Skip to main content

A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces

Abstract

In this paper, we introduce a new algorithm for finding a common element of the set of fixed points of N strict pseudocontractions and the set of solutions of equilibrium problems with a pseudomonotone and Lipschitz-type continuous bifunction. The scheme is motivated by the idea of extragradient methods and fixed point iteration methods. We show that the iterative sequences generated by this algorithm converge strongly to the above mentioned common element under some suitable conditions on algorithm parameters in a real Hilbert space. And also, we consider the variational inequality problems as an application.

MSC:46H09, 47H10, 47J25, 65K10.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner product 〈⋅,⋅〉 and the norm ∥⋅∥, and let f be a bifunction from C×C into R such that f(x,x)=0 for all x∈C. We consider the equilibrium problem in the sense of Blum and Oettli [1]: Find x ∗ ∈C such that

for all y∈C.

We denote by Sol(EP(f)) the set of solutions of the equilibrium problem EP(f).

We know that the problem EP(f,C) covers many important problems in optimization and nonlinear analysis. It has also found many applications in economics, transportation and engineering (see [1, 2] and the references quoted therein). Theory and methods for solving this problem have been developed by many authors [3–7]. Alternatively, the problem of finding a common fixed point of a sequence of finite self-mappings { S i } i = 1 N (N≥1) is described as follows: Find x ∗ ∈C such that

where F( S i ) is the set of fixed points of the mappings S i (i=1,…,N) on C. This problem has now become a mature subject in nonlinear analysis. The theory and solution methods of this problem can be found in many research papers and monographs (see [8–10]).

We are interested in the problem of finding a common element of the set of solutions of the equilibrium problem EP(f) and the set of solutions of the fixed problem (FP), namely: Find x ∗ ∈C such that

x ∗ ∈ ⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) .
(1.1)

A special case of problem (1.1) is that f(x,y)=〈F(x),y−x〉, and this problem is reduced to finding a common element of the set of solutions of variational inequalities, i.e., find x ∗ ∈C such that

and the set solutions of a fixed point problem (see [11–17]).

In this paper, we introduce a new iterative scheme for solving problem (1.1). This method can be considered to be an improvement of the viscosity approximation method in [15, 18, 19] and the iterative method in [20] via an improvement of the extragradient methods [3, 4, 21–23].

The paper is organized as follows. Section 2 recalls some concepts in equilibrium problems and fixed point problems that are used in the sequel and an iterative algorithm for solving problem (1.1). In Section 3, we prove the convergence theorems for the algorithms which are defined in Section 2 as the main results of this paper. In Section 4, we consider the variational inequality problems as an application of the main theorem.

2 Preliminaries

We first recall the following definitions that will be used for the main theorem.

Definition 2.1 Let C be a nonempty closed convex subset of a real Hilbert space H. A bifunction f:C×C→R is said to be

  1. (a)

    monotone on C if f(x,y)+f(y,x)≤0, ∀x,y∈C;

  2. (b)

    pseudomonotone on C if f(x,y)≥0 implies f(y,x)≤0, ∀x,y∈C;

  3. (c)

    Lipschitz-type continuous on C with two constants c 1 >0 and c 2 >0 if

    f(x,y)+f(y,z)≥f(x,z)− c 1 ∥ x − y ∥ 2 − c 2 ∥ y − z ∥ 2 ,∀x,y,z∈C.
    (2.1)

We know that every monotone bifunction f is pseudomonotone, but the converse is not true (see [24]).

Definition 2.2 Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping S:C→C is said to be a strict pseudocontraction if there exists a constant 0≤L<1 such that

∥ S ( x ) − S ( y ) ∥ 2 ≤ ∥ x − y ∥ 2 +L ∥ ( I − S ) ( x ) − ( I − S ) ( y ) ∥ 2 ,∀x,y∈C,

where I is the identity mapping on H. If L=0, then S is called nonexpansive on C.

Now, we define the projection on C, denoted by Pr C (â‹…), i.e.,

Pr C (x)=argmin { ∥ y − x ∥ : y ∈ C } ,∀x∈H.

And we use the symbols ⇀ and → to denote weak convergence and strong convergence, respectively. The following proposition gives some useful properties for strict pseudocontractions.

Proposition 2.3 [25]

Let C be a nonempty closed convex subset of a real Hilbert space H, let S:C→C be an L-strict pseudocontraction, and for each i=1,…,N, let S i :C→C be an L i -strict pseudocontraction for some 0≤ L i <1. Then we have the following.

  1. (a)

    S satisfies the following Lipschitz condition:

    ∥ S ( x ) − S ( y ) ∥ ≤ 1 + L 1 − L ∥x−y∥,∀x,y∈C;
  2. (b)
    (I−S)

    is demiclosed at zero. That is, if the sequence { x k } is in C such that x k ⇀ x ¯ and (I−S)( x k )→0, then (I−S)( x ¯ )=0;

  3. (c)

    The set F(S) is closed and convex;

  4. (d)

    If λ i >0 (i=1,…,N) and ∑ i = 1 N λ i =1, then ∑ i = 1 N λ i S i is an L ¯ -strict pseudocontraction, where L ¯ :=max{ L i ∣1≤i≤N};

  5. (e)

    If λ i is the same as in (d) and { S i ∣i=1,…,N} has a common fixed point, then

    F ( ∑ i = 1 N λ i S i ) = ⋂ i = 1 N F( S i ).

