Skip to main content

On some Hadamard-type inequalities for ( h 1 , h 2 )-preinvex functions on the co-ordinates

Abstract

We introduce the class of ( h 1 , h 2 )-preinvex functions on the co-ordinates, and we prove some new inequalities of Hermite-Hadamard and Fejér type for such mappings.

MSC:26A15, 26A51, 52A30.

1 Introduction

A function f:IR, IR is an interval, is said to be a convex function on I if

f ( t x + ( 1 t ) y ) tf(x)+(1t)f(y)
(1.1)

holds for all x,yI and t[0,1]. If the reversed inequality in (1.1) holds, then f is concave.

Many important inequalities have been established for the class of convex functions, but the most famous is the Hermite-Hadamard inequality. This double inequality is stated as follows:

f ( a + b 2 ) 1 b a a b f(x)dx f ( a ) + f ( b ) 2 ,
(1.2)

where f:[a,b]R is a convex function. The above inequalities are in reversed order if f is a concave function.

In 1978, Breckner introduced an s-convex function as a generalization of a convex function [1].

Such a function is defined in the following way: a function f:[0,)R is said to be s-convex in the second sense if

f ( t x + ( 1 t ) y ) t s f(x)+ ( 1 t ) s f(y)
(1.3)

holds for all x,y, t[0,1] and for fixed s(0,1].

Of course, s-convexity means just convexity when s=1.

In [2], Dragomir and Fitzpatrick proved the following variant of the Hermite-Hadamard inequality, which holds for s-convex functions in the second sense:

2 s 1 f ( a + b 2 ) 1 b a a b f(x)dx f ( a ) + f ( b ) s + 1 .
(1.4)

In the paper [3] a large class of non-negative functions, the so-called h-convex functions, is considered. This class contains several well-known classes of functions such as non-negative convex functions and s-convex in the second sense functions. This class is defined in the following way: a non-negative function f:IR, IR is an interval, is called h-convex if

f ( t x + ( 1 t ) y ) h(t)f(x)+h(1t)f(y)
(1.5)

holds for all x,yI, t(0,1), where h:JR is a non-negative function, h0 and J is an interval, (0,1)J.

In the further text, functions h and f are considered without assumption of non-negativity.

In [4] Sarikaya, Saglam and Yildirim proved that for an h-convex function the following variant of the Hadamard inequality is fulfilled:

1 2 h ( 1 2 ) f ( a + b 2 ) 1 b a a b f(x)dx [ f ( a ) + f ( b ) ] 0 1 h(t)dt.
(1.6)

In [5] Bombardelli and Varošanec proved that for an h-convex function the following variant of the Hermite-Hadamard-Fejér inequality holds:

a b w ( x ) d x 2 h ( 1 2 ) f ( a + b 2 ) a b f ( x ) w ( x ) d x ( b a ) ( f ( a ) + f ( b ) ) 0 1 h ( t ) w ( t a + ( 1 t ) b ) d t ,
(1.7)

where w:[a,b]R, w0 and symmetric with respect to a + b 2 .

A modification for convex functions, which is also known as co-ordinated convex functions, was introduced by Dragomir [6] as follows.

Let us consider a bidimensional Δ=[a,b]×[c,d] in R 2 with a<b and c<d. A mapping f:ΔR is said to be convex on the co-ordinates on Δ if the partial mappings f y :[a,b]R, f y (u)=f(u,y) and f x :[c,d]R, f x (v)=f(x,v) are convex for all x[a,b] and y[c,d].

In the same article, Dragomir established the following Hadamard-type inequalities for convex functions on the co-ordinates:

f ( a + b 2 , c + d 2 ) 1 ( b a ) ( d c ) a b c d f ( x , y ) d x d y f ( a , c ) + f ( b , c ) + f ( a , d ) + f ( b , d ) 4 .
(1.8)

The concept of s-convex functions on the co-ordinates was introduced by Alomari and Darus [7]. Such a function is defined in following way: the mapping f:ΔR is s-convex in the second sense if the partial mappings f y :[a,b]R and f x :[c,d]R are s-convex in the second sense.

In the same paper, they proved the following inequality for an s-convex function:

4 s 1 f ( a + b 2 , c + d 2 ) 1 ( b a ) ( d c ) a b c d f ( x , y ) d x d y f ( a , c ) + f ( b , c ) + f ( a , d ) + f ( b , d ) ( s + 1 ) 2 .
(1.9)

For refinements and counterparts of convex and s-convex functions on the co-ordinates, see [610].

