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Abstract
In this paper, we introduce a new algorithm for finding a common element of the set
of fixed points of N strict pseudocontractions and the set of solutions of equilibrium
problems with a pseudomonotone and Lipschitz-type continuous bifunction. The
scheme is motivated by the idea of extragradient methods and fixed point iteration
methods. We show that the iterative sequences generated by this algorithm
converge strongly to the above mentioned common element under some suitable
conditions on algorithm parameters in a real Hilbert space. And also, we consider the
variational inequality problems as an application.
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1 Introduction
LetC be a nonempty closed convex subset of a real Hilbert spaceH with the inner product
〈·, ·〉 and the norm ‖ · ‖, and let f be a bifunction from C×C into R such that f (x,x) =  for
all x ∈ C. We consider the equilibrium problem in the sense of Blum and Oettli []: Find
x* ∈ C such that

f
(
x*, y

) ≥  EP(f )

for all y ∈ C.
We denote by Sol(EP(f )) the set of solutions of the equilibrium problem EP(f ).
We know that the problem EP(f ,C) covers many important problems in optimization

and nonlinear analysis. It has also found many applications in economics, transportation
and engineering (see [, ] and the references quoted therein). Theory and methods for
solving this problem have been developed by many authors [–]. Alternatively, the prob-
lem of finding a common fixed point of a sequence of finite self-mappings {Si}Ni= (N ≥ )
is described as follows: Find x* ∈ C such that

x* ∈
N⋂
i=

F(Si), (FP)
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where F(Si) is the set of fixed points of the mappings Si (i = , . . . ,N ) on C. This problem
has now become amature subject in nonlinear analysis. The theory and solution methods
of this problem can be found in many research papers and monographs (see [–]).
We are interested in the problem of finding a common element of the set of solutions of

the equilibrium problem EP(f ) and the set of solutions of the fixed problem (FP), namely:
Find x* ∈ C such that

x* ∈
N⋂
i=

F(Si)∩ Sol
(
EP(f )

)
. (.)

A special case of problem (.) is that f (x, y) = 〈F(x), y – x〉, and this problem is reduced
to finding a common element of the set of solutions of variational inequalities, i.e., find
x* ∈ C such that

〈
F
(
x*

)
,x – x*

〉 ≥ , ∀x ∈ C, VI(F)

and the set solutions of a fixed point problem (see [–]).
In this paper, we introduce a new iterative scheme for solving problem (.). Thismethod

can be considered to be an improvement of the viscosity approximationmethod in [, ,
] and the iterative method in [] via an improvement of the extragradient methods [,
, –].
The paper is organized as follows. Section  recalls some concepts in equilibrium prob-

lems and fixed point problems that are used in the sequel and an iterative algorithm for
solving problem (.). In Section , we prove the convergence theorems for the algorithms
which are defined in Section  as the main results of this paper. In Section , we consider
the variational inequality problems as an application of the main theorem.

2 Preliminaries
We first recall the following definitions that will be used for the main theorem.

Definition . Let C be a nonempty closed convex subset of a real Hilbert space H . A bi-
function f : C ×C → R is said to be
(a) monotone on C if f (x, y) + f (y,x) ≤ , ∀x, y ∈ C;
(b) pseudomonotone on C if f (x, y) ≥  implies f (y,x) ≤ , ∀x, y ∈ C;
(c) Lipschitz-type continuous on C with two constants c >  and c >  if

f (x, y) + f (y, z) ≥ f (x, z) – c‖x – y‖ – c‖y – z‖, ∀x, y, z ∈ C. (.)

We know that every monotone bifunction f is pseudomonotone, but the converse is not
true (see []).

Definition . Let C be a nonempty closed convex subset of a real Hilbert space H .
A mapping S : C → C is said to be a strict pseudocontraction if there exists a constant
 ≤ L <  such that

∥∥S(x) – S(y)
∥∥ ≤ ‖x – y‖ + L

∥∥(I – S)(x) – (I – S)(y)
∥∥, ∀x, y ∈ C,

where I is the identity mapping on H . If L = , then S is called nonexpansive on C.
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Now, we define the projection on C, denoted by PrC(·), i.e.,

PrC(x) = argmin
{‖y – x‖ : y ∈ C

}
, ∀x ∈H .

