Skip to main content

On a generalization of a Hilbert-type integral inequality in the whole plane with a hypergeometric function

Abstract

By introducing some parameters, we establish a generalization of the Hilbert-type integral inequality in the whole plane with the homogeneous kernel of degree 2λ and the best constant factor which involves the hypergeometric function.

MSC:26D15.

1 Introduction

If p>1, 1 p + 1 q =1 and f(x),g(x)0 satisfy

0< 0 f p (x)dx<and0< 0 g q (x)dx<,

then

0 0 f ( x ) g ( y ) x + y dxdy< π sin ( π / p ) { 0 f p ( x ) d x } 1 p { 0 g q ( x ) d x } 1 q ,
(1)

where the constant factor π/(sinπ/p) is the best possible. Inequality (1) is called Hardy-Hilbert’s inequality [1] and is important in analysis and applications [2].

In 2001, Yang gave an extension of (1) involving beta function as (see [3]):

0 0 f ( x ) g ( y ) ( x + y ) λ d x d y < B ( p + λ 2 p , q + λ 2 q ) { 0 x 1 λ f p ( x ) d x } 1 p { 0 x 1 λ g q ( x ) d x } 1 q ,
(2)

where the constant factor B( p + λ 2 p , q + λ 2 q ) (λ>2min{p,q}) is the best possible.

Recently, some new Hilbert-type inequalities in the whole plane have been obtained [4, 5]. Xin and Yang in [5] established the following:

If p>1, 1 p + 1 q =1, |β|<1, 0< α 1 < α 2 <π, f,g0, satisfy

0< | x | p β 1 f p (x)dx<and0< | y | q β 1 g q (y)dy<,

then we have

min i { 1 , 2 } { 1 x 2 + 2 x y cos α i + y 2 } f ( x ) g ( y ) d x d y < k ( β ) ( | x | p β 1 f p ( x ) d x ) 1 p ( | y | q β 1 g q ( y ) d y ) 1 q ,
(3)

and

| y | p ( 1 β ) 1 ( min i { 1 , 2 } { 1 x 2 + 2 x y cos α i + y 2 } f ( x ) d x ) p d y < k p ( β ) | x | p β 1 f p ( x ) d x ,
(4)

where the constant factors k(β)= π sin β π ( sin β α 1 sin α 1 + sin β ( π α 2 ) sin α 2 ) and k p (β) are the best possible. Inequalities (3) and (4) are equivalent.

By introducing some parameters, we establish generalizations of inequalities (3) and (4) with the homogeneous kernel of degree 2λ and the best constant factor which involves the hypergeometric function.

2 Preliminary lemmas

In order to prove our assertions, we need the following lemmas.

Recall that the hypergeometric function F(α,β;γ;x) is defined [6] by

F(α,β;γ;x)= r = 0 ( α ) r ( β ) r ( γ ) r x r r ! ,
(5)

where ( α ) r is the Pochhammer symbol defined by

( α ) r =α(α+1)(α+r1)= Γ ( α + r ) Γ ( α ) .

It is known the series (5) converges for |x|<1 and diverges for |x|>1. The hypergeometric function satisfies the integral representation

F(α,β;γ;x)= Γ ( γ ) Γ ( β ) Γ ( γ β ) 0 1 t β 1 ( 1 t ) γ β 1 ( 1 x t ) α dt,if γ>β>0.

Lemma 2.1 (See [7])

Suppose that a,c>0, b 2 <ac, 0<α<2λ. Then we have

0 x α 1 ( a x 2 + 2 b x + c ) λ dx= a α 2 c α 2 λ B(α,2λα)F ( α 2 , λ α 2 ; λ + 1 2 ; 1 b 2 a c ) .