The main purpose of this paper is to introduce the class of ( h 1 , h 2 )-preinvex functions on the co-ordinates and establish new inequalities like those given by Dragomir in [6] and Bombardelli and Varošanec in [5].

Throughout this paper, we assume that considered integrals exist.

2 Main results

Let f:XR and η:X×X R n , where X is a nonempty closed set in R n , be continuous functions. First, we recall the following well-known results and concepts; see [1116] and the references therein.

Definition 2.1 Let uX. Then the set X is said to be invex at u with respect to η if

u+tη(v,u)X

for all vX and t[0,1].

X is said to be an invex set with respect to η if X is invex at each uX.

Definition 2.2 The function f on the invex set X is said to be preinvex with respect to η if

f ( u + t η ( v , u ) ) (1t)f(u)+tf(v)

for all u,vX and t[0,1].

We also need the following assumption regarding the function η which is due to Mohan and Neogy [11].

Condition C Let XR be an open invex subset with respect to η. For any x,yX and any t[0,1],

η ( y , y + t η ( x , y ) ) = t η ( x , y ) , η ( x , y + t η ( x , y ) ) = ( 1 t ) η ( x , y ) .

Note that for every x,yX and every t 1 , t 2 [0,1] from Condition C, we have

η ( y + t 2 η ( x , y ) , y + t 1 η ( x , y ) ) =( t 2 t 1 )η(x,y).

In [12], Noor proved the Hermite-Hadamard inequality for preinvex functions

f ( a + 1 2 η ( b , a ) ) 1 η ( b , a ) a a + η ( b , a ) f(x)dx f ( a ) + f ( b ) 2 .
(2.1)

Definition 2.3 Let h:[0,1]R be a non-negative function, h0. The non-negative function f on the invex set X is said to be h-preinvex with respect to η if

f ( u + t η ( v , u ) ) h(1t)f(u)+h(t)f(v)

for each u,vX and t[0,1].

Let us note that:

− if η(v,u)=vu, then we get the definition of an h-convex function introduced by Varošanec in [3];

− if h(t)=t, then our definition reduces to the definition of a preinvex function;

− if η(v,u)=vu and h(t)=t, then we obtain the definition of a convex function.

Now let X 1 and X 2 be nonempty subsets of R n , let η 1 : X 1 × X 1 R n and η 2 : X 2 × X 2 R n .

Definition 2.4 Let (u,v) X 1 × X 2 . We say X 1 × X 2 is invex at (u,v) with respect to η 1 and η 2 if for each (x,y) X 1 × X 2 and t 1 , t 2 [0,1],

( u + t 1 η 1 ( x , u ) , v + t 2 η 2 ( y , v ) ) X 1 × X 2 .

X 1 × X 2 is said to be an invex set with respect to η 1 and η 2 if X 1 × X 2 is invex at each (u,v) X 1 × X 2 .

Definition 2.5 Let h 1 and h 2 be non-negative functions on [0,1], h 1 0, h 2 0. The non-negative function f on the invex set X 1 × X 2 is said to be co-ordinated ( h 1 , h 2 )-preinvex with respect to η 1 and η 2 if the partial mappings f y : X 1 R, f y (x)=f(x,y) and f x : X 2 R, f x (y)=f(x,y) are h 1 -preinvex with respect to η 1 and h 2 -preinvex with respect to η 2 , respectively, for all y X 2 and x X 1 .

If η 1 (x,u)=xu and η 2 (y,v)=yv, then the function f is called ( h 1 , h 2 )-convex on the co-ordinates.

Remark 1 From the above definition it follows that if f is a co-ordinated ( h 1 , h 2 )-preinvex function, then

f ( x + t 1 η 1 ( b , x ) , y + t 2 η 2 ( d , y ) ) h 1 ( 1 t 1 ) f ( x , y + t 2 η 2 ( d , y ) ) + h 1 ( t 1 ) f ( b , y + t 2 η 2 ( d , y ) ) h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( x , y ) + h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( x , d ) + h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( b , y ) + h 1 ( t 1 ) h 2 ( t 2 ) f ( b , d ) .