Many authors studied the problem of finding a common fixed point of a finite family of mappings. For instance, Marino and Xu [26] constructed an iterative algorithm for finding a common fixed point of N strict pseudocontractions S i (i=1,…,N). They defined the sequence { x k } starting from x 0 ∈H and taking

x k + 1 = α k x k +(1− α k ) ∑ i = 1 N λ k , i S i ( x k ) ,
(2.2)

where the control sequence of parameters { λ k } was made in order to get the guarantee for the convergence of the iterative sequence { x k }. And they proved that the sequence { x k } converges weakly to the point x ¯ ∈ ⋂ i = 1 N F( S i ).

Recently, Chen et al. [20] introduced a new iterative scheme for finding a common element of the set of common fixed points of a sequence of strict pseudocontractions { S ¯ i } and the set of solutions of the equilibrium problem EP(f) in a real Hilbert space H. Given a starting point x 0 ∈H, three iterative sequences { x k }, { y k } and { z k } are generated as the following scheme:

{ Compute  y k = α k x k + ( 1 − α k ) S ¯ k ( x k ) ; Find  z k ∈ C  such that  f ( z k , y ) + 1 r k 〈 y − z k , z k − y k 〉 ≥ 0 , ∀ y ∈ C ; Compute  x k + 1 = Pr C k ( x 0 ) ,  where  C k : = { v ∈ C | ∥ z k − v ∥ ≤ ∥ x k − v ∥ } .
(2.3)

Here, two sequences { α k } and { r k } are given as control parameters. The authors proved that the sequences { x k }, { y k } and { z k } converged strongly to the same point x ∗ , under certain conditions on { α k } and { r k }, such that

x ∗ ∈ Pr Sol ( EP ( f ) ) ∩ F ( S ) ( x 0 ) ,

where S is a nonexpansive mapping of C into itself defined by

S(x)= lim j → ∞ S ¯ j (x)

for all x∈C.

The methods for finding a common element of the sets Sol(EP(f)) and ⋂ i = 1 N F( S i ) in a real Hilbert space have been studied in many research papers (see [7, 17, 21, 22, 27–30]).

We need the following assumptions for the main theorems.

Assumption 2.4 The bifunction f satisfies the following conditions:

  1. (i)

    f is pseudomonotone and weakly continuous on C;

  2. (ii)

    f is Lipschitz-type continuous on C;

  3. (iii)

    for each x∈C, f(x,⋅) is convex and subdifferentiable on C.

Assumption 2.5 Every S i is an L i -strict pseudocontraction for some 0≤ L i <1.

Assumption 2.6 The solution set of (1.1) is nonempty, i.e.,

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ≠∅.

Note that if C⊆ri(dom(f(x,â‹…))), where ri(dom(f(x,â‹…))) is the set of relative interior points of the domain of f(x,â‹…), then Assumption 2.4(iii) is satisfied. Now we construct the new algorithms as follows.

Algorithm 2.7 Initialization: Choose positive sequences { λ k }, { α k }, { β k }, { γ k } and { λ k , i } satisfying the following conditions:

{ α k + β k ≤ 1 , ∀ k ≥ 0 , lim inf k → ∞ β k ∈ ( 0 , 1 ) , lim inf k → ∞ α k α k + β k ∈ ( L ¯ , 1 ) , where  L ¯ : = max { L i ∣ 1 ≤ i ≤ N } , lim inf k → ∞ ( γ k + ( 1 − γ k ) ( α k + β k ) ) > 0 , { γ k } ⊂ ( 0 , 1 ) , { λ k } ⊂ [ a , b ] for some  a , b ∈ ( 0 , 1 L ) ,  where  L : = max { 2 c 1 , 2 c 2 } , ∑ i = 1 p λ k , i = 1 for all  k ≥ 1 .

Take an initial point x 0 ∈C and set k:=0.

Iteration k: Carry out three steps below continuously.

  • Step 1. Solve two strongly convex programs:

    { y k : = argmin { λ k f ( x k , y ) + 1 2 ∥ y − x k ∥ 2 ∣ y ∈ C } , t k : = argmin { λ k f ( y k , y ) + 1 2 ∥ y − x k ∥ 2 ∣ y ∈ C } .
  • Step 2. Compute the iterations

    { y ¯ k : = ( 1 − γ k ) x k + γ k t k , z k : = ( 1 − α k − β k ) y ¯ k + α k t k + β k ∑ i = 1 N λ k , i S i ( t k ) .
  • Step 3. Set

    { C k : = { z ∈ C ∣ ∥ z k − z ∥ 2 ≤ ∥ x k − z ∥ 2 − β k ( α k α k + β k − L ¯ ) ∥ S ¯ k ( t k ) − t k ∥ 2 } , where  S ¯ k : = ∑ i = 1 N λ k , i S i ( x k ) , Q k : = { z ∈ C ∣ 〈 x k − z , x 0 − x k 〉 ≥ 0 } .

