Skip to main content

Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions

Abstract

In this paper, we study the convolution sums involving restricted divisor functions, their generalizations, their relations to Bernoulli numbers, and some interesting applications.

MSC: 11B68, 11A25, 11A67, 11Y70, 33E99.

1 Introduction

The Bernoulli polynomials B k (x), which are usually defined by the exponential generating function

t e x t e t 1 = k = 0 B k (x) t k k ! ,

play an important role in different areas of mathematics, including number theory and the theory of finite differences. The Bernoulli polynomials satisfy the following well-known identities :

B k ( x + 1 ) B k ( x ) = k x k 1 , k 1 , d d x B k ( x ) = k B k 1 ( x ) , k 1 ,

and

j = 0 N j k = B k + 1 ( N + 1 ) B k + 1 ( 0 ) k + 1 ,k1.

We set B k = B k (0). It is obvious from the way the polynomials B k (x) are constructed that all the B k are rational numbers. It can be shown that B 2 k + 1 =0 for k1, and is alternatively positive and negative for even k. The B k are called Bernoulli numbers.

Throughout the paper, we use the following arithmetical functions and q-series (sometimes defined by product expressions). For any integer N1, l,sN{0}, we define

σ l ( N ) : = d | N d l , σ s ( N ; p ) : = d | N N d 0 ( mod p ) d s , σ s ( N ) : = σ s ( N ; 2 ) = d | N N / d odd d s , σ ˜ s ( N ) : = d | N ( 1 ) d 1 d s , S i ( N ) : = k = 1 N 1 k i .

For qC with |q|<1, we consider the q-series:

A ( q ) : = N = 1 σ 1 ( N ) q N , B ( q ) : = N = 1 σ 3 ( N ) q N , C ( q ) : = N = 1 σ 5 ( N ) q N , N = 1 a ( N ) q N : = q N = 1 ( 1 q N ) 2 ( 1 q 2 N ) 2 ( 1 q 3 N ) 2 ( 1 q 6 N ) 2 , N = 1 b ( N ) q N : = q N = 1 ( 1 q N ) 8 ( 1 q 2 N ) 8 , N = 1 c ( N ) q N : = q N = 1 ( 1 q N ) 16 ( 1 q 2 N ) 4 , N = 1 τ ( N ) q N : = q N = 1 ( 1 q N ) 24 , N = 1 l ( N ) q N : = q 2 N = 1 ( 1 q N ) 8 ( 1 q 2 N ) 4 ( 1 q 4 N ) 8 .

The exact evaluation of the basic convolution sum

k = 1 N 1 σ 1 (k) σ 1 (Nk)

first appeared in a letter from Besge to Liouville in 1862. The evaluation of such sums also appear in the works of Glaisher, Lahiri, Lehmer, Ramanujan, and Skoruppa. For instance, Ramanujan [1] obtained

k = 1 N 1 σ 1 ( k ) σ 1 ( N k ) = 1 12 ( 5 σ 3 ( N ) + ( 1 6 N ) σ ( N ) ) and k = 1 N 1 σ 1 ( k ) σ 3 ( N k ) = 1 240 [ 21 σ 5 ( N ) + ( 10 30 N ) σ 3 ( N ) σ 1 ( N ) ]
(1)

using only elementary arguments. For a,b,NN, Ramanujan showed that the sum

S a , b (N):= m = 1 N 1 σ a (m) σ b (Nm)

can be evaluated in terms of the quantities

σ a + b + 1 (N), σ a + b 1 (N),, σ 3 (N), σ 1 (N)

for the nine pairs (a,b) N 2 satisfying

a+b=2,4,6,8,12,ab,ab1(mod2).

For explicit evaluations of S a , b (N) for different pairs (a,b) N 2 satisfying the above conditions stated, we refer to the papers of Ramanujan [1], [2], Huard et al. [3], Lahiri [4], and Glaisher [5], respectively. Levit [6] showed that the nine arithmetic evaluations of S a , b (N) (with a, b both odd) are the only ones using the theory of modular forms. In [4], Lahiri has given 37 sums of the form

( m 1 , , m r ) m 1 + + n r = N m 1 a 1 m r a r σ b 1 ( m 1 ) σ b r ( m r ),

where a 1 ,, a r N 0 :=N{0}, b 1 ,, b r N, each of which can be expressed as a finite linear combination of σ 1 (N), σ 3 (N),, σ b 1 + b 2 + + b r + r 1 (N) with coefficients which are polynomials in N of degree at most a 1 ++ a r +r1 with rational coefficients.

In 2002, Huard et al. [3] extended Melfi’s [7] result to

k < N / 2 σ 1 ( k ) σ 3 ( N 2 k ) = 1 48 σ 5 ( N ) + 1 15 σ 5 ( N 2 ) + ( 2 3 N ) 48 σ 3 ( N ) 1 240 σ 1 ( N 2 ) , k < N / 2 σ 3 ( k ) σ 1 ( N 2 k ) = 1 240 σ 5 ( N ) + 1 12 σ 5 ( N 2 ) + ( 1 3 N ) 24 σ 3 ( N 2 ) 1 240 σ 1 ( N ) ,
(2)

where N is an arbitrary positive integer.

Glaisher [5, 8, 9] extended Besge’s formula by replacing σ 1 (N) in the convolution sum in (1) by other arithmetical functions; for example, he obtained

24 k = 1 N 1 σ 1 ( k ) σ 1 ( N k ) = 6 σ 3 ( N ) 6 σ 3 ( N 2 ) 6 N σ 1 ( N ) + 6 N σ 1 ( N 2 ) = 6 { σ 3 ( N ) N σ 1 ( N ) }
(3)

and

k = 1 N 1 σ 1 (k) σ 3 (Nk)= 1 16 ( σ 5 ( N ) N σ 3 ( N ) ) .
(4)

Recently, Hahn [10] showed that

16 k < N σ ˜ 1 (k) σ ˜ 3 (Nk)= σ ˜ 5 (N)+2(N1) σ ˜ 3 (N)+ σ ˜ 1 (N).