Remark 2 Let us note that if η 1 (x,u)=xu, η 2 (y,v)=yv, t 1 = t 2 and h 1 (t)= h 2 (t)=t, then our definition of a co-ordinated ( h 1 , h 2 )-preinvex function reduces to the definition of a convex function on the co-ordinates proposed by Dragomir [6]. Moreover, if h 1 (t)= h 2 (t)= t s , then our definition reduces to the definition of an s-convex function on the co-ordinates proposed by Alomari and Darus [7].

Now, we will prove the Hadamard inequality for the new class functions.

Theorem 2.1 Suppose that f:[a,a+η(b,a)]R is an h-preinvex function, Condition  C for η holds and a<a+η(b,a), h( 1 2 )>0. Then the following inequalities hold:

1 2 h ( 1 2 ) f ( a + 1 2 η ( b , a ) ) 1 η ( b , a ) a a + η ( b , a ) f(x)dx [ f ( a ) + f ( b ) ] 0 1 h(t)dt.
(2.2)

Proof From the definition of an h-preinvex function, we have that

f ( a + t η ( b , a ) ) h(1t)f(a)+h(t)f(b).

Thus, by integrating, we obtain

0 1 f ( a + t η ( b , a ) ) dtf(a) 0 1 h(1t)dt+f(b) 0 1 h(t)dt= [ f ( a ) + f ( b ) ] 0 1 h(t)dt.

But

0 1 f ( a + t η ( b , a ) ) dt= 1 η ( b , a ) a a + η ( b , a ) f(x)dx.

So,

1 η ( b , a ) a a + η ( b , a ) f(x)dx [ f ( a ) + f ( b ) ] 0 1 h(t)dt.

The proof of the second inequality follows by using the definition of an h-preinvex function, Condition C for η and integrating over [0,1].

That is,

f ( a + 1 2 η ( b , a ) ) = f ( a + t η ( b , a ) + 1 2 η ( a + ( 1 t ) η ( b , a ) , a + t η ( b , a ) ) h ( 1 2 ) [ f ( a + t η ( b , a ) ) + f ( a + ( 1 t ) η ( b , a ) ) ] , f ( a + 1 2 η ( b , a ) ) h ( 1 2 ) [ 0 1 f ( a + t η ( b , a ) ) d t + 0 1 f ( a + ( 1 t ) η ( b , a ) ) ] , f ( a + 1 2 η ( b , a ) ) 2 h ( 1 2 ) 1 η ( b , a ) a a + η ( b , a ) f ( x ) d x .

The proof is complete. □

Theorem 2.2 Suppose that f:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R is an ( h 1 , h 2 )-preinvex function on the co-ordinates with respect to η 1 and η 2 , Condition  C for η 1 and η 2 is fulfilled, and a<a+ η 1 (b,a), c<c+ η 2 (d,c), and h 1 ( 1 2 )>0, h 2 ( 1 2 )>0. Then one has the following inequalities:

(2.3)

Proof Since f is ( h 1 , h 2 )-preinvex on the co-ordinates, it follows that the mapping f x is h 2 -preinvex and the mapping f y is h 1 -preinvex. Then, by the inequality (2.2), one has

1 2 h 2 ( 1 2 ) f ( x , c + 1 2 η 2 ( d , c ) ) 1 η 2 ( d , c ) c c + η 2 ( d , c ) f ( x , y ) d y [ f ( x , c ) + f ( x , d ) ] 0 1 h 2 ( t ) d t

and

1 2 h 1 ( 1 2 ) f ( a + 1 2 η 1 ( b , a ) , y ) 1 η 1 ( b , a ) a a + η 1 ( b , a ) f ( x , y ) d x [ f ( a , y ) + f ( b , y ) ] 0 1 h 1 ( t ) d t .

Dividing the above inequalities for η 1 (b,a) and η 2 (d,c) and then integrating the resulting inequalities on [a,a+ η 1 (b,a)] and [c,c+ η 2 (d,c)], respectively, we have

1 η 1 ( b , a ) 2 h 2 ( 1 2 ) a a + η 1 ( b , a ) f ( x , c + 1 2 η 2 ( d , c ) ) d x 1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) d x d y 1 η 1 ( b , a ) 0 1 h 2 ( t ) d t [ a a + η 1 ( b , a ) f ( x , c ) d x + a a + η 1 ( b , a ) f ( x , d ) d x ]

and

1 η 2 ( b , a ) 2 h 1 ( 1 2 ) c c + η 2 ( d , c ) f ( a + 1 2 η 1 ( b , a ) , y ) d y 1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) d x d y 1 η 2 ( d , c ) 0 1 h 1 ( t ) d t [ c c + η 2 ( c , d ) f ( a , y ) d y + c c + η 2 ( c , d ) f ( b , y ) d y ] .