Compute x k + 1 := Pr C k ∩ Q k ( x 0 ).

Increase k by one and go back to Step 1.

3 Convergence of the algorithms

In this section, we study the convergence of Algorithm 2.7. We need the following useful lemmas for the main theorems.

Lemma 3.1 [2]

Let C be a nonempty closed convex subset of a real Hilbert space H, and let g:C→R be subdifferentiable on C. Then x ∗ is a solution of the following convex problem:

min { g ( x ) ∣ x ∈ C }

if and only if

0∈∂g ( x ∗ ) + N C ( x ∗ ) ,

where ∂g(⋅) denotes the subdifferential of g and N C ( x ∗ ) is the (outward) normal cone of C at x ∗ ∈C.

Lemma 3.2 [8]

Let C be a nonempty closed convex subset of a real Hilbert space H and x 0 ∈H. Let { x k } be a bounded sequence such that every weakly cluster point x ¯ of { x k } belongs to C and

∥ x k − x 0 ∥ ≤ ∥ x 0 − Pr C ( x 0 ) ∥ ,∀k≥0.

Then { x k } converges strongly to Pr C ( x 0 ) as k→∞.

Now, we are in a position to prove the main theorem.

Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Suppose that Assumptions  2.4-2.6 are satisfied. Then the sequences { x k }, { y k } and { z k } generated by Algorithm  2.7 converge strongly to the same point x ∗ ∈ â‹‚ i = 1 N F( S i )∩Sol(EP(f)), where

x ∗ = Pr ⋂ i = 1 N F ( S i ) ∩ Sol ( EP ( f ) ) ( x 0 ) .
(3.1)

Proof The proof of this theorem is divided into several steps.

Step 1. Suppose that x ∗ ∈ ⋂ i = 1 N F( S i )∩Sol(EP(f)). Then we have

∥ t k − x ∗ ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − ( 1 − 2 λ k c 2 ) ∥ t k − y k ∥ 2 − ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 , ∀ k ≥ 0 .
(3.2)

Since f(x,â‹…) is convex on C for each x∈C, by Lemma 3.1, we see that

t k =argmin { 1 2 ∥ t − x k ∥ 2 + λ k f ( y k , t ) | t ∈ C }

if and only if

0∈ ∂ 2 ( λ k f ( y k , y ) + 1 2 ∥ y − x k ∥ 2 ) ( t k ) + N C ( t k ) ,
(3.3)

where N C (x) is the (outward) normal cone of C at x∈C.

Since f( y k ,⋅) is subdifferentiable on C, by the well-known Moreau-Rockafellar theorem (see [31]), there exists w∈ ∂ 2 f( y k , t k ) such that

f ( y k , t ) −f ( y k , t k ) ≥ 〈 w , t − t k 〉 ,∀t∈C.

Substituting t= x ∗ into this inequality, we obtain

f ( y k , x ∗ ) −f ( y k , t k ) ≥ 〈 w , x ∗ − t k 〉 .
(3.4)

And also, it follows from (3.3) that 0= λ k w+ t k − x k + w ¯ , where w∈ ∂ 2 f( y k , t k ) and w ¯ ∈ N C ( t k ). By the definition of the normal cone N C , we have

〈 t k − x k , t − t k 〉 ≥ λ k 〈 w , t k − t 〉 ,∀t∈C.
(3.5)

Substituting t= x ∗ ∈C into the last inequality, we obtain

〈 t k − x k , x ∗ − t k 〉 ≥ λ k 〈 w , t k − x ∗ 〉 .
(3.6)

Combining (3.4) and (3.6), we have

〈 t k − x k , x ∗ − t k 〉 ≥ λ k ( f ( y k , t k ) − f ( y k , x ∗ ) ) .
(3.7)

Since x ∗ ∈Sol(EP(f)), f( x ∗ ,y)≥0 for all y∈C, and f is pseudomonotone on C, we have f( y k , x ∗ )≤0. Hence, (3.7) implies that

〈 t k − x k , x ∗ − t k 〉 ≥ λ k f ( y k , t k ) .
(3.8)

From Lipschitz condition (2.1) for f with x= x k , y= y k and z= t k , we have

f ( y k , t k ) ≥f ( x k , t k ) −f ( x k , y k ) − c 1 ∥ y k − x k ∥ 2 − c 2 ∥ t k − y k ∥ 2 .
(3.9)

Combining (3.8) and (3.9), we get

〈 t k − x k , x ∗ − t k 〉 ≥ λ k ( f ( x k , t k ) − f ( x k , y k ) − c 1 ∥ y k − x k ∥ 2 − c 2 ∥ t k − y k ∥ 2 ) .
(3.10)

Similarly, since y k is the unique solution of the strongly convex program

min { 1 2 ∥ y − x k ∥ 2 + λ k f ( x k , y ) | y ∈ C } ,

we have

λ k ( f ( x k , y ) − f ( x k , y k ) ) ≥ 〈 y k − x k , y k − y 〉 ,∀y∈C.