It is also interesting to note that the arithmetical functions (for example, τ(n) and a(n)), coming out as coefficients of the q-series expansion of its corresponding q-products, do appear in the explicit evaluation of certain convolution sums. For instance, Lahiri (see [11]) proved that

k = 1 N 1 k(Nk) σ 3 (k) σ 3 (Nk)= 1 540 ( N 2 σ 7 ( N ) τ ( N ) )

and from Alaca and Williams (see [12]), we observe that

( k , m ) N 2 2 k + 3 m = N σ 1 ( k ) σ 1 ( m ) = 1 120 σ 3 ( N ) + 1 30 σ 3 ( N 2 ) + 3 40 σ 3 ( N 3 ) + 3 10 σ 3 ( N 6 ) + ( 1 24 N 12 ) σ 1 ( N 2 ) + ( 1 24 N 8 ) σ 1 ( N 3 ) 1 120 a ( N ) .
(5)

In [13], Simsek (and also in [[14], (2.17)] Simsek along with Ozden and Cagul) has studied other aspects of the arithmetical function σ 1 (n) in connection with the classical Jacobi and Euler functions. We also refer to Kim and Lee [[15], Lemma 2.1] and [16].

Thus the study of convolution sums and their applications is classical and they play an important role in number theory. The aim of this article is to first extend and generalize Glaishers formulas (stated in (3) and (4)). We indeed study the sums (in Section 3)

k = 1 N 1 σ 1 ( 2 m k ) σ 1 ( 2 n ( N k ) ) , k = 1 N 1 σ 1 ( 2 m k ) σ 3 ( 2 n ( N k ) ) , k = 1 N 1 σ 3 ( 2 m k ) σ 1 ( 2 n ( N k ) ) and r + s + t = N σ 1 ( 2 m r ) σ 1 ( 2 n s ) σ 1 ( 2 l t ) .

Then, we study and evaluate (in Section 4) sums of the type

k = 1 N 1 σ 1 ( 3 m k ; 3 ) σ 1 ( 3 n ( N k ) ; 3 ) and k = 1 N 1 σ 1 ( 2 m k ; 2 ) σ 1 ( 3 n ( N k ) ; 3 ) .

As applications to our study and evaluations of convolution sums, we show that A(q), B(q), and C(q) are connected by a second-order differential equation (see Theorem 3.8).

In Section 5, we also prove some interesting congruence relations involving the coefficients of modular-like functions and divisor functions (see Theorem 5.3). As a sample, we obtain that if N1(mod8), then the congruence

τ(N) σ 11 (N)(mod1,415,168)

holds.

In Section 6, we present a generalization of Besge’s formula by considering certain combinatorial convolution sums (see Theorem 6.3). It should be noted that Proposition 6.1, Theorem 6.3, and Remark 6.4 exhibit amply the connection between the convolution sums and the Bernoulli numbers. Finally, we record special values of a(N), τ(N), b(N), c(N), and l(N) (for 1N45) and some convolution formulas in the Appendix.

2 Some weighted convolution sums

Let f ˆ (a) g ˆ (b):= 1 2 {f(a)g(b)+f(b)g(a)}. It is easily checked that

k = 1 N 1 f ˆ (k) g ˆ (Nk)= k = 1 N 1 f(k)g(Nk).

Lemma 2.1 For f,g:NC and NN, we have

k = 1 N 1 k f ˆ (k) g ˆ (Nk)= N 2 k = 1 N 1 f ˆ (k) g ˆ (Nk).

Proof We observe that

k = 1 N 1 k f ˆ ( k ) g ˆ ( N k ) = 1 2 k = 1 N 1 k { f ( k ) g ( N k ) + f ( N k ) g ( k ) } = 1 2 k = 1 N 1 ( N k ) { f ( N k ) g ( k ) + f ( k ) g ( N k ) } = k = 1 N 1 ( N k ) f ˆ ( k ) g ˆ ( N k ) .

Hence

2 k = 1 N 1 k f ˆ (k) g ˆ (Nk)=N k = 1 N 1 f ˆ (k) g ˆ (Nk)

and thus

k = 1 N 1 k f ˆ (k) g ˆ (Nk)= N 2 k = 1 N 1 f ˆ (k) g ˆ (Nk).

 □

Lemma 2.2 For f,g:NC and NN, we have

k = 1 N 1 k 3 f ˆ (k) g ˆ (Nk)= 1 4 N 3 k = 1 N 1 f ˆ (Nk) g ˆ (k)+ 3 N 2 k = 1 N 1 k 2 f ˆ (Nk) g ˆ (k).

Proof We note that

k = 1 N 1 k 3 f ˆ ( k ) g ˆ ( N k ) = k = 1 N 1 ( N k ) 3 f ˆ ( N k ) g ˆ ( k ) = N 3 k = 1 N 1 f ˆ ( N k ) g ˆ ( k ) 3 N 2 k = 1 N 1 k f ˆ ( N k ) g ˆ ( k ) + 3 N k = 1 N 1 k 2 f ˆ ( N k ) g ˆ ( k ) k = 1 N 1 k 3 f ˆ ( N k ) g ˆ ( k ) .
(6)

Then, for the second term on the right-hand side of (6), we replace k by Nk in Lemma 2.1 and obtain

k = 1 N 1 (Nk) f ˆ (Nk) g ˆ (k)= N 2 k = 1 N 1 f ˆ (Nk) g ˆ (k).

This shows that

k = 1 N 1 k f ˆ (Nk) g ˆ (k)= N 2 k = 1 N 1 f ˆ (Nk) g ˆ (k).

So, (6) can be written as

k = 1 N 1 k 3 { f ˆ ( k ) g ˆ ( N k ) + f ˆ ( N k ) g ˆ ( k ) } = N 3 2 k = 1 N 1 f ˆ ( N k ) g ˆ ( k ) + 3 N k = 1 N 1 k 2 f ˆ ( N k ) g ˆ ( k ) .
(7)

Here the left-hand side of (7) is

k = 1 N 1 k 3 { f ˆ ( k ) g ˆ ( N k ) + f ˆ ( N k ) g ˆ ( k ) } = k = 1 N 1 k 3 [ 1 2 { f ( k ) g ( N k ) + f ( N k ) g ( k ) } + 1 2 { f ( N k ) g ( k ) + f ( k ) g ( N k ) } ] = k = 1 N 1 k 3 { f ( k ) g ( N k ) + f ( N k ) g ( k ) } = 2 k = 1 N 1 k 3 f ˆ ( k ) g ˆ ( N k ) .

Therefore we have

2 k = 1 N 1 k 3 f ˆ (k) g ˆ (Nk)= 1 2 N 3 k = 1 N 1 f ˆ (Nk) g ˆ (k)+3N k = 1 N 1 k 2 f ˆ (Nk) g ˆ (k).