Summing the above inequalities, we get the second and the third inequalities in (2.3).

By the inequality (2.2), we also have

1 2 h 2 ( 1 2 ) f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) 1 η 2 ( d , c ) c c + η 2 ( d , c ) f ( a + 1 2 η 1 ( b , a ) , y ) dy

and

1 2 h 1 ( 1 2 ) f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) 1 η 1 ( b , a ) a a + η 1 ( b , a ) f ( x , c + 1 2 η 2 ( d , c ) ) dx,

which give, by addition, the first inequality in (2.3).

Finally, by the same inequality (2.2), we ca also state

1 η 2 ( d , c ) c c + η 2 ( d , c ) f ( a , y ) d y [ f ( a , c ) + f ( a , d ) ] 0 1 h 2 ( t ) d t , 1 η 2 ( d , c ) c c + η 2 ( d , c ) f ( b , y ) d y [ f ( b , c ) + f ( b , d ) ] 0 1 h 2 ( t ) d t , 1 η 1 ( b , a ) a a + η 1 ( b , a ) f ( x , c ) d x [ f ( a , c ) + f ( b , c ) ] 0 1 h 1 ( t ) d t , 1 η 1 ( b , a ) a a + η 1 ( b , a ) f ( x , d ) d x [ f ( a , d ) + f ( b , d ) ] 0 1 h 1 ( t ) d t ,

which give, by addition, the last inequality in (2.3). □

Remark 3 In particular, for η 1 (b,a)=ba, η 2 (d,c)=dc, h 1 ( t 1 )= h 2 ( t 2 )=t, we get the inequalities obtained by Dragomir [6] for functions convex on the co-ordinates on the rectangle from the plane R 2 .

Remark 4 If η 1 (b,a)=ba, η 2 (d,c)=dc, and h 1 ( t 1 )= h 2 ( t 2 )= t s , then we get the inequalities obtained by Alomari and Darus in [7] for s-convex functions on the co-ordinates on the rectangle from the plane R 2 .

Theorem 2.3 Let f,g:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R with a<a+ η 1 (b,a), c<c+ η 2 (d,c). If f is ( h 1 , h 2 )-preinvex on the co-ordinates and g is ( k 1 , k 2 )-preinvex on the co-ordinates with respect to η 1 and η 2 , then

1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) g ( x , y ) d x d y M 1 ( a , b , c , d ) 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) k 1 ( t 1 ) k 2 ( t 2 ) d t 1 d t 2 + M 2 ( a , b , c , d ) 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) k 1 ( t 1 ) k 2 ( 1 t 2 ) d t 1 d t 2 + M 3 ( a , b , c , d ) 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) k 1 ( 1 t 1 ) k 2 ( t 2 ) d t 1 d t 2 + M 4 ( a , b , c , d ) 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) k 1 ( 1 t 1 ) k 2 ( 1 t 2 ) d t 1 d t 2 ,

where

M 1 ( a , b , c , d ) = f ( a , c ) g ( a , c ) + f ( a , d ) g ( a , d ) + f ( b , c ) g ( b , c ) + f ( b , d ) g ( b , d ) , M 2 ( a , b , c , d ) = f ( a , c ) g ( a , d ) + f ( a , d ) g ( a , c ) + f ( b , c ) g ( b , d ) + f ( b , d ) g ( b , c ) , M 3 ( a , b , c , d ) = f ( a , c ) g ( b , c ) + f ( a , d ) g ( b , d ) + f ( b , c ) g ( a , c ) + f ( b , d ) g ( a , d ) , M 4 ( a , b , c , d ) = f ( a , c ) g ( b , d ) + f ( a , d ) g ( b , c ) + f ( b , c ) g ( a , d ) + f ( b , d ) g ( a , c ) .