Substituting y= t k ∈C into the last inequality, we have

λ k ( f ( x k , t k ) − f ( x k , y k ) ) ≥ 〈 y k − x k , y k − t k 〉 .
(3.11)

Since

2 〈 t k − x k , x ∗ − t k 〉 = ∥ x k − x ∗ ∥ 2 − ∥ t k − x k ∥ 2 − ∥ t k − x ∗ ∥ 2 ,

from (3.10), (3.11), we have

∥ x k − x ∗ ∥ 2 − ∥ t k − x k ∥ 2 − ∥ t k − x ∗ ∥ 2 ≥ 2 〈 y k − x k , y k − t k 〉 − 2 λ k c 1 ∥ x k − y k ∥ 2 − 2 λ k c 2 ∥ t k − y k ∥ 2 .

Hence, we have

∥ t k − x ∗ ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − ∥ t k − x k ∥ 2 − 2 〈 y k − x k , y k − t k 〉 + 2 λ k c 1 ∥ x k − y k ∥ 2 + 2 λ k c 2 ∥ t k − y k ∥ 2 = ∥ x k − x ∗ ∥ 2 − ∥ ( t k − y k ) + ( y k − x k ) ∥ 2 − 2 〈 y k − x k , y k − t k 〉 + 2 λ k c 1 ∥ x k − y k ∥ 2 + 2 λ k c 2 ∥ t k − y k ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − ∥ t k − y k ∥ 2 − ∥ x k − y k ∥ 2 + 2 λ k c 1 ∥ x k − y k ∥ 2 + 2 λ k c 2 ∥ t k − y k ∥ 2 = ∥ x k − x ∗ ∥ 2 − ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 .

The implies that the inequality (3.2) holds.

Step 2. Next, we show that

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k

for all k≥0.

Using Step 1 and y ¯ k =(1− γ k ) x k + γ k t k , we have

∥ y ¯ k − x ∗ ∥ 2 = ∥ ( 1 − γ k ) ( x k − x ∗ ) + γ k ( t k − x ∗ ) ∥ 2 ≤ ( 1 − γ k ) ∥ x k − x ∗ ∥ 2 + γ k ∥ t k − x ∗ ∥ 2 ≤ ( 1 − γ k ) ∥ x k − x ∗ ∥ 2 + γ k { ∥ x k − x ∗ ∥ 2 − ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 } = ∥ x k − x ∗ ∥ 2 − γ k ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − γ k ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 ,
(3.12)

where x ∗ ∈Sol(EP(f)).

Set

S ¯ k := ∑ i = 1 N λ k , i S i .

Let x ∗ ∈ â‹‚ i = 1 p Fix( S i )∩Sol(EP(f)), using Proposition 2.3(d), (3.12) and the relation

∥ λ x + ( 1 − λ ) y ∥ 2 =λ ∥ x ∥ 2 +(1−λ) ∥ y ∥ 2 −λ(1−λ) ∥ x − y ∥ 2 ,∀x,y∈H,λ∈[0,1],

and z k =(1− α k − β k ) y ¯ k + α k t k + β k S ¯ k ( t k ), we have

∥ z k − x ∗ ∥ 2 = ∥ ( 1 − α k − β k ) ( y ¯ k − x ∗ ) + ( α k + β k ) 1 α k + β k { α k ( t k − x ∗ ) + β k ( S ¯ k ( t k ) − x ∗ ) } ∥ 2 ≤ ( 1 − α k − β k ) ∥ y ¯ k − x ∗ ∥ 2 + ( α k + β k ) ∥ α k α k + β k ( t k − x ∗ ) + β k α k + β k ( S ¯ k ( t k ) − x ∗ ) ∥ 2 = ( 1 − α k − β k ) ∥ y ¯ k − x ∗ ∥ 2 + α k ∥ t k − x ∗ ∥ 2 + β k ∥ S ¯ k ( t k ) − x ∗ ∥ 2 − α k β k α k + β k ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ( 1 − α k − β k ) ∥ y ¯ k − x ∗ ∥ 2 + α k ∥ t k − x ∗ ∥ 2 + β k ( ∥ t k − x ∗ ∥ 2 + L ¯ ∥ ( I − S ¯ k ) ( t k ) − ( I − S ¯ k ) ( x ∗ ) ∥ 2 ) − α k β k α k + β k ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ( 1 − α k − β k ) ∥ y ¯ k − x ∗ ∥ 2 + ( α k + β k ) ∥ t k − x ∗ ∥ 2 + ( β k L ¯ − α k β k α k + β k ) ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ( 1 − α k − β k ) ( ∥ x k − x ∗ ∥ 2 − γ k ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − γ k ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 ) + ( α k + β k ) ( ∥ x k − x ∗ ∥ 2 − ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 ) + ( β k L ¯ − α k β k α k + β k ) ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − m k ( 1 − 2 λ k c 1 ) ∥ x k − y k ∥ 2 − m k ( 1 − 2 λ k c 2 ) ∥ y k − t k ∥ 2 − β k ( α k α k + β k − L ¯ ) ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − β k ( α k α k + β k − L ¯ ) ∥ S ¯ k ( t k ) − t k ∥ 2 ,
(3.13)

where m k = γ k +(1− γ k )( α k + β k ). This means that x ∗ ∈ C k . Hence

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k ,∀k≥0.