This completes the proof. □

Remark 2.3 In general, we can express

k = 1 N 1 k 2 l + 1 f ˆ (k) g ˆ (Nk)for kN{0}

as a combination in terms of the sum

k = 1 N 1 k 2 j f ˆ (k) g ˆ (Nk)with j=0,1,2,,k

with their coefficients being polynomials in N of degree at most (2l+1).

Lemma 2.4 For l,NN and f,g:NC, we have

{ 1 + ( 1 ) l + 1 } k = 1 N 1 k l f ˆ (k) g ˆ (Nk)= k = 1 N 1 f ˆ (Nk) g ˆ (k) { j = 0 l 1 ( l j ) ( 1 ) j k j N l j } .

Proof We note that (for lN),

k = 1 N 1 k l f ˆ ( k ) g ˆ ( N k ) = k = 1 N 1 ( N k ) l f ˆ ( N k ) g ˆ ( k ) = k = 1 N 1 f ˆ ( N k ) g ˆ ( k ) { j = 0 l ( l j ) ( 1 ) j k j N l j } = ( 1 ) l k = 1 N 1 k l f ˆ ( N k ) g ˆ ( k ) + k = 1 N 1 f ˆ ( N k ) g ˆ ( k ) { j = 0 l 1 ( l j ) ( 1 ) j k j N l j } .

Observing the fact that

k = 1 N 1 k l f ˆ (k) g ˆ (Nk)= k = 1 N 1 k l f ˆ (Nk) g ˆ (k)

for any lN, we obtain

{ 1 + ( 1 ) l + 1 } k = 1 N 1 k l f ˆ (k) g ˆ (Nk)= k = 1 N 1 f ˆ (Nk) g ˆ (k) { j = 0 l 1 ( l j ) ( 1 ) j k j N l j } .

This proves Lemma 2.4. □

Remark 2.5 By iteration process, in principle, the convolution sum k = 1 N 1 k l f ˆ (k) g ˆ (Nk) can be evaluated for any odd lN.

Let

f ˆ ( a ) g ˆ ( b ) h ˆ ( c ) : = 1 6 { f ( a ) g ( b ) h ( c ) + f ( a ) g ( c ) h ( b ) + f ( b ) g ( a ) h ( c ) + f ( b ) g ( c ) h ( a ) + f ( c ) g ( a ) h ( b ) + f ( c ) g ( b ) h ( a ) } .

Lemma 2.6 For f:NC and NN. Then we have

( r , s , t ) N 3 r + s + t = N r f ˆ (r) f ˆ (s) f ˆ (t)= N 3 ( r , s , t ) N 3 r + s + t = N f ˆ (r) f ˆ (s) f ˆ (t).

Proof From the cyclic transformation, rstr, we observe that

( r , s , t ) N 3 r + s + t = N r f ˆ (r) f ˆ (s) f ˆ (t)= ( r , s , t ) N 3 r + s + t = N s f ˆ (r) f ˆ (s) f ˆ (t)= ( r , s , t ) N 3 r + s + t = N t f ˆ (r) f ˆ (s) f ˆ (t).

Therefore, we have

( r , s , t ) N 3 r + s + t = N N f ˆ (r) f ˆ (s) f ˆ (t)= ( r , s , t ) N 3 r + s + t = N (r+s+t) f ˆ (r) f ˆ (s) f ˆ (t)=3 ( r , s , t ) N 3 r + s + t = N r f ˆ (r) f ˆ (s) f ˆ (t).

Now Lemma 2.6 follows. □

Lemma 2.7 For f:NC and NN. Then we have (with g(m)=mf(m) for all mN)

3 ( r , s , t ) N 3 r + s + t = N r 2 f(r)f(s)f(t)= N 2 ( r , s , t ) N 3 r + s + t = N f(r)f(s)f(t)+6 t = 1 N 2 ( r , s ) N 2 r + s = N t g(r)g(s).

Proof As in Lemma 2.6, again by the cyclic transformation rstr, we observe that

( r , s , t ) N 3 r + s + t = N r 2 f(r)f(s)f(t)= ( r , s , t ) N 3 r + s + t = N s 2 f(r)f(s)f(t)= ( r , s , t ) N 3 r + s + t = N t 2 f(r)f(s)f(t)
(8)

and

( r , s , t ) N 3 r + s + t = N rsf(r)f(s)f(t)= ( r , s , t ) N 3 r + s + t = N stf(r)f(s)f(t)= ( r , s , t ) N 3 r + s + t = N trf(r)f(s)f(t).
(9)

Therefore, we get (from (8) and (9))

( r , s , t ) N 3 r + s + t = N n 2 f ( r ) f ( s ) f ( t ) = 3 ( r , s , t ) N 3 r + s + t = N r 2 f ( r ) f ( s ) f ( t ) + 6 ( r , s , t ) N 3 r + s + t = N r s f ( r ) f ( s ) f ( t ) = 3 ( r , s , t ) N 3 r + s + t = N r 2 f ( r ) f ( s ) f ( t ) + 6 t = 1 N 2 f ( t ) ( r , s ) N 2 r + s = N t g ( r ) g ( s ) ,

where g(m)=mf(m):NC for all mN. This proves Lemma 2.7. □

3 The convolution sum k = 1 N 1 σ 1 (k) σ 1 (Nk) and its extensions

Proposition 3.1 (a) [[17], Theorem 15.1, p.184], we have

k < N / 2 σ ( k ) σ ( N 2 k ) = 1 24 { 2 σ 3 ( N ) + ( 1 3 N ) σ ( N ) + 8 σ 3 ( N / 2 ) + ( 1 6 N ) σ ( N / 2 ) } .

(b) [[3], Theorem 3], [[17], Theorem 15.3, p.188], we have

k < N / 3 σ 1 ( k ) σ 1 ( N 3 k ) = 1 24 { σ 3 ( N ) + ( 1 2 N ) σ 1 ( N ) + 9 σ 3 ( N 3 ) + ( 1 6 N ) σ 1 ( N 3 ) } .

Proposition 3.2 Let s,NN. Then we obtain

σ s (N;p)= σ s (N) σ s (N/p).

In particular, we have

σ s (N)= σ s (N) σ s (N/2),

which can also be seen in [[17], p.27].