And we use the symbols ⇀ and → to denote weak convergence and strong convergence,
respectively. The following proposition gives some useful properties for strict pseudocon-
tractions.

Proposition . [] Let C be a nonempty closed convex subset of a real Hilbert space H ,
let S : C → C be an L-strict pseudocontraction, and for each i = , . . . ,N , let Si : C → C be
an Li-strict pseudocontraction for some  ≤ Li < . Then we have the following.
(a) S satisfies the following Lipschitz condition:

∥∥S(x) – S(y)
∥∥ ≤  + L

 – L
‖x – y‖, ∀x, y ∈ C;

(b) (I – S) is demiclosed at zero. That is, if the sequence {xk} is in C such that xk ⇀ x̄ and
(I – S)(xk) → , then (I – S)(x̄) = ;

(c) The set F(S) is closed and convex;
(d) If λi >  (i = , . . . ,N ) and

∑N
i= λi = , then

∑N
i= λiSi is an L̄-strict pseudocontraction,

where L̄ :=max{Li |  ≤ i≤ N};
(e) If λi is the same as in (d) and {Si | i = , . . . ,N} has a common fixed point, then

F

( N∑
i=

λiSi

)
=

N⋂
i=

F(Si).

Many authors studied the problem of finding a common fixed point of a finite family of
mappings. For instance,Marino andXu [] constructed an iterative algorithm for finding
a common fixed point of N strict pseudocontractions Si (i = , . . . ,N ). They defined the
sequence {xk} starting from x ∈H and taking

xk+ = αkxk + ( – αk)
N∑
i=

λk,iSi
(
xk

)
, (.)

where the control sequence of parameters {λk} was made in order to get the guarantee for
the convergence of the iterative sequence {xk}. And they proved that the sequence {xk}
converges weakly to the point x̄ ∈ ⋂N

i= F(Si).
Recently, Chen et al. [] introduced a new iterative scheme for finding a common el-

ement of the set of common fixed points of a sequence of strict pseudocontractions {S̄i}
and the set of solutions of the equilibrium problem EP(f ) in a real Hilbert space H . Given
a starting point x ∈ H , three iterative sequences {xk}, {yk} and {zk} are generated as the
following scheme:

⎧⎪⎪⎨
⎪⎪⎩
Compute yk = αkxk + ( – αk)S̄k(xk);

Find zk ∈ C such that f (zk , y) + 
rk

〈y – zk , zk – yk〉 ≥ , ∀y ∈ C;

Compute xk+ = PrCk (x
), where Ck := {v ∈ C|‖zk – v‖ ≤ ‖xk – v‖}.

(.)
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Here, two sequences {αk} and {rk} are given as control parameters. The authors proved
that the sequences {xk}, {yk} and {zk} converged strongly to the same point x*, under cer-
tain conditions on {αk} and {rk}, such that

x* ∈ PrSol(EP(f ))∩F(S)
(
x

)
,

where S is a nonexpansive mapping of C into itself defined by

S(x) = lim
j→∞ S̄j(x)

for all x ∈ C.
The methods for finding a common element of the sets Sol(EP(f )) and

⋂N
i= F(Si) in a

real Hilbert space have been studied in many research papers (see [, , , , –]).
We need the following assumptions for the main theorems.

Assumption . The bifunction f satisfies the following conditions:
(i) f is pseudomonotone and weakly continuous on C;
(ii) f is Lipschitz-type continuous on C;
(iii) for each x ∈ C, f (x, ·) is convex and subdifferentiable on C.

Assumption . Every Si is an Li-strict pseudocontraction for some  ≤ Li < .

Assumption . The solution set of (.) is nonempty, i.e.,

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) �= ∅.