Lemma 2.2 Let a,c,λ>0, b0, 12λ<β<1 and 0< α 1 < α 2 <π be real parameters such that b 2 max{ cos 2 α 1 , cos 2 (π α 2 )}<ac. Define the weight functions ω(x) and ϖ(y) (x,y(,)) as follows:

ω ( x ) : = min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | x | β + 2 λ 1 | y | β d y , ϖ ( y ) : = min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | y | 1 β | x | β 2 λ + 2 d x .

Then we have ω(x)=ϖ(y)= C λ (x,y0), where

C λ = a 1 β 2 λ c 1 β 2 B ( 1 β , 2 λ + β 1 ) × [ F ( 1 β 2 , λ 1 β 2 ; λ + 1 2 ; 1 b 2 cos 2 α 1 a c ) + F ( 1 β 2 , λ 1 β 2 ; λ + 1 2 ; 1 b 2 cos 2 ( π α 2 ) a c ) ] .

Proof For x(,0), setting u=y/x, u=y/x in the following two integrals, respectively, and using Lemma 2.1, we get

ω ( x ) = 0 1 ( a x 2 + 2 b x y cos α 1 + c y 2 ) λ ( x ) β + 2 λ 1 ( y ) β d y + 0 1 ( a x 2 + 2 b x y cos α 2 + c y 2 ) λ ( x ) β + 2 λ 1 y β d y = 0 u β ( c u 2 + 2 b u cos α 1 + a ) λ d u + 0 u β ( c u 2 + 2 b u cos ( π α 2 ) + a ) λ d u = C λ .

For x(0,), setting u=y/x, u=y/x in the following two integrals, respectively, and using Lemma 2.1, we get

ω ( x ) = 0 1 ( a x 2 + 2 b x y cos α 2 + c y 2 ) λ x β + 2 λ 1 ( y ) β d y + 0 1 ( a x 2 + 2 b x y cos α 1 + c y 2 ) λ x β + 2 λ 1 y β d y = 0 u β ( c u 2 + 2 b u cos ( π α 2 ) + a ) λ d u + 0 u β ( c u 2 + 2 b u cos α 1 + a ) λ d u = C λ .

By the same way, we still can find that ω(x)=ϖ(y)= C λ (x,y0). The lemma is proved. □

Lemma 2.3 Let p and q be conjugate parameters with p>1, and let a,c,λ>0, b0, 12λ<β<1, 0< α 1 < α 2 <π and b 2 max{ cos 2 α 1 , cos 2 (π α 2 )}<ac, and f(x) be a nonnegative measurable function in (,), then we have

J : = | y | p ( 1 β ) 1 ( min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) d x ) p d y C λ p | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x .
(6)

Proof By Lemma 2.2 and Hölder’s inequality [8], we have

( min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) d x ) p = [ min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } × ( | x | ( β 2 λ + 2 ) / q | y | β / p f ( x ) ) ( | y | β / p | x | ( β 2 λ + 2 ) / q ) d x ] p min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | x | ( 1 p ) ( β + 2 λ 2 ) | y | β f p ( x ) d x × ( min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | y | ( q 1 ) β | x | ( β 2 λ + 2 ) d x ) p 1 = C λ p 1 | y | p ( β 1 ) + 1 min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | x | ( 1 p ) ( β + 2 λ 2 ) | y | β f p ( x ) d x .
(7)

Then by the Fubini theorem, it follows that

J C λ p 1 [ min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } | x | ( 1 p ) ( β + 2 λ 2 ) | y | β f p ( x ) d x ] d y = C λ p 1 ω ( x ) | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x = C λ p | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x .

The lemma is proved. □

3 Main results

Theorem 3.1 Let p and q be conjugate parameters with p>1, and let a,c,λ>0, b0, 12λ<β<1, 0< α 1 < α 2 <π and b 2 max{ cos 2 α 1 , cos 2 (π α 2 )}<ac, and f,g0, satisfy 0< | x | p ( β + 2 λ 2 ) 1 f p (x)dx< and 0< | y | q β 1 g q (y)dy<. Then

I : = min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) g ( y ) d x d y < C λ ( | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x ) 1 / p ( | y | q β 1 g q ( y ) d y ) 1 / q ,
(8)

and

J = | y | p ( 1 β ) 1 ( min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) d x ) p d y < C λ p | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x ,
(9)

where the constant factors C λ and C λ p are the best possible and C λ is defined in Lemma  2.2. Inequalities (8) and (9) are equivalent.