Proof We can know that

σ s (N;p):= d | N N d 0 ( mod p ) d s = d | N d s d | N N d 0 ( mod p ) d s = σ s (N) d | N p d s = σ s (N) σ s (N/p).

 □

Proposition 3.3 Let N be any positive integer. For m,nN{0}, where 0mn, we have

(a) k = 1 N 1 σ 1 ( 2 m k ) σ 1 ( 2 n ( N k ) ) = 2 n + m 2 ( σ 3 ( N ) N σ 1 ( N ) ) . (b) k = 1 N 1 σ 1 ( 2 m k ) σ 3 ( 2 n ( N k ) ) = 2 3 n + m 4 ( σ 5 ( N ) N σ 3 ( N ) ) . (c) k = 1 N 1 σ 3 ( 2 m k ) σ 1 ( 2 n ( N k ) ) = 2 n + 3 m 4 ( σ 5 ( N ) N σ 3 ( N ) ) . (d) k = 1 N 1 σ 1 ( 2 m k ) { σ 3 ( 2 n + 1 ( N k ) ) k σ 1 ( 2 3 n + 2 ( N k ) ) } (a) = 2 3 n + m 1 ( σ 5 ( N ) N 2 σ 1 ( N ) ) .

Proof For the sake of completeness, we just hint the proof of (b). We note that σ k ( 2 a )= 2 a k . Since σ k is a 2 k -scalar multiplicative function (i.e., σ k (2N)= σ k (2) σ k (N)), we have

k = 1 N 1 σ 1 ( 2 m k ) σ 3 ( 2 n ( N k ) ) = 2 m + 3 n k = 1 N 1 σ 1 (k) σ 3 (Nk)= 2 3 n + m 4 ( σ 5 ( N ) N σ 3 ( N ) )

by (4). The proofs of (a), (c), and (d) are similar to (b). □

Remark 3.4 Using Eq. (3) and Lemma 2.1, we obtain

k = 1 N 1 k σ 1 (k) σ 1 (Nk)= N 2 k = 1 N 1 σ 1 (k) σ 1 (Nk)= N 8 { σ 3 ( N ) N σ 1 ( N ) } .
(10)

Theorem 3.5 Let N (≥3) be any integer with m,n,lN{0}. Then we have

r + s + t = N σ 1 ( 2 m r ) σ 1 ( 2 n s ) σ 1 ( 2 l t ) = 2 m + n + l 64 ( σ 5 ( N ) 3 N σ 3 ( N ) + 2 N 2 σ 1 ( N ) ) .

Proof Let r 1 l 1 = p m 1 N and l 1 0(modp) for some r 1 , l 1 N and prime p. Since p does not divide l 1 , we can write r 1 = p m 1 d for some dN. Therefore, we have

σ s ( p m 1 N ; p ) = r 1 | p m 1 N p m 1 N r 1 0 ( mod p ) r 1 s = d | N N d 0 ( mod p ) ( p m 1 d ) s = p m 1 s d | N N d 0 ( mod p ) d s = p m 1 s σ s ( N ; p ) .
(11)

We note that

r + s + t = N σ 1 ( 2 m r ) σ 1 ( 2 n s ) σ 1 ( 2 l t ) = 2 m + n + l t = 1 N 2 σ 1 ( t ) r + s = N t σ 1 ( r ) σ 1 ( s ) = 2 m + n + l t = 1 N 2 σ 1 ( t ) { 1 4 ( σ 3 ( N t ) ( N t ) σ 1 ( N t ) ) } ( by (3) ) = 2 m + n + l 4 { t = 1 N 2 σ 1 ( t ) σ 3 ( N t ) t = 1 N 2 ( N t ) σ 1 ( t ) σ 1 ( N t ) } = 2 m + n + l 4 { t = 1 N 2 σ 1 ( t ) σ 3 ( N t ) k = 1 N 2 k σ 1 ( N k ) σ 1 ( k ) }

and hence, we use Eq. (1) and Eq. (10) to obtain the result. □

Corollary 3.6 Let

f ( p ) { k = 1 p 1 σ 1 ( 2 m k ) σ 1 ( 2 n ( p k ) ) , k = 1 p 1 σ 1 ( 2 m k ) σ 3 ( 2 n ( p k ) ) , r + s + t = p σ 1 ( 2 m r ) σ 1 ( 2 n s ) σ 1 ( 2 l t ) } ,

where p=2q+1 is an odd prime. Then

f(p)=a S 4 (q+1)+b S 3 (q+1)+c S 2 (q+1)+d S 1 (q+1),

where the coefficients a, b, c, d are listed in Table 1.

Table 1 Coefficients for p=2q+1

Remark 3.7 If p=2q+1 is any odd prime, then

k = 1 2 q σ 1 ( k ) σ 1 ( 2 q + 1 k ) k = 1 2 q σ 1 ( k ) σ 3 ( 2 q + 1 k ) r + s + t = 2 q + 1 σ 1 ( r ) σ 1 ( s ) σ 1 ( t ) 0 ( mod S 1 ( q + 1 ) )

from Table 2.

Table 2 Convolution formulas for prime p=2q+1

Now, we compare the values of the convolution sums in Table 3 [[17], p.148]. For almost all NN, we find that A(N)>B(N) and C(N)>D(N) (Figure 1). As an application to Theorem 3.5, we have the following.

Figure 1
figure 1

A(N) , B(N) , C(N) , and D(N) .

Table 3 Convolution formulas

Theorem 3.8 The q-series A(q), B(q), C(q) are connected by the differential equation,

64 A 3 (q)=C(q)3q d B ( q ) d q +2 q 2 d 2 A ( q ) d q 2 +2q d A ( q ) d q ,
(12)

where q d B ( q ) d q = N = 1 N σ 3 (N) q N and q 2 d 2 A ( q ) d q 2 = N = 1 N(N1) σ 1 (N) q N .