Note that if C ⊆ ri(dom(f (x, ·))), where ri(dom(f (x, ·))) is the set of relative interior points
of the domain of f (x, ·), then Assumption .(iii) is satisfied. Now we construct the new
algorithms as follows.

Algorithm .
Initialization: Choose positive sequences {λk}, {αk}, {βk}, {γk} and {λk,i} satisfying the

following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk + βk ≤ , ∀k ≥ ,

lim infk→∞ βk ∈ (, ),

lim infk→∞ αk
αk+βk

∈ (L̄, ), where L̄ :=max{Li |  ≤ i≤ N},
lim infk→∞(γk + ( – γk)(αk + βk)) > , {γk} ⊂ (, ),

{λk} ⊂ [a,b] for some a,b ∈ (, L ), where L :=max{c, c},∑p
i= λk,i =  for all k ≥ .

Take an initial point x ∈ C and set k := .
Iteration k: Carry out three steps below continuously.
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• Step . Solve two strongly convex programs:

⎧⎨
⎩yk := argmin{λkf (xk , y) + 

‖y – xk‖ | y ∈ C},
tk := argmin{λkf (yk , y) + 

‖y – xk‖ | y ∈ C}.

• Step . Compute the iterations

⎧⎨
⎩ȳk := ( – γk)xk + γktk ,

zk := ( – αk – βk)ȳk + αktk + βk
∑N

i= λk,iSi(tk).

• Step . Set

⎧⎪⎪⎨
⎪⎪⎩
Ck := {z ∈ C | ‖zk – z‖ ≤ ‖xk – z‖ – βk( αk

αk+βk
– L̄)‖S̄k(tk) – tk‖},

where S̄k :=
∑N

i= λk,iSi(xk),

Qk := {z ∈ C | 〈xk – z,x – xk〉 ≥ }.

Compute xk+ := PrCk∩Qk (x
).

Increase k by one and go back to Step .

3 Convergence of the algorithms
In this section, we study the convergence of Algorithm .. We need the following useful
lemmas for the main theorems.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and let
g : C → R be subdifferentiable on C. Then x* is a solution of the following convex problem:

min
{
g(x) | x ∈ C

}

if and only if

 ∈ ∂g
(
x*

)
+NC

(
x*

)
,

where ∂g(·) denotes the subdifferential of g and NC(x*) is the (outward) normal cone of C
at x* ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H and
x ∈ H . Let {xk} be a bounded sequence such that every weakly cluster point x̄ of {xk} belongs
to C and

∥∥xk – x
∥∥ ≤ ∥∥x – PrC

(
x

)∥∥, ∀k ≥ .

Then {xk} converges strongly to PrC(x) as k → ∞.

Now, we are in a position to prove the main theorem.
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Suppose
that Assumptions .-. are satisfied. Then the sequences {xk}, {yk} and {zk} generated by
Algorithm . converge strongly to the same point x* ∈ ⋂N

i= F(Si)∩ Sol(EP(f )), where

x* = Pr⋂N
i= F(Si)∩Sol(EP(f ))

(
x

)
. (.)

Proof The proof of this theorem is divided into several steps.
Step . Suppose that x* ∈ ⋂N

i= F(Si)∩ Sol(EP(f )). Then we have

∥∥tk – x*
∥∥ ≤ ∥∥xk – x*

∥∥ – ( – λkc)
∥∥tk – yk

∥∥

– ( – λkc)
∥∥xk – yk

∥∥, ∀k ≥ . (.)

Since f (x, ·) is convex on C for each x ∈ C, by Lemma ., we see that

tk = argmin

{


∥∥t – xk

∥∥ + λkf
(
yk , t

) ∣∣∣ t ∈ C
}

if and only if

 ∈ ∂

(
λkf

(
yk , y

)
+


∥∥y – xk

∥∥
)(

tk
)
+NC

(
tk

)
, (.)

where NC(x) is the (outward) normal cone of C at x ∈ C.
Since f (yk , ·) is subdifferentiable on C, by the well-known Moreau-Rockafellar theorem

(see []), there exists w ∈ ∂f (yk , tk) such that

f
(
yk , t

)
– f

(
yk , tk

) ≥ 〈
w, t – tk

〉
, ∀t ∈ C.