Proof If (7) takes the form of the equality for a y(,0)(0,), then there exist constants A and B such that they are not all zero, and

A | x | ( 1 p ) ( β + 2 λ 2 ) | y | β f p (x)=B | y | ( q 1 ) β | x | ( β 2 λ + 2 ) a.e. in (,)×(,).

Hence, there exists a constant K such that

A | x | p ( β + 2 λ 2 ) f p (x)=B | y | q β =Ka.e. in (,)×(,).

We suppose A0 (otherwise B=A=0). Then | x | p ( β + 2 λ 2 ) 1 f p (x)=K/(A|x|) a.e. in (,), which contradicts the fact that 0< | x | p ( β + 2 λ 2 ) 1 f p (x)dx<. Hence, (7) takes the form of a strict inequality, so does (6), and we have (9).

By Hölder’s inequality [8], we have

I = ( | y | 1 / q β min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) d x ) × ( | y | β 1 / q g ( y ) ) d y J 1 / p ( | y | q β 1 g q ( y ) d y ) 1 / q .
(10)

By (9), we have (8). On the other hand, suppose that (8) is valid. Set

g(y)= | y | p ( 1 β ) 1 ( min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ( x ) d x ) p 1 ,

then it follows J= | y | q β 1 g q (y)dy. By (6), we have J<. If J=0, then (9) is obviously valid. If 0<J<, then by (8), we obtain

0 < | y | q β 1 g q ( y ) d y = J = I < C λ ( | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x ) 1 / p ( | y | q β 1 g q ( y ) d y ) 1 / q ,

and

J 1 / p = ( | y | q β 1 g q ( y ) d y ) 1 / p < C λ ( | x | p ( β + 2 λ 2 ) 1 f p ( x ) d x ) 1 / p .

Hence, we have (9), which is equivalent to (8).

For ε>0, define functions f ˜ (x), g ˜ (y) as follows:

f ˜ ( x ) : = { x ( β + 2 λ 2 ) 2 ε / p , x ( 1 , ) , 0 , x [ 1 , 1 ] , ( x ) ( β + 2 λ 2 ) 2 ε / p , x ( , 1 ) , g ˜ ( y ) : = { y β 2 ε / q , y ( 1 , ) , 0 , y [ 1 , 1 ] , ( y ) β 2 ε / q , y ( , 1 ) .

Then

L ˜ := ( | x | p ( β + 2 λ 2 ) 1 f ˜ p ( x ) d x ) 1 / p ( | y | q β 1 g ˜ q ( y ) d y ) 1 / q = 1 ε ,

and

I ˜ : = min i { 1 , 2 } { 1 ( a x 2 + 2 b x y cos α i + c y 2 ) λ } f ˜ ( x ) g ˜ ( y ) d x d y = I 1 + I 2 + I 3 + I 4 ,

where

I 1 : = 1 ( x ) ( β + 2 λ 2 ) 2 ε / p [ 1 ( y ) β 2 ε / q ( a x 2 + 2 b x y cos α 1 + c y 2 ) λ d y ] d x , I 2 : = 1 ( x ) ( β + 2 λ 2 ) 2 ε / p [ 1 y β 2 ε / q ( a x 2 + 2 b x y cos α 2 + c y 2 ) λ d y ] d x , I 3 : = 1 x ( β + 2 λ 2 ) 2 ε / p [ 1 ( y ) β 2 ε / q ( a x 2 + 2 b x y cos α 2 + c y 2 ) λ d y ] d x ,

and

I 4 := 1 x ( β + 2 λ 2 ) 2 ε / p [ 1 y β 2 ε / q ( a x 2 + 2 b x y cos α 1 + c y 2 ) λ d y ] dx.