Proof We note that

64 A 3 ( q ) = 64 ( l = 1 σ 1 ( l ) q l ) ( m = 1 σ 1 ( m ) q m ) ( n = 1 σ 1 ( n ) q n ) = N = 3 ( 64 l + m + n = N σ 1 ( l ) σ 1 ( m ) σ 1 ( n ) ) q N = N = 3 { σ 5 ( N ) 3 N σ 3 ( N ) + 2 N 2 σ 1 ( N ) } q N
(13)

from Theorem 3.5. We note that σ 5 (N)3N σ 3 (N)+2 N 2 σ 1 (N) is zero for N=1 and N=2. Thus the differential Eq. (12) follows. □

Remark 3.9 We also note that from Eq. (1) and Eq. (3), we can determine the equations

16A(q)B(q)=C(q)q d B ( q ) d q
(14)

and

4 A 2 (q)=B(q)q d A ( q ) d q .
(15)

From (14) and (15), Eq. (12) can also be deduced. Using [[18], (28)] and (15), we also get

( τ 2 , τ ) =32 π 4 ( 4 A 2 ( q ) + q d A ( q ) d q ) ,

where

(z; Λ τ )= 1 z 2 + ω Λ τ , ω 0 { 1 ( z ω ) 2 1 ω 2 }

and Λ τ =Z+τZ (τH the complex upper-half plane) is a lattice and zC.

4 The convolution sum k = 1 N 1 σ 1 (k;3) σ 1 (Nk;3) and its extensions

Theorem 4.1 Let N be a positive integer. And let m,nN{0}. Then we have

k = 1 N 1 σ 1 ( 3 m k ; 3 ) σ 1 ( 3 n ( N k ) ; 3 ) = 3 n + m 1 { σ 3 ( N ; 3 ) N σ 1 ( N ; 3 ) } .

Proof From Proposition 3.2 and Eq. (11), we can deduce that

k = 1 N 1 σ 1 ( 3 m k ; 3 ) σ 1 ( 3 n ( N k ) ; 3 ) = 3 n + m k = 1 N 1 { σ 1 ( k ) σ 1 ( k 3 ) } { σ 1 ( N k ) σ 1 ( N k 3 ) } = 3 n + m { k = 1 N 1 σ 1 ( k ) σ 1 ( N k ) k = 1 N 1 σ 1 ( k ) σ 1 ( N k 3 ) k = 1 N 1 σ 1 ( k 3 ) σ 1 ( N k ) + k = 1 N 1 σ 1 ( k 3 ) σ 1 ( N k 3 ) } .

Now, we note that

k = 1 N 1 σ 1 ( k ) σ 1 ( N k 3 ) = t < N / 3 σ 1 ( N 3 t ) σ 1 ( t ) , k = 1 N 1 σ 1 ( k 3 ) σ 1 ( N k ) = t < N / 3 σ 1 ( t ) σ 1 ( N 3 t ) , k = 1 N 1 σ 1 ( k 3 ) σ 1 ( N k 3 ) = t < N / 3 σ 1 ( t ) σ 1 ( N 3 t ) .

Therefore, the theorem follows from Eq. (1) and Proposition 3.1(b). □

Theorem 4.2 Let N be a positive integer and let m,nN{0}. Then we have

k = 1 N 1 σ 1 ( 2 m k ; 2 ) σ 1 ( 3 n ( N k ) ; 3 ) = 2 m 3 n 120 [ 36 { σ 3 ( N ) σ 3 ( N 3 ) } 20 N σ 1 ( N ) 15 N σ 1 ( N ; 3 ) a ( N ) ] .

Proof We note that

k = 1 N 1 σ 1 ( 2 m k ; 2 ) σ 1 ( 3 n ( N k ) ; 3 ) = 2 m 3 n k = 1 N 1 { σ 1 ( k ) σ 1 ( k 2 ) } { σ 1 ( N k ) σ 1 ( N k 3 ) } = 2 m 3 n { k = 1 N 1 σ 1 ( k ) σ 1 ( N k ) k < N / 3 σ 1 ( N 3 k ) σ 1 ( k ) k < N / 2 σ 1 ( k ) σ 1 ( N 2 k ) + 2 k + 3 m = N σ 1 ( k ) σ 1 ( m ) } .

Now, the theorem follows from (1), Proposition 3.1(a), (b), and Eq. (5). □

Remark 4.3 We can compare the two sums

k = 1 N 1 σ 1 ( 2 m k ; 2 ) σ 1 ( 3 n ( N k ) ; 3 ) , k = 1 N 1 σ 1 ( 2 m k ) σ 1 ( 3 n ( N k ) )

as follows (see Table 4). Here we find the formula for the sum k = 1 N 1 σ 1 ( 2 m k) σ 1 ( 3 n (Nk)) in a similar way as in Theorem 4.2 (see [[16], Theorem 2.5]).

Table 4 k = 1 N 1 σ 1 ( 2 m k;2) σ 1 ( 3 n (Nk);3) and k = 1 N 1 σ 1 ( 2 m k) σ 1 ( 3 n (Nk))

5 Congruence relations of coefficients of certain modular-like functions

Lemma 5.1 Let n2. Then we have Table 5.

Table 5 Some convolution formulas

Proof We use Table 15 in the Appendix, and the proof of Lemma 5.1 is now similar to the proof of Theorem 4.1. □

Remark 5.2 It is easy to observe that

k = 1 N 1 σ 5 (k) σ 5 (Nk)= 8 17 k = 1 N 1 σ 3 (k) σ 7 (Nk)

when N is odd.

As an application to the explicit evaluation of convolution sums, using Table 5 we prove the following theorem.

Theorem 5.3 If N is odd, then

(a) b(N)N σ 5 (N)(mod48). In particular N1(mod8), we have b(N)N σ 5 (N)(mod192).

(b) b(N) σ 7 (N)(mod2,176). In particular N1(mod8), we have b(N) σ 7 (N)(mod17,408).

(c) τ(N) σ 11 (N)(mod176,896). In particular N1(mod8), we have τ(N) σ 11 (N)(mod1,415,168).

Proof Since the proofs of (a), (b), and (c) are similar, we only prove (c). When N is odd, from Table 5, we see that

5,528 k = 1 N 1 2 σ 5 (k) σ 5 (Nk)= σ 11 (N)τ(N).
(16)

Since N is odd, kNk(mod2), and hence either k is even or Nk is even. Then, by (11), σ 5 (k)= 2 5 σ 5 ( k 2 ) or σ 5 (Nk)= 2 5 σ 5 ( N k 2 ). So, in general,

τ(N) σ 11 (N)(mod176,896).