Step 3. Now, we have to prove that

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k ∩ Q k

for all k≥0.

We show this assertion by mathematical induction. For k=0 we have Q 0 =C. Hence by Step 2, we obtain

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ P 0 ∩ Q 0 .

Assume that for some k≥0,

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k ∩ Q k .
(3.14)

From x k + 1 = Pr C k ∩ Q k ( x 0 ) it follows that

〈 x k + 1 − x , x 0 − x k + 1 〉 ≥0,∀x∈ C k ∩ Q k .

Using this and (3.14), we have

〈 x k + 1 − x , x 0 − x k + 1 〉 ≥0,∀x∈ ⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) .

Hence we have

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ Q k + 1 .

Then it follows from Step 2 that

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k + 1 ∩ Q k + 1 .

Consequently, we have

⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) ⊆ C k ∩ Q k ,∀k≥0.

Step 4. Next, we claim that

lim k → ∞ ∥ x k + 1 − x k ∥ = lim k → ∞ ∥ x k − z k ∥ = lim k → ∞ ∥ x k − y k ∥ = lim k → ∞ ∥ x k − t k ∥ = lim k → ∞ ∥ S ¯ k ( t k ) − t k ∥ = 0 .

It follows from Step 2 and x k + 1 = Pr C k ∩ Q k ( x 0 ) that

∥ x k + 1 − x 0 ∥ ≤ ∥ Pr ⋂ i = 1 N F ( S i ) ∩ Sol ( EP ( f ) ) ( x 0 ) − x 0 ∥ ,∀k≥0.
(3.15)

Hence, we get that { x k } is bounded. By Step 1, also the sequences { t k } and { z k } are bounded. Otherwise, we have

〈 x k − x , x 0 − x k 〉 ≥0,∀x∈ Q k ,

and hence x k = Pr Q k ( x 0 ). Using this and x k + 1 ∈ C k ∩ Q k ⊆ Q k , we have

∥ x k − x 0 ∥ ≤ ∥ x k + 1 − x 0 ∥ ,∀k≥0.

Therefore, there exists

A= lim k → ∞ ∥ x k − x 0 ∥ .
(3.16)

Using x k = Pr Q k ( x 0 ), x k + 1 ∈ Q k and the property of projections

∥ Pr Q k ( x ) − x ∥ 2 ≤ ∥ x − y ∥ 2 − ∥ Pr Q k ( x ) − y ∥ 2 ,∀x∈H,y∈ Q k ,

we have

∥ x k + 1 − x k ∥ 2 ≤ ∥ x k + 1 − x 0 ∥ 2 − ∥ x k − x 0 ∥ 2 ,∀k≥0.

Combining this and (3.16), we get

lim k → ∞ ∥ x k + 1 − x k ∥ =0.
(3.17)

It follows from x k + 1 = Pr C k ∩ Q k ( x 0 ) that x k + 1 ∈ C k , i.e.,

∥ z k − x k + 1 ∥ ≤ ∥ x k − x k + 1 ∥ .

Hence

∥ x k − z k ∥ ≤ ∥ x k − x k + 1 ∥ + ∥ x k + 1 − z k ∥ ≤2 ∥ x k − x k + 1 ∥ ,∀k≥0.

Then, by (3.17), we have

lim k → ∞ ∥ x k − z k ∥ =0.
(3.18)

Step 2 and (3.16) imply that { t k } is bounded, and hence { S ¯ k ( t k )− t k } and { z k } are also bounded.

By (3.13), we have

β k ( α k α k + β k − L ¯ ) ∥ S ¯ k ( t k ) − t k ∥ 2 ≤ ∥ x k − x ∗ ∥ 2 − ∥ z k − x ∗ ∥ 2 = ( ∥ x k − x ∗ ∥ − ∥ z k − x ∗ ∥ ) ( ∥ x k − x ∗ ∥ + ∥ z k − x ∗ ∥ ) ≤ ∥ x k − z k ∥ ( ∥ x k − x ∗ ∥ + ∥ z k − x ∗ ∥ ) .

From this and (3.18), we obtain

lim k → ∞ ∥ S ¯ k ( t k ) − t k ∥ =0.
(3.19)

Using (3.13), we also have

m k (1−2 λ k c 1 ) ∥ x k − y k ∥ 2 ≤ ∥ x k − z k ∥ ( ∥ x k − x ∗ ∥ + ∥ z k − x ∗ ∥ ) ,

and hence

lim k → ∞ ∥ x k − y k ∥ =0.
(3.20)

Similarly, we have

lim k → ∞ ∥ t k − y k ∥ =0.
(3.21)

Combining (3.20), (3.21) and ∥ x k − t k ∥≤∥ x k − y k ∥+∥ y k − t k ∥, we have

lim k → ∞ ∥ x k − t k ∥ =0.
(3.22)

This completes the proof of Step 4.

In Step 5 and Step 6 of this theorem, we consider weakly clusters of { x k }. It follows from (3.15) that the sequence { x k } is bounded, and hence there exists a subsequence { x k j } converging weakly to x ¯ as j→∞. By Step 4, also the sequences { y k j }, { t k j } and { z k j } converge weakly to x ¯ .