Proof Since f is ( h 1 , h 2 )-preinvex on the co-ordinates and g is ( k 1 , k 2 )-preinvex on the co-ordinates with respect to η 1 and η 2 , it follows that

f ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( a , c ) + h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( a , d ) + h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( b , c ) + h 1 ( t 1 ) h 2 ( t 2 ) f ( b , d )

and

g ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) k 1 ( 1 t 1 ) k 2 ( 1 t 2 ) g ( a , c ) + k 1 ( 1 t 1 ) k 2 ( t 2 ) g ( a , d ) + k 1 ( t 1 ) k 2 ( 1 t 2 ) g ( b , c ) + k 1 ( t 1 ) k 2 ( t 2 ) g ( b , d ) .

Multiplying the above inequalities and integrating over [ 0 , 1 ] 2 and using the fact that

0 1 0 1 f ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) g ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) d t 1 d t 2 = 1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) g ( x , y ) d x d y ,

we obtain our inequality. □

In the next two theorems, we will prove the so-called Hermite-Hadamard-Fejér inequalities for an ( h 1 , h 2 )-preinvex function.

Theorem 2.4 Let f:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R be ( h 1 , h 2 )-preinvex on the co-ordinates with respect to η 1 and η 2 , a<a+ η 1 (b,a), c<c+ η 2 (d,c), and w:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R, w0, symmetric with respect to

( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) .

Then

1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) w ( x , y ) d x d y [ f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) ] 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) w ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) d t 1 d t 2 .
(2.4)

Proof From the definition of ( h 1 , h 2 )-preinvex on the co-ordinates with respect to η 1 and η 2 , we have

  1. (a)
    f ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( a , c ) + h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( a , d ) + h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( b , c ) + h 1 ( t 1 ) h 2 ( t 2 ) f ( b , d ) ,
  2. (b)
    f ( a + ( 1 t 1 ) η 1 ( b , a ) , c + ( 1 t 2 ) η 2 ( d , c ) ) h 1 ( t 1 ) h 2 ( t 2 ) f ( a , c ) + h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( a , d ) + h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( b , c ) + h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( b , d ) ,
  3. (c)
    f ( a + t 1 η 1 ( b , a ) , c + ( 1 t 2 ) η 2 ( d , c ) ) h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( a , c ) + h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( a , d ) + h 1 ( t 1 ) h 2 ( t 2 ) f ( b , c ) + h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( b , d ) ,
  4. (d)
    f ( a + ( 1 t 1 ) η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) h 1 ( t 1 ) h 2 ( 1 t 2 ) f ( a , c ) + h 1 ( t 1 ) h 2 ( t 2 ) f ( a , d ) + h 1 ( 1 t 1 ) h 2 ( 1 t 2 ) f ( b , c ) + h 1 ( 1 t 1 ) h 2 ( t 2 ) f ( b , d ) .

Multiplying both sides of the above inequalities by w(a+ t 1 η 1 (b,a),c+ t 2 η 2 (d,c)), w(a+(1 t 1 ) η 1 (b,a),c+(1 t 2 ) η 2 (d,c)), w(a+ t 1 η 1 (b,a),c+(1 t 2 ) η 2 (d,c)), w(a+(1 t 1 ) η 1 (b,a),c+ t 2 η 2 (d,c)), respectively, adding and integrating over [ 0 , 1 ] 2 , we obtain

4 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) w ( x , y ) d x d y [ f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) ] 4 0 1 0 1 h 1 ( t 1 ) h 2 ( t 2 ) w ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) d t 1 d t 2 ,

where we use the symmetricity of the w with respect to (a+ 1 2 η 1 (b,a),c+ 1 2 η 2 (d,c)), which completes the proof. □

Theorem 2.5 Let f:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R be ( h 1 , h 2 )-preinvex on the co-ordinates with respect to η 1 and η 2 , and a<a+ η 1 (b,a), c<c+ η 2 (d,c), w:[a,a+ η 1 (b,a)]×[c,c+ η 2 (d,c)]R, w0, symmetric with respect to (a+ 1 2 η 1 (b,a),c+ 1 2 η 2 (d,c)). Then, if Condition  C for η 1 and η 2 is fulfilled, we have

f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) w ( x , y ) d x d y 4 h 1 ( 1 2 ) h 2 ( 1 2 ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) w ( x , y ) d x d y .
(2.5)

Proof Using the definition of an ( h 1 , h 2 )-preinvex function on the co-ordinates and Condition C for η 1 and η 2 , we obtain

f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) h 1 ( 1 2 ) h 2 ( 1 2 ) [ f ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) + f ( a + t 1 η 1 ( b , a ) , c + ( 1 t 2 ) η 2 ( d , c ) ) + f ( a + ( 1 t 1 ) η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) + f ( a + ( 1 t 1 ) η 1 ( b , a ) , c + ( 1 t 2 ) η 2 ( d , c ) ) ] .