In particular, for N1(mod8), we have Table 6 and

k = 1 N 1 2 σ 5 ( k ) σ 5 ( N k ) = k 0 , 1 ( mod 4 ) N 1 2 σ 5 ( k ) σ 5 ( N k ) + k 2 , 7 ( mod 8 ) N 1 2 σ 5 ( k ) σ 5 ( N k ) + k 3 , 6 ( mod 8 ) N 1 2 σ 5 ( k ) σ 5 ( N k ) .
(17)

If n7(mod8), then there exists a prime p7(mod8) satisfying p 2 i 1 |n and p 2 i n. Thus

σ 5 ( n ) = σ 5 ( n p 2 i 1 ) σ 5 ( p 2 i 1 ) = σ 5 ( n p 2 i 1 ) ( 1 + p 5 + p 5 2 + + p 5 ( 2 i 1 ) ) 0 ( mod 8 ) .
(18)

Therefore, we obtain

σ 5 ( 8 k + 2 ) σ 5 ( 8 k + 7 ) 2 5 σ 5 ( 4 k + 1 ) σ 5 ( 8 k + 7 ) 0 ( mod 2 8 ) .

Arguing in a similar manner as in (18), we get

σ 5 (8k+3)0(mod4)

and

σ 5 (4k+3)0(mod4).

Therefore, we obtain

σ 5 ( 8 k + 3 ) σ 5 ( 8 k + 6 ) 2 5 σ 5 ( 8 k + 3 ) σ 5 ( 4 k + 3 ) 0 ( mod 2 9 ) .
(19)

Using σ 5 (4l)= 2 10 σ 5 (l), (18), and Table 6, we get

k = 1 k 0 , 1 ( mod 4 ) N 1 2 σ 5 (k) σ 5 (Nk)0(mod 2 10 )
(20)

and

k = 1 k 2 , 3 ( mod 4 ) N 1 2 σ 5 (k) σ 5 (Nk)0 ( mod 2 8 ) .
(21)

Therefore, by (16), (20), and (21), we have

τ(N) σ 11 (N)(mod1,415,168).

 □

Table 6 k and Nk by mod 8

Remark 5.4 The same result (c) of Theorem 5.3 has been obtained by Lahiri by a different approach considering the Eisenstein series and so on (see [[4], (11.1)-(11.40)], [[19], p.28]).

Corollary 5.5 Suppose that N=176,896a+b is a prime number with (176,896,b)=1. Then τ(N)0 for b1.

Proof Using Mathematica 8.0, we first find b with 1b<176,896 satisfying (176,896,b)=1. Then if N=176,896a+b is a prime number, then we find that by Theorem 5.3 (c), using Mathematica 8.0,

τ(N) σ 11 (N) b 11 +10(mod176,896)

except for b=1. Thus the corollary follows. □

Example 5.6 Some values of b(N), N σ 5 (N), σ 7 (N), τ(N), and σ 11 (N) are listed in Table 7.

Table 7 Some values of b(N) , N σ 5 (N) , σ 7 (N) , τ(N) , and σ 11 (N)

Corollary 5.7 Let NN. Then we have Table 8.

Table 8 Some convolution formulas

In particular, if N is odd, then we have Table 9.

Table 9 Some convolution formulas for odd N

Proof Since the proofs for the convolution sums are similar, we only prove k = 1 N σ 1 (2k1) σ 5 (2N(2k1)). We write k = 1 2 N 1 σ 1 (k) σ 5 (2Nk) as follows:

k = 1 2 N 1 σ 1 ( k ) σ 5 ( 2 N k ) = k = 1 N σ 1 ( 2 k 1 ) σ 5 ( 2 N ( 2 k 1 ) ) + k = 1 N 1 σ 1 ( 2 k ) σ 5 ( 2 N 2 k ) = k = 1 N σ 1 ( 2 k 1 ) σ 5 ( 2 N ( 2 k 1 ) ) + 2 6 k = 1 N 1 σ 1 ( k ) σ 5 ( N k )
(22)

by (11). Also since 2k1 and 2N(2k1) are odd, we find that

k = 1 N σ 1 (2k1) σ 5 ( 2 N ( 2 k 1 ) ) = k = 1 N σ 1 (2k1) σ 5 ( 2 N ( 2 k 1 ) ) .

So, we obtain the formula for k = 1 N σ 1 (2k1) σ 5 (2N(2k1)) by (22) and Table 5. In particular, if N is odd, then b(2N)=b(2)b(N), because b(N) is multiplicative. Therefore the proof is complete. □

By eliminating b(N), c(N), and l(N) in Table 5, we can obtain the following example.

Example 5.8 Let NN. Then for k=2,3,4, we have

s = 0 k 1 ( 2 k 2 s + 1 ) ( m = 1 N 1 σ 2 k 2 s 1 ( m ) σ 2 s + 1 ( N m ) ) = 1 2 { σ 2 k + 1 ( N ) N σ 2 k 1 ( N ) } .

For k=2, we refer to Eq. (1).

Now we present some convolution formulas in Table 10.

Table 10 Some convolution formulas

6 Certain combinatorial convolution sum

The four basic theta functions are defined below following the notation of Whittaker and Watson [[20], p.464]. Let τC be such that Im(τ)>0. Set q= e π i τ so that |q|<1. For zC, we define (as in [17])

θ 1 ( z , q ) : = 2 N = 1 ( 1 ) N 1 q ( 2 N 1 ) 2 4 sin ( 2 N 1 ) z , θ 2 ( z , q ) : = 2 N = 1 q ( 2 N 1 ) 2 4 cos ( 2 N 1 ) z , θ 3 ( z , q ) : = 1 + 2 N = 1 q N 2 cos 2 N z , θ 4 ( z , q ) : = 1 + 2 N = 1 ( 1 ) N q N 2 cos 2 N z .

Jacobi (see [21, 22]) proved that

θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 1 ( z , q ) θ 4 ( z , q ) =4 m = 0 q 2 m + 1 2 1 q 2 m + 1 sin(2m+1)z
(23)

and

θ 2 2 ( 0 , q ) θ 3 2 ( 0 , q ) θ 1 2 ( z , q ) θ 4 2 ( z , q ) =8 m = 0 m q m 1 q 2 m (1cos2mz).
(24)

From (23) and (24), we deduce that

m = 1 m q m 1 q 2 m (1cos2mz)=2 ( m = 0 q 2 m + 1 2 1 q 2 m + 1 sin ( 2 m + 1 ) z ) 2 .
(25)

Equating coefficients of q N (NN) on the left- and right-hand sides of (25) (see [[17], p.16]), then we obtain the arithmetical equality involving the trigonometric functions

m N m | N N m odd m(1cos2mz)= ( a , b , x , y ) N 4 a x + b y = 2 N a , b , x , y odd ( cos ( a b ) z cos ( a + b ) z ) .
(26)

If we expand each cosine in powers of z using

1cosz= k = 1 ( 1 ) k 1 z 2 k 2 k !

and equate coefficients of z 2 k 2 k ! (kN), then we obtain

m N m | N N m odd 2 2 k m 2 k + 1 = ( a , b , x , y ) N 4 a x + b y = 2 N a , b , x , y odd ( ( a + b ) 2 k ( a b ) 2 k ) ,k,NN.
(27)

A generalized Besge formula due to Liouville is as follows.