Substituting t = x* into this inequality, we obtain

f
(
yk ,x*

)
– f

(
yk , tk

) ≥ 〈
w,x* – tk

〉
. (.)

And also, it follows from (.) that  = λkw + tk – xk + w̄, where w ∈ ∂f (yk , tk) and w̄ ∈
NC(tk). By the definition of the normal cone NC , we have

〈
tk – xk , t – tk

〉 ≥ λk
〈
w, tk – t

〉
, ∀t ∈ C. (.)

Substituting t = x* ∈ C into the last inequality, we obtain

〈
tk – xk ,x* – tk

〉 ≥ λk
〈
w, tk – x*

〉
. (.)

Combining (.) and (.), we have

〈
tk – xk ,x* – tk

〉 ≥ λk
(
f
(
yk , tk

)
– f

(
yk ,x*

))
. (.)

Since x* ∈ Sol(EP(f )), f (x*, y) ≥  for all y ∈ C, and f is pseudomonotone on C, we have
f (yk ,x*) ≤ . Hence, (.) implies that

〈
tk – xk ,x* – tk

〉 ≥ λkf
(
yk , tk

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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From Lipschitz condition (.) for f with x = xk , y = yk and z = tk , we have

f
(
yk , tk

) ≥ f
(
xk , tk

)
– f

(
xk , yk

)
– c

∥∥yk – xk
∥∥ – c

∥∥tk – yk
∥∥. (.)

Combining (.) and (.), we get

〈
tk – xk ,x* – tk

〉 ≥ λk
(
f
(
xk , tk

)
– f

(
xk , yk

)
– c

∥∥yk – xk
∥∥ – c

∥∥tk – yk
∥∥). (.)

Similarly, since yk is the unique solution of the strongly convex program

min

{


∥∥y – xk

∥∥ + λkf
(
xk , y

) ∣∣∣ y ∈ C
}
,

we have

λk
(
f
(
xk , y

)
– f

(
xk , yk

)) ≥ 〈
yk – xk , yk – y

〉
, ∀y ∈ C.

Substituting y = tk ∈ C into the last inequality, we have

λk
(
f
(
xk , tk

)
– f

(
xk , yk

)) ≥ 〈
yk – xk , yk – tk

〉
. (.)

Since


〈
tk – xk ,x* – tk

〉
=

∥∥xk – x*
∥∥ –

∥∥tk – xk
∥∥ –

∥∥tk – x*
∥∥,

from (.), (.), we have

∥∥xk – x*
∥∥ –

∥∥tk – xk
∥∥ –

∥∥tk – x*
∥∥ ≥ 

〈
yk – xk , yk – tk

〉
– λkc

∥∥xk – yk
∥∥

– λkc
∥∥tk – yk

∥∥.

Hence, we have

∥∥tk – x*
∥∥ ≤ ∥∥xk – x*

∥∥ –
∥∥tk – xk

∥∥ – 
〈
yk – xk , yk – tk

〉
+ λkc

∥∥xk – yk
∥∥ + λkc

∥∥tk – yk
∥∥

=
∥∥xk – x*

∥∥ –
∥∥(
tk – yk

)
+

(
yk – xk

)∥∥ – 
〈
yk – xk , yk – tk

〉
+ λkc

∥∥xk – yk
∥∥ + λkc

∥∥tk – yk
∥∥

≤ ∥∥xk – x*
∥∥ –

∥∥tk – yk
∥∥ –

∥∥xk – yk
∥∥ + λkc

∥∥xk – yk
∥∥ + λkc

∥∥tk – yk
∥∥

=
∥∥xk – x*

∥∥ – ( – λkc)
∥∥xk – yk

∥∥ – ( – λkc)
∥∥yk – tk

∥∥.