Step 5. Claim that x ¯ ∈ ⋂ i = 1 N F( S i ).

For each i=1,…,N, we suppose that { λ k j , i } converges λ ¯ i as j→∞ such that ∑ i = 1 p λ ¯ i =1. Then we have

S k j (x)→S(x):= ∑ i = 1 N λ ¯ i S i (x)(as j→∞),∀x∈C.

Since ∑ i = 1 N λ ¯ i =1, from Step 4 and

∥ t k j − S ( t k j ) ∥ ≤ ∥ t k j − S ¯ k j ( t k j ) ∥ + ∥ S ¯ k j ( t k j ) − S ( t k j ) ∥ = ∥ t k j − S ¯ k j ( t k j ) ∥ + ∥ ∑ i = 1 N λ k j , i S i ( t k j ) − ∑ i = 1 N λ ¯ i S i ( t k j ) ∥ = ∥ t k j − S ¯ k j ( t k j ) ∥ + ∥ ∑ i = 1 N ( λ k j , i − λ ¯ i ) S i ( t k j ) ∥ ≤ ∥ t k j − S ¯ k j ( t k j ) ∥ + ∑ i = 1 N | λ k j , i − λ ¯ i | ∥ S i ( t k j ) ∥ ,

we obtain that lim k → ∞ ∥ t k j −S( t k j )∥=0. By Proposition 2.3(b), we have

x ¯ ∈F(S)=F ( ∑ i = 1 N λ ¯ i S i ) .

Then, it implies that x ¯ ∈ â‹‚ i = 1 N F( S i ) from Proposition 2.3(e).

Step 6. Now we prove that if x k j ⇀ x ¯ as j→∞, then we have x ¯ ∈Sol(EP(f)).

Since y k is the unique strongly convex problem

min { 1 2 ∥ x − x k ∥ 2 + f ( x k , y ) | y ∈ C } ,

from Lemma 3.1, we have

0∈ ∂ 2 ( λ k f ( x k , y ) + 1 2 ∥ y − x k ∥ 2 ) ( y k ) + N C ( y k ) .

It follows that

0= λ k w+ y k − x k + w ¯ ,

where w∈ ∂ 2 f( x k , y k ) and w ¯ ∈ N C ( y k ). The definition of the normal cone N C implies that

〈 y k − x k , y − y k 〉 ≥ λ k 〈 w , y k − y 〉 ,∀y∈C.
(3.23)

On the other hand, since f( x k ,⋅) is subdifferentiable on C, by the Moreau-Rockafellar theorem [32], there exists w∈ ∂ 2 f( x k , y k ) such that

f ( x k , y ) −f ( x k , y k ) ≥ 〈 w , y − y k 〉 ,∀y∈C.

Combining this with (3.23), we have

λ k ( f ( x k , y ) − f ( x k , y k ) ) ≥ 〈 y k − x k , y k − y 〉 ,∀y∈C.

Hence

λ k j ( f ( x k j , y ) − f ( x k j , y k j ) ) ≥ 〈 y k j − x k j , y k j − y 〉 ,∀y∈C.

Then, using { λ k }⊂[a,b]⊂(0, 1 L ), Step 2, x k j ⇀ x ¯ as j→∞ and weak continuity of f, we have

f( x ¯ ,y)≥0,∀y∈C.

This means that x ¯ ∈Sol(EP(f)).

Step 7. Finally, we claim that the sequences { x k }, { y k }, { z k } and { t k } converge strongly to the same point x ∗ , where

x ∗ = Pr ⋂ i = 1 N F ( S i ) ∩ Sol ( EP ( f ) ) ( x 0 ) .

From Step 5 and Step 6 it follows that for every weakly cluster point x ¯ of the sequence { x k },

x ¯ ∈ ⋂ i = 1 N F( S i )∩Sol ( EP ( f ) ) .

On the other hand, using the definition of Q k , we have

x k = Pr Q k ( x 0 ) .

Combining this with (3.15), we obtain

∥ x 0 − x k ∥ ≤ ∥ x 0 − x ∥

for all x∈ ⋂ i = 1 N F( S i ,C)∩Sol(EP(f)). For x= x ∗ , we have

∥ x 0 − x k ∥ ≤ ∥ x 0 − x ∗ ∥ .

By Lemma 3.2, we know that the sequence { x k } converges strongly to x ∗ as k→∞, where

x ∗ = Pr ⋂ i = 1 N F ( S i , C ) ∩ Sol ( EP ( f ) ) ( x 0 ) .

We also have that y k , z k , t k → x ∗ as k→∞ by Step 4. □

4 Applications

Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a function from C into H. In this section, we consider the variational inequality problem which is presented as follows:

Find x ∗ ∈C such that

Let f:C×C→R be defined by f(x,y):=〈F(x),y−x〉. Then problem EP(f) can be written in VI(F). The set of solutions of VI(F) is denoted by Sol(VI(F)).