Proposition 6.1 (See [[17], Theorem 12.3])

Let kN and NN, where k,N2. Then we have

s = 0 k 1 ( 2 k 2 s + 1 ) ( m = 1 N 1 σ 2 k 2 s 1 ( m ) σ 2 s + 1 ( N m ) ) = 2 k + 3 4 k + 2 σ 2 k + 1 ( N ) + ( k 6 N ) σ 2 k 1 ( N ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 j σ 2 k + 1 2 j ( N ) ,

where B 2 j is the 2jth Bernoulli number.

Let σ s , o o (N):= d | N d odd n d odd d s . Now we prove the following lemma.

Lemma 6.2 We have

s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 2 N 1 σ 2 k 2 s 1 , o o (m) σ 2 s + 1 , o o (2Nm)= 1 4 σ 2 k + 1 (2N).

Proof First we consider

( a , b , x , y ) N 4 , a x + b y = 2 N , a b x y 1 mod 2 ( ( a + b ) 2 k ( a b ) 2 k ) = ( a , b , x , y ) N 4 , a x + b y = 2 N , a , b , x , y odd ( r = 0 2 k ( 2 k r ) a 2 k r b r r = 0 2 k ( 2 k r ) ( 1 ) r a 2 k r b r ) = 2 ( a , b , x , y ) N 4 , a x + b y = 2 N , a , b , x , y odd r = 0 , r odd 2 k ( 2 k r ) a 2 k r b r = 2 s = 0 k 1 ( 2 k 2 s + 1 ) ( a , b , x , y ) N 4 , a x + b y = 2 N , a , b , x , y odd a 2 k 2 s 1 b 2 s + 1 = 2 s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 2 N 1 ( a | m , a odd , m a odd a 2 k 2 s 1 ) ( b | 2 N m , b odd , 2 N m b odd b 2 s + 1 ) = 2 s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 2 N 1 σ 2 k 2 s 1 , o o ( m ) σ 2 s + 1 , o o ( 2 N m ) .

Now the right-hand side of (27) is

d N , d | N , d N 2 2 2 k d 2 k + 1 = 2 2 k { d | N d 2 k + 1 d | N 2 d 2 k + 1 } = 2 2 k { σ 2 k + 1 ( N ) σ 2 k + 1 ( N 2 ) } = 2 2 k σ 2 k + 1 ( N ) = 1 2 σ 2 k + 1 ( 2 N )

by (11). Therefore we obtain

s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 N 1 σ 2 k 2 s 1 , o o (m) σ 2 s + 1 , o o (Nm)= 1 4 σ 2 k + 1 (N).

 □

As a consequence of Proposition 6.1 and Lemma 6.2, we have the following.

Theorem 6.3

s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 N 1 σ 2 k 2 s 1 ( 2 m ) σ 2 s + 1 ( 2 N 2 m ) = 2 k + 3 4 k + 2 σ 2 k + 1 ( 2 N ) 1 4 σ 2 k + 1 ( 2 N ) + ( k 6 2 N ) σ 2 k 1 ( 2 N ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 j σ 2 k + 1 2 j ( 2 N ) ,

where B 2 j is the 2jth Bernoulli number.

Proof From Proposition 6.1, we get

s = 0 k 1 ( 2 k 2 s + 1 ) ( m = 1 2 N 1 σ 2 k 2 s 1 ( m ) σ 2 s + 1 ( 2 N m ) ) = 2 k + 3 4 k + 2 σ 2 k + 1 ( 2 N ) + ( k 6 2 N ) σ 2 k 1 ( 2 N ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 j σ 2 k + 1 2 j ( 2 N )
(28)

by replacing N2N. From Lemma 6.2 we know that

s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 2 N 1 σ 2 k 2 s 1 , o o ( m ) σ 2 s + 1 , o o ( 2 N m ) = 1 4 σ 2 k + 1 ( 2 N ) = s = 0 k 1 ( 2 k 2 s + 1 ) m = 1 N σ 2 k 2 s 1 ( 2 m 1 ) σ 2 s + 1 ( 2 N 2 m + 1 ) .
(29)

By subtracting (29) from (28), the theorem follows. □

Remark 6.4 It is well known that

B 0 =1, B 1 = 1 2 , B 2 = 1 6 , B 2 j + 1 =0(j1),.

In Proposition 6.1, taking N=1, we obtain

0 = 2 k + 3 4 k + 2 + ( k 6 1 ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 j = ( 1 2 k + 1 + 1 2 ) + ( k 6 1 ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 j = 1 2 k + 1 ( 2 k + 1 0 ) B 0 + 1 2 k + 1 ( 2 k + 1 1 ) B 1 + 1 2 k + 1 ( 2 k + 1 2 ) B 2 + 1 2 k + 1 j = 3 2 k ( 2 k + 1 j ) B j

and this implies the well-known identity involving the Bernoulli numbers B j

1 2 k + 1 j = 0 2 k ( 2 k + 1 j ) B j =0.
(30)

In Theorem 6.3, taking N=1, we obtain

0 = ( 1 2 k + 1 + 1 2 ) ( 1 + 2 2 k + 1 ) + ( k 6 1 1 ) ( 1 + 2 2 k 1 ) 1 4 2 2 k + 1 + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 k + 1 2 j ( 1 + 2 2 k + 1 2 j ) .