Taking u=y/x, by the Fubini theorem, we obtain

I 1 = I 4 = 1 x 1 2 ε 1 / x u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u d x = 1 x 1 2 ε ( 1 / x 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u ) d x = 0 1 ( 1 / u x 1 2 ε d x ) u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 2 ε 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u = 1 2 ε ( 0 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u ) ,

and

I 2 = I 3 = 1 2 ε ( 0 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u + 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u ) .

In view of the above results, if the constant factor C λ in (8) is not the best possible, then there exists a positive number C ˜ with C ˜ < C λ such that

0 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 0 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u + 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u = ε I ˜ < ε C ˜ L ˜ = C ˜ .
(11)

By the Fatou lemma and (11), we have

C λ = 0 u β ( c u 2 + 2 b u cos α 1 + a ) λ d u + 0 u β ( c u 2 2 b u cos α 2 + a ) λ d u = 0 1 lim ε 0 + u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 lim ε 0 + u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 0 1 lim ε 0 + u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u + 1 lim ε 0 + u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u lim ε 0 + [ 0 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 1 u β 2 ε / q ( c u 2 + 2 b u cos α 1 + a ) λ d u + 0 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u + 1 u β 2 ε / q ( c u 2 2 b u cos α 2 + a ) λ d u ] C ˜ ,

which contradicts the fact that C ˜ < C λ . Hence, the constant factor C λ in (8) is the best possible.

If the constant factor in (9) is not the best possible, then by (10), we may get a contradiction that the constant factor in (8) is not the best possible. Thus the theorem is proved. □

Remark 1 Setting λ=a=b=c=1 in Theorem 3.1, we have (3) and (4).

Remark 2 Setting λ=1/2 in Theorem 3.1, we have the following particular results:

min i { 1 , 2 } { 1 a x 2 + 2 b x y cos α i + c y 2 } f ( x ) g ( y ) d x d y < C 1 / 2 ( | x | p ( β 1 ) 1 f p ( x ) d x ) 1 / p ( | y | q β 1 g q ( y ) d y ) 1 / q ,

and

| y | p ( 1 β ) 1 ( min i { 1 , 2 } { 1 a x 2 + 2 b x y cos α i + c y 2 } f ( x ) d x ) p d y < C 1 / 2 p | x | p ( β 1 ) 1 f p ( x ) d x .

References

  1. Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1934.

    Google Scholar 

  2. Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston; 1991.

    Book  Google Scholar 

  3. Yang B: On Hardy-Hilbert’s integral inequality. J. Math. Anal. Appl. 2001, 261: 295–306. 10.1006/jmaa.2001.7525

    Article  MathSciNet  Google Scholar 

  4. Zeng Z, Xie Z: On a new Hilbert-type integral inequality with the integral in whole plane. J. Inequal. Appl. 2010., 2010: Article ID 256796

    Google Scholar 

  5. Xin D, Yang B: A Hilbert-type integral inequality in the whole plane with the homogeneous kernel of degree −2. J. Inequal. Appl. 2011., 2011: Article ID 401428

    Google Scholar 

  6. Abramowitz M, Stegun IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th edition. Dover, New York; 1972:807–808.

    Google Scholar 

  7. Azar LE: Some extension of Hilbert’s integral inequality. J. Math. Inequal. 2011, 5(1):131–140.

    Article  MathSciNet  Google Scholar 

  8. Kuang J: Applied Inequalities. Shangdong Science and Technology Press, Jinan; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tserendorj Batbold.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Adiyasuren, V., Batbold, T. On a generalization of a Hilbert-type integral inequality in the whole plane with a hypergeometric function. J Inequal Appl 2013, 189 (2013). https://doi.org/10.1186/1029-242X-2013-189

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-189

Keywords