The function F is called

  • strongly monotone on C with β>0 if

    〈 F ( x ) − F ( y ) , x − y 〉 ≥β ∥ x − y ∥ 2 ,∀x,y∈C;
  • monotone on C if

    〈 F ( x ) − F ( y ) , x − y 〉 ≥0,∀x,y∈C;
  • pseudomonotone on C if

    〈 F ( y ) , x − y 〉 ≥0⇒ 〈 F ( x ) , x − y 〉 ≥0,∀x,y∈C;
  • Lipschitz continuous on C with constants L>0 if

    ∥ F ( x ) − F ( y ) ∥ ≤L∥x−y∥,∀x,y∈C.

Since

y k = argmin { λ k f ( x k , y ) + 1 2 ∥ y − x k ∥ 2 | y ∈ C } = argmin { λ k 〈 F ( x k ) , y − x k 〉 + 1 2 ∥ y − x k ∥ 2 | y ∈ C } = Pr C ( x k − λ k F ( x k ) ) ,

from Algorithm 2.7, we obtain the algorithm for finding a common element of the set of fixed points of p strict pseudocontractions and the solution set of variational inequality problem VI(F).

Algorithm 4.1 Initialization: Choose positive sequences { λ k }, { α k }, { β k }, { γ k } and { λ k , i } satisfying the conditions:

{ α k + β k ≤ 1 , ∀ k ≥ 0 , lim inf k → ∞ β k ∈ ( 0 , 1 ) , lim inf k → ∞ α k α k + β k ∈ ( L ¯ , 1 ) , where  L ¯ : = max { L i ∣ 1 ≤ i ≤ N } , lim inf k → ∞ ( γ k + ( 1 − γ k ) ( α k + β k ) ) > 0 , { γ k } ⊂ ( 0 , 1 ) , { λ k } ⊂ [ a , b ] for some  a , b ∈ ( 0 , 1 L ) , ∑ i = 1 N λ k , i = 1 for all  k ≥ 1 .

Find an initial point x 0 ∈C.

Iteration k: Perform the three steps below.

  • Step 1. Solve two strongly convex programs:

    { y k : = Pr C ( x k − λ k F ( x k ) ) , t k : = Pr C ( x k − λ k F ( y k ) ) .
  • Step 2. Compute the iterations

    { y ¯ k : = ( 1 − γ k ) x k + γ k t k , z k : = ( 1 − α k − β k ) y ¯ k + α k t k + β k ∑ i = 1 N λ k , i S i ( t k ) .
  • Step 3. Set

    { C k : = { z ∈ C ∣ ∥ z k − z ∥ 2 ≤ ∥ x k − z ∥ 2 − β k ( α k α k + β k − L ¯ ) ∥ S ¯ k ( t k ) − t k ∥ 2 } , Q k : = { z ∈ C ∣ 〈 x k − z , x 0 − x k 〉 ≥ 0 } .

Compute x k + 1 := Pr C k ∩ Q k ( x 0 ).

Increase k by one and go back to Step 1.

Now, we can prove the following convergence theorem with respect to VI(F) from Theorem 3.3.

Theorem 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a function from C into H such that F is pseudomonotone, weakly continuous and L-Lipschitz continuous on C. If each i=1,…,N, S i :C→C is L i -strict pseudocontraction for some 0≤ L i <1 and

⋂ i = 1 N F( S i )∩Sol ( VI ( F ) ) ≠∅,

then the sequences { x k }, { y k } and { z k } generated by Algorithm  4.1 converge strongly to the same point x ∗ ∈ â‹‚ i = 1 p Fix( S i )∩Sol(F,C), where

x ∗ = Pr ⋂ i = 1 N F ( S i ) ∩ Sol ( VI ( F ) ) ( x 0 ) .

References

  1. Blum E, Oettli W: From optimization and variational inequality to equilibrium problems. Math. Stud. 1994, 63: 127–149.

    MathSciNet  Google Scholar 

  2. Daniele P, Giannessi F, Maugeri A: Equilibrium Problems and Variational Models. Kluwer Academic, Dordrecht; 2003.

    Book  Google Scholar 

  3. Anh PN: A logarithmic quadratic regularization method for solving pseudo-monotone equilibrium problems. Acta Math. Vietnam. 2009, 34: 183–200.

    MathSciNet  Google Scholar 

  4. Anh PN: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 2008, 36: 209–228.

    MathSciNet  Google Scholar 

  5. Chang SS, Cho YJ, Kim JK: Approximation methods of solutions for equilibrium problem in Hilbert spaces. Dyn. Syst. Appl. 2008, 17: 503–508.