Now, we multiply it by w(a+ t 1 η 1 (b,a),c+ t 2 η 2 (d,c)) = w(a+ t 1 η 1 (b,c),c+(1 t 2 ) η 2 (d,c)) = w(a+(1 t 1 ) η 1 (b,a),c+ t 2 η 2 (d,c)) = w(a+(1 t 1 ) η 1 (b,a),c+(1 t 2 ) η 2 (d,c)) and integrate over [ 0 , 1 ] 2 to obtain the inequality

f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) 0 1 0 1 w ( a + t 1 η 1 ( b , a ) , c + t 2 η 2 ( d , c ) ) d t 1 d t 2 = f ( a + 1 2 η 1 ( b , a ) , c + 1 2 η 2 ( d , c ) ) 1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) w ( x , y ) d x d y 4 h 1 ( 1 2 ) h 2 ( 1 2 ) 1 η 1 ( b , a ) η 2 ( d , c ) a a + η 1 ( b , a ) c c + η 2 ( d , c ) f ( x , y ) w ( x , y ) d x d y ,

which completes the proof. □

Now, for a mapping f:[a,b]×[c,d]R, let us define a mapping H: [ 0 , 1 ] 2 R in the following way:

H(t,r)= 1 ( b a ) ( d c ) a b c d f ( t x + ( 1 t ) a + b 2 , r y + ( 1 r ) c + d 2 ) dxdy.
(2.6)

Some properties of this mapping for a convex on the co-ordinates function and an s-convex on the co-ordinates function are given in [6, 7], respectively. Here we investigate which of these properties can be generalized for ( h 1 , h 2 )-convex on the co-ordinates functions.

Theorem 2.6 Suppose that f:[a,b]×[c,d] is ( h 1 , h 2 )-convex on the co-ordinates. Then:

  1. (i)

    The mapping H is ( h 1 , h 2 )-convex on the co-ordinates on [ 0 , 1 ] 2 ,

  2. (ii)

    4 h 1 ( 1 2 ) h 2 ( 1 2 )H(t,r)H(0,0) for any (t,r) [ 0 , 1 ] 2 .

Proof (i) The ( h 1 , h 2 )-convexity on the co-ordinates of the mapping H is a consequence of the ( h 1 , h 2 )-convexity on the co-ordinates of the function f. Namely, for r[0,1] and for all α,β0 with α+β=1 and t 1 , t 2 [0,1], we have:

H ( α t 1 + β t 2 , r ) = 1 ( b a ) ( d c ) a b c d f ( ( α t 1 + β t 2 , r ) x + ( 1 ( α t 1 + β t 2 ) ) a + b 2 , r y + ( 1 r ) c + d 2 ) d x d y = 1 ( b a ) ( d c ) a b c d f ( α ( t 1 x + ( 1 t 1 ) a + b 2 ) + β ( t 2 x + ( 1 t 2 ) a + b 2 ) , r y + ( 1 r ) c + d 2 ) d x d y h 1 ( α ) 1 ( b a ) ( d c ) a b c d f ( t 1 x + ( 1 t 1 ) a + b 2 , r y + ( 1 r ) c + d 2 ) d x d y + h 1 ( β ) 1 ( b a ) ( d c ) a b c d f ( t 2 x + ( 1 t 2 ) a + b 2 , r y + ( 1 r ) c + d 2 ) d x d y = h 1 ( α ) H ( t 1 , r ) + h 1 ( β ) H ( t 2 , r ) .

Similarly, if t[0,1] is fixed, then for all r 1 , r 2 [0,1] and α,β0 with α+β=1, we also have

H(t,α r 1 +β r 2 ) h 2 (α)H(t, r 1 )+ h 2 (β)H(t, r 2 ),

which means that H is ( h 1 , h 2 )-convex on the co-ordinates.