The implies that the inequality (.) holds.
Step . Next, we show that

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck

for all k ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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Using Step  and ȳk = ( – γk)xk + γktk , we have

∥∥ȳk – x*
∥∥ =

∥∥( – γk)
(
xk – x*

)
+ γk

(
tk – x*

)∥∥

≤ ( – γk)
∥∥xk – x*

∥∥ + γk
∥∥tk – x*

∥∥

≤ ( – γk)
∥∥xk – x*

∥∥ + γk
{∥∥xk – x*

∥∥ – ( – λkc)
∥∥xk – yk

∥∥

– ( – λkc)
∥∥yk – tk

∥∥}
=

∥∥xk – x*
∥∥ – γk( – λkc)

∥∥xk – yk
∥∥ – γk( – λkc)

∥∥yk – tk
∥∥, (.)

where x* ∈ Sol(EP(f )).
Set

S̄k :=
N∑
i=

λk,iSi.

Let x* ∈ ⋂p
i= Fix(Si)∩ Sol(EP(f )), using Proposition .(d), (.) and the relation

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, ∀x, y ∈H ,λ ∈ [, ],

and zk = ( – αk – βk)ȳk + αktk + βkS̄k(tk), we have

∥∥zk – x*
∥∥

=
∥∥∥∥( – αk – βk)

(
ȳk – x*

)
+ (αk + βk)


αk + βk

{
αk

(
tk – x*

)
+ βk

(
S̄k

(
tk

)
– x*

)}∥∥∥∥


≤ ( – αk – βk)
∥∥ȳk – x*

∥∥ + (αk + βk)
∥∥∥∥ αk

αk + βk

(
tk – x*

)
+

βk

αk + βk

(
S̄k

(
tk

)
– x*

)∥∥∥∥


= ( – αk – βk)
∥∥ȳk – x*

∥∥ + αk
∥∥tk – x*

∥∥ + βk
∥∥S̄k(tk) – x*

∥∥ –
αkβk

αk + βk

∥∥S̄k(tk) – tk
∥∥

≤ ( – αk – βk)
∥∥ȳk – x*

∥∥ + αk
∥∥tk – x*

∥∥

+ βk
(∥∥tk – x*

∥∥ + L̄
∥∥(I – S̄k)

(
tk

)
– (I – S̄k)

(
x*

)∥∥) – αkβk

αk + βk

∥∥S̄k(tk) – tk
∥∥

≤ ( – αk – βk)
∥∥ȳk – x*

∥∥ + (αk + βk)
∥∥tk – x*

∥∥ +
(

βkL̄ –
αkβk

αk + βk

)∥∥S̄k(tk) – tk
∥∥

≤ ( – αk – βk)
(∥∥xk – x*

∥∥ – γk( – λkc)
∥∥xk – yk

∥∥ – γk( – λkc)
∥∥yk – tk

∥∥)
+ (αk + βk)

(∥∥xk – x*
∥∥ – ( – λkc)

∥∥xk – yk
∥∥ – ( – λkc)

∥∥yk – tk
∥∥)

+
(

βkL̄ –
αkβk

αk + βk

)∥∥S̄k(tk) – tk
∥∥

≤ ∥∥xk – x*
∥∥ –mk( – λkc)

∥∥xk – yk
∥∥ –mk( – λkc)

∥∥yk – tk
∥∥

– βk

(
αk

αk + βk
– L̄

)∥∥S̄k(tk) – tk
∥∥

≤ ∥∥xk – x*
∥∥ – βk

(
αk

αk + βk
– L̄

)∥∥S̄k(tk) – tk
∥∥, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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wheremk = γk + ( – γk)(αk + βk). This means that x* ∈ Ck . Hence

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck , ∀k ≥ .

Step . Now, we have to prove that

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck ∩Qk

for all k ≥ .
We show this assertion by mathematical induction. For k =  we have Q = C. Hence by

Step , we obtain

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ P ∩Q.

Assume that for some k ≥ ,

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck ∩Qk . (.)