    MathSciNet  Google Scholar 

  6. Mastroeni G: Gap function for equilibrium problems. J. Glob. Optim. 2004, 27: 411–426.

    Article  MathSciNet  Google Scholar 

  7. Peng JW: Iterative algorithms for mixed equilibrium problems, strict pseudocontractions and monotone mappings. J. Optim. Theory Appl. 2010, 144: 107–119. 10.1007/s10957-009-9585-5

    Article  MathSciNet  Google Scholar 

  8. Goebel K, Kirk WA: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge; 1990.

    Book  Google Scholar 

  9. Kim JK, Sahu DR, Nam YM: Convergence theorem for fixed points of nearly uniformly L -Lipschitzian asymptotically generalized ϕ -hemicontractive mappings. Nonlinear Anal. TMA 2009, 71: 2833–2838. doi:10.1016/j.na.2009.06.091 10.1016/j.na.2009.06.091

    Article  MathSciNet  Google Scholar 

  10. Kim JK, Nam YM, Sim JY: Convergence theorem of implicit iterative sequences for a finite family of asymptotically quasi-nonexpansive type mappings. Nonlinear Anal. TMA 2009, 71: 2839–2848. doi:10.1016/j.na.2009.06.090 10.1016/j.na.2009.06.090

    Article  MathSciNet  Google Scholar 

  11. Chang SS, Lee HWJ, Chan CK, Kim JK: Approximating solutions of variational inequalities for asymptotically nonexpansive mappings. Appl. Math. Comput. 2009, 212: 51–59. 10.1016/j.amc.2009.01.078

    Article  MathSciNet  Google Scholar 

  12. Kim JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. 2011. doi:10.1186/1687–1812–2011–10

    Google Scholar 

  13. Kim JK, Cho SY, Qin X: Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math. Sci., Ser. B 2011, 31(5):985–996.

    MathSciNet  Google Scholar 

  14. Nadezhkina N, Takahashi W: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2006, 128: 191–201. 10.1007/s10957-005-7564-z

    Article  MathSciNet  Google Scholar 

  15. Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 2007, 331: 506–515. 10.1016/j.jmaa.2006.08.036

    Article  MathSciNet  Google Scholar 

  16. Takahashi S, Toyoda M: Weakly convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2003, 118: 417–428. 10.1023/A:1025407607560

    Article  MathSciNet  Google Scholar 

  17. Zeng LC, Yao JC: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 2010, 10: 1293–1303.

    MathSciNet  Google Scholar 

  18. Li XS, Huang J, Kim JK: General viscosity approximation methods for common fixed points of nonexpansive semigroup in Hilbert spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 783502. doi:10.1155/2011/783502

    Google Scholar 

  19. Li XS, Kim JK, Huang NJ: Viscosity approximation of common fixed points for L -Lipschitzian semigroup of pseudocontractive mappings in Banach spaces. J. Inequal. Appl. 2009., 2009: Article ID 936121. doi:10.1155/2009/936121

    Google Scholar 

  20. Chen R, Shen X, Cui S: Weak and strong convergence theorems for equilibrium problems and countable strict pseudocontractions mappings in Hilbert space. J. Inequal. Appl. 2010. doi:10.1155/2010/474813

    Google Scholar 

  21. Kim JK, Buong N: Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse strongly monotone mappings in Hilbert spaces. J. Inequal. Appl. 2010., 2010: Article ID 451916. doi:10.1155/2010/451916

    Google Scholar 

  22. Kim JK, Anh PN, Nam YM: Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 2011, 47: 187–200.

    Google Scholar 

  23. Kim JK, Tuyen TM: Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 52. doi:10.1186/1687–1812–2011–52

    Google Scholar 

  24. Schaible S, Karamardian S, Crouzeix JP: Characterizations of generalized monotone maps. J. Optim. Theory Appl. 1993, 76: 399–413. 10.1007/BF00939374

    Article  MathSciNet  Google Scholar 

  25. Acedo GL, Xu HK: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 2007, 67: 2258–2271. 10.1016/j.na.2006.08.036

    Article  MathSciNet  Google Scholar 

  26. Marino-Yanes C, Xu HK: Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 2006, 64: 2400–2411. 10.1016/j.na.2005.08.018

    Article  MathSciNet  Google Scholar 

  27. Ceng LC, Petrusel A, Lee C, Wong MM: Two extragradient approximation methods for variational inequalities and fixed point problems of strict pseudo-contractions. Taiwan. J. Math. 2009, 13: 607–632.

    MathSciNet  Google Scholar 

  28. Wang S, Cho YJ, Qin X: A new iterative method for solving equilibrium problems and fixed point problems for infinite family of nonexpansive mappings. Fixed Point Theory Appl. 2010. doi:10.1155/2010/165098

    Google Scholar 

  29. Wang S, Guo B: New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces. J. Comput. Appl. Math. 2010, 233: 2620–2630. 10.1016/j.cam.2009.11.008

    Article  MathSciNet  Google Scholar 

  30. Yao Y, Liou YC, Wu YJ: An extragradient method for mixed equilibrium problems and fixed point problems. Fixed Point Theory Appl. 2009. doi:10.1155/2009/632819

    Google Scholar 

  31. Rockafellar RT: Convex Analysis. Princeton University Press, Princeton; 1970.

    Book  Google Scholar 

  32. Kim JK, Cho SY, Qin X: Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings. J. Inequal. Appl. 2010., 2010: Article ID 312602. doi:10.1155/2010/312602

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Kyungnam University Foundation Grant 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kyu Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The main idea of this paper was proposed by JKK. JKK and WHL prepared the manuscript initially and performed all the steps of proof in this research. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, J.K., Lim, W.H. A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces. J Inequal Appl 2013, 128 (2013). https://doi.org/10.1186/1029-242X-2013-128

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-128

Keywords