Then we have

0 = ( 1 2 k + 1 + 1 2 ) + ( k 6 1 ) + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 k + 1 2 j + 1 2 k + 1 2 2 k + 1 + 2 2 k 2 2 k 1 + k 6 2 2 k 1 + 1 2 k + 1 j = 2 k ( 2 k + 1 2 j ) B 2 k + 1 2 j 2 2 k + 1 2 j 1 2 2 k 1 2 2 k 1 .
(31)

Using (30) and (31), we get

0 = 1 2 k + 1 ( 2 k + 1 0 ) 2 2 k + 1 1 2 k + 1 ( 2 k + 1 1 ) 2 2 k + 1 1 ( 1 2 ) + 1 2 k + 1 ( 2 k + 1 2 ) 2 2 k + 1 2 + 1 2 k + 1 j = 3 2 k ( 2 k + 1 j ) ( 1 ) j B 2 k + 1 2 j 2 2 k + 1 2 j ,

and hence again we obtain a more general relation between Bernoulli numbers and the Faulhaber sum

1 2 k + 1 j = 0 2 k ( 2 k + 1 j ) ( 1 ) j B 2 k + 1 j 2 2 k + 1 j =1+ 2 2 k = S 2 k (3).
(32)

See, for example, [23].

Appendix

The values of a(N), b(N), c(N), l(N), and τ(N) (for (1N45)) are given in Tables 11, 12, 13, 14, and 15 respectively. We first write the corresponding product expression into a q-series sum of a finite number of terms (i.e., q-series sum of N number of terms) with an error which tends to zero as N. Then we use Mathematica 8.0 to compare the corresponding coefficients up to N45.

Table 11 a(N) for N ( 1N45 )
Table 12 b(N) for N ( 1N45 )
Table 13 c(N) for N ( 1N45 )
Table 14 l(N) for N ( 1N45 )
Table 15 τ(N) for N ( 1N45 )

Evaluation of certain convolution sums: We have Table 16.

Table 16 Some convolution formulas

References

  1. Ramanujan S: On certain arithmetical functions. Trans. Cambridge Philos. Soc. 1916, 22: 159–184.

    Google Scholar 

  2. Ramanujan S: Collected Papers. Am. Math. Soc., Providence; 2000.

    Google Scholar 

  3. Huard JG, Ou ZM, Spearman BK, Williams KS: Elementary evaluation of certain convolution sums involving divisor functions.II. Number Theory for the Millennium 2002, 229–274.

    Google Scholar 

  4. Lahiri DB:On Ramanujan’s function τ(n) and the divisor function σ k , I. Bull. Calcutta Math. Soc. 1946, 38: 193–206.

    MathSciNet  Google Scholar 

  5. Glaisher JWL: On certain sums of products of quantities depending upon the divisors of a number. Mess. Math. 1885, 15: 1–20.

    Google Scholar 

  6. Levitt, J: On a Problem of Ramanujan. M. Phil thesis, University of Nottingham (1978)

    Google Scholar 

  7. Melfi G: On Some Modular Identities, Number Theory. de Gruyter, Berlin; 1998:371–382.

    Google Scholar 

  8. Glaisher JWL: On the square of the series in which the coefficients are the sums of the divisors of the exponents. Mess. Math. 1884, 14: 156–163.

    Google Scholar 

  9. Glaisher JWL: Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents. Mess. Math. 1885, 15: 33–36.

    Google Scholar 

  10. Hahn H: Convolution sums of some functions on divisors. Rocky Mt. J. Math. 2007, 37: 1593–1622. 10.1216/rmjm/1194275937

    Article  Google Scholar 

  11. Lahiri DB:On Ramanujan’s function τ(n) and the divisor function σ k , II. Bull. Calcutta Math. Soc. 1947, 39: 33–52.

    MathSciNet  Google Scholar 

  12. Alaca S, Williams KS:Evaluation of the convolution sums l + 6 m = n σ(l)σ(m) and 2 l + 3 m = n σ(l)σ(m). J. Number Theory 2007, 124: 491–510. 10.1016/j.jnt.2006.10.004

    Article  MathSciNet  Google Scholar 

  13. Simsek Y: Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions. Gen. Math. 2007, 15: 3–23.

    MathSciNet  Google Scholar 

  14. Ozden H, Cangul IN, Simsek Y: Multivariate interpolation functions of higher-order q -Euler numbers and their applications. Abstr. Appl. Anal. 2008., 2008: Article ID 390857

    Google Scholar 

  15. Kim M-S, Lee JH: On sums of the extended q -Euler numbers. J. Math. Anal. Appl. 2013, 397: 522–528. 10.1016/j.jmaa.2012.07.067

    Article  MathSciNet  Google Scholar 

  16. Kim A, Kim D, Seo G:Convolution sum k < N / 3 σ 1 ( 3 m k) σ 1 ( 2 n (N3k)). Honam Math. J. 2012, 34: 519–531. 10.5831/HMJ.2012.34.4.519

    Article  MathSciNet  Google Scholar 

  17. Williams KS London Mathematical Society Student Texts 76. In Number Theory in the Spirit of Liouville. Cambridge University Press, Cambridge; 2011.

    Google Scholar 

  18. Kim D, Kim A, Park H:Congruences of the Weierstrass (x) and (x) (x= 1 2 , τ 2 , τ + 1 2 )-functions on divisors. Bull. Korean Math. Soc. 2013, 50: 241–261.

    Article  MathSciNet  Google Scholar 

  19. Berndt, BC, Ono, K: Ramanujan’s unpublished manuscript on the partition and tau functions with proofs and commentary. Lotharingien de Combinatoire, vol. 42, 63 pp. (1999)

    Google Scholar 

  20. Whittaker ET, Watson GN: A Course of Modern Analysis. Cambridge University Press, Cambridge; 1963.

    Google Scholar 

  21. Jacobi, CGJ: Fundamenta Nova Theoriae Functionum Ellipticarum. Sumptibus Fratrum Bornträger; reprinted in C. G. J. Jacobi, Gesammelte Werke, vol. 1, pp. 49–239. Reimer, Berlin (1881–1891)

    Google Scholar 

  22. Jacobi CGJ I-VIII. In Gesammelte Werke. Chelsea, New York; 1969.

    Google Scholar 

  23. http://en.wikipedia.org/wiki/Bernoulli_number

  24. Cheng N, Williams KS: Evaluation of some convolution sums involving the sum of divisors functions. Yokohama Math. J. 2005, 52: 39–57.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author AS wishes to thank the National Institute for Mathematical Sciences (NIMS), Daejeon, Republic of Korea for its warm hospitality and generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeyeoul Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Authors’ original file for figure 3

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Kim, D., Kim, A. & Sankaranarayanan, A. Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions. J Inequal Appl 2013, 225 (2013). https://doi.org/10.1186/1029-242X-2013-225

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-225

Keywords

  • Bernoulli numbers
  • generating functions
  • divisor functions
  • convolution sums