  1. (ii)

    After changing the variables u=tx+(1t) a + b 2 and v=ry+(1r) c + d 2 , we have

    H ( t , r ) = 1 ( b a ) ( d c ) a b c d f ( t x + ( 1 t ) a + b 2 , r y + ( 1 r ) c + d 2 ) d x d y = 1 ( b a ) ( d c ) u L u U v L v U f ( u , v ) b a u U u L d c v U v L d u d v = 1 ( u U u L ) ( v U v L ) u L u U v L v U f ( u , v ) d u d v 1 4 h 1 ( 1 2 ) h 2 ( 1 2 ) f ( a + b 2 , c + d 2 ) ,

where u L =ta+(1t) a + b 2 , u U =tb+(1t) a + b 2 , v L =rc+(1r) c + d 2 and v U =rd+(1r) c + d 2 , which completes the proof. □

Remark 5 If f is convex on the co-ordinates, then we get H(t,r)H(0,0). If f is s-convex on the co-ordinates in the second sense, then we have the inequality H(t,r) 4 s 1 H(0,0).

References

  1. Breckner WW: Stetigkeitsanssagen für eine Klasse verallgemeinerter Konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. (Belgr.) 1978, 23: 13–20.

    MathSciNet  Google Scholar 

  2. Dragomir SS, Fitzpatrick S: The Hadamard’s inequality for s -convex functions in the second sense. Demonstr. Math. 1999, 32(4):687–696.

    MathSciNet  Google Scholar 

  3. Varošanec S: On h -convexity. J. Math. Anal. Appl. 2007, 326: 303–311. 10.1016/j.jmaa.2006.02.086

    Article  MathSciNet  Google Scholar 

  4. Sarikaya MZ, Saglam A, Yildirim H: On some Hadamard-type inequalities for h -convex functions. J. Math. Inequal. 2008, 2: 335–341.

    Article  MathSciNet  Google Scholar 

  5. Bombardelli M, Varošanec S: Properties of h -convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58: 1869–1877. 10.1016/j.camwa.2009.07.073

    Article  MathSciNet  Google Scholar 

  6. Dragomir SS: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5(4):775–788.

    Google Scholar 

  7. Alomari M, Darus M: The Hadamard’s inequality for s -convex function of 2-variables on the co-ordinates. Int. J. Math. Anal. 2008, 2(13):629–638.

    MathSciNet  Google Scholar 

  8. Latif MA, Dragomir SS: On some new inequalities for differentiable co-ordinated convex functions. J. Inequal. Appl. 2012. doi:10.1186/1029–242X-2012–28

    Google Scholar 

  9. Özdemir ME, Latif MA, Akademir AO: On some Hadamard-type inequalities for product of two s -convex functions on the co-ordinates. J. Inequal. Appl. 2012. doi:10.1186/1029–242X-2012–21

    Google Scholar 

  10. Özdemir ME, Kavurmaci H, Akademir AO, Avci M: Inequalities for convex and s -convex functions on Δ=[a,b]×[c,d] . J. Inequal. Appl. 2012. doi:10.1186/1029–242X-2012–20

    Google Scholar 

  11. Mohan SR, Neogy SK: On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189: 901–908. 10.1006/jmaa.1995.1057

    Article  MathSciNet  Google Scholar 

  12. Noor MS: Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum 2009, 14: 167–173.

    MathSciNet  Google Scholar 

  13. Noor MS: Some new classes of non convex functions. Nonlinear Funct. Anal. Appl. 2006, 11: 165–171.

    MathSciNet  Google Scholar 

  14. Noor MS: On Hadamard integral inequalities involving two log-preinvex functions. J. Inequal. Pure Appl. Math. 2007, 8(3):1–6.

    Google Scholar 

  15. Weir T, Mond B: Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1988, 136: 29–38. 10.1016/0022-247X(88)90113-8

    Article  MathSciNet  Google Scholar 

  16. Yang XM, Li D: On properties of preinvex functions. J. Math. Anal. Appl. 2001, 256: 229–241. 10.1006/jmaa.2000.7310

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Matłoka.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Matłoka, M. On some Hadamard-type inequalities for ( h 1 , h 2 )-preinvex functions on the co-ordinates. J Inequal Appl 2013, 227 (2013). https://doi.org/10.1186/1029-242X-2013-227

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-227

Keywords