar 

  27. Stević S:Norm of weighted composition operators from Bloch space to H μ ∞ on the unit ball. Ars Comb. 2008, 88: 125–127.

    MATH  MathSciNet  Google Scholar 

  28. Stević S: Norms of some operators from Bergman spaces to weighted and Bloch-type spaces. Util. Math. 2008, 76: 59–64.

    MathSciNet  MATH  Google Scholar 

  29. Stević S: Norm of weighted composition operators from α -Bloch spaces to weighted-type spaces. Appl. Math. Comput. 2009, 215: 818–820. 10.1016/j.amc.2009.06.005

    Article  MathSciNet  MATH  Google Scholar 

  30. Stević S: Norm and essential norm of composition followed by differentiation from α -Bloch spaces to H μ ∞ . Appl. Math. Comput. 2009, 207: 225–229. 10.1016/j.amc.2008.10.032

    Article  MathSciNet  MATH  Google Scholar 

  31. Stević S: Norms of some operators on bounded symmetric domains. Appl. Math. Comput. 2010, 215: 187–191.

    Article  MATH  MathSciNet  Google Scholar 

  32. Stević S: Norm of an integral-type operator from Dirichlet to Bloch space on the unit disk. Util. Math. 2010, 83: 301–303.

    MathSciNet  MATH  Google Scholar 

  33. Stević S: On an integral operator between Bloch-type spaces on the unit ball. Bull. Sci. Math. 2010, 134: 329–339. 10.1016/j.bulsci.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang W: On an integral-type operator between Bloch-type spaces. Appl. Math. Comput. 2009, 215: 954–960. 10.1016/j.amc.2009.06.016

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu J, Xiong C: Norm-attaining integral operators on analytic function spaces. J. Math. Anal. Appl. 2013, 399: 108–115. 10.1016/j.jmaa.2012.09.044

    Article  MathSciNet  MATH  Google Scholar 

  36. Rudin W: Real and Complex Analysis. 3rd edition. McGraw-Hill, New York; 1987.

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (No. 11126284). The second author is supported by the project of Department of Education of Guangdong Province (No. 2012KJCX0096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songxiao Li.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All the authors contributed to the writing of the present article. They also read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Li, H., Li, S. Norm of an integral operator on some analytic function spaces on the unit disk. J Inequal Appl 2013, 342 (2013). https://doi.org/10.1186/1029-242X-2013-342

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-342

Keywords