From xk+ = PrCk∩Qk (x
) it follows that

〈
xk+ – x,x – xk+

〉 ≥ , ∀x ∈ Ck ∩Qk .

Using this and (.), we have

〈
xk+ – x,x – xk+

〉 ≥ , ∀x ∈
N⋂
i=

F(Si)∩ Sol
(
EP(f )

)
.

Hence we have

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆Qk+.

Then it follows from Step  that

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck+ ∩Qk+.

Consequently, we have

N⋂
i=

F(Si)∩ Sol
(
EP(f )

) ⊆ Ck ∩Qk , ∀k ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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Step . Next, we claim that

lim
k→∞

∥∥xk+ – xk
∥∥ = lim

k→∞
∥∥xk – zk

∥∥
= lim

k→∞
∥∥xk – yk

∥∥
= lim

k→∞
∥∥xk – tk

∥∥
= lim

k→∞
∥∥S̄k(tk) – tk

∥∥
= .

It follows from Step  and xk+ = PrCk∩Qk (x
) that

∥∥xk+ – x
∥∥ ≤ ∥∥Pr⋂N

i= F(Si)∩Sol(EP(f ))
(
x

)
– x

∥∥, ∀k ≥ . (.)

Hence, we get that {xk} is bounded. By Step , also the sequences {tk} and {zk} are bounded.
Otherwise, we have

〈
xk – x,x – xk

〉 ≥ , ∀x ∈Qk ,

and hence xk = PrQk (x
). Using this and xk+ ∈ Ck ∩Qk ⊆Qk , we have

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥, ∀k ≥ .

Therefore, there exists

A = lim
k→∞

∥∥xk – x
∥∥. (.)

Using xk = PrQk (x
), xk+ ∈ Qk and the property of projections

∥∥PrQk (x) – x
∥∥ ≤ ‖x – y‖ – ∥∥PrQk (x) – y

∥∥, ∀x ∈H , y ∈Qk ,

we have

∥∥xk+ – xk
∥∥ ≤ ∥∥xk+ – x

∥∥ –
∥∥xk – x

∥∥, ∀k ≥ .

Combining this and (.), we get

lim
k→∞

∥∥xk+ – xk
∥∥ = . (.)

It follows from xk+ = PrCk∩Qk (x
) that xk+ ∈ Ck , i.e.,

∥∥zk – xk+
∥∥ ≤ ∥∥xk – xk+

∥∥.
Hence

∥∥xk – zk
∥∥ ≤ ∥∥xk – xk+

∥∥ +
∥∥xk+ – zk

∥∥ ≤ 
∥∥xk – xk+

∥∥, ∀k ≥ .
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Then, by (.), we have

lim
k→∞

∥∥xk – zk
∥∥ = . (.)

Step  and (.) imply that {tk} is bounded, and hence {S̄k(tk) – tk} and {zk} are also
bounded.
By (.), we have

βk

(
αk

αk + βk
– L̄

)∥∥S̄k(tk) – tk
∥∥ ≤ ∥∥xk – x*

∥∥ –
∥∥zk – x*

∥∥

=
(∥∥xk – x*

∥∥ –
∥∥zk – x*

∥∥)(∥∥xk – x*
∥∥ +

∥∥zk – x*
∥∥)

≤ ∥∥xk – zk
∥∥(∥∥xk – x*

∥∥ +
∥∥zk – x*

∥∥)
.

From this and (.), we obtain

lim
k→∞

∥∥S̄k(tk) – tk
∥∥ = . (.)

Using (.), we also have

mk( – λkc)
∥∥xk – yk

∥∥ ≤ ∥∥xk – zk
∥∥(∥∥xk – x*

∥∥ +
∥∥zk – x*

∥∥)
,

and hence

lim
k→∞

∥∥xk – yk
∥∥ = . (.)

Similarly, we have

lim
k→∞

∥∥tk – yk
∥∥ = . (.)

Combining (.), (.) and ‖xk – tk‖ ≤ ‖xk – yk‖ + ‖yk – tk‖, we have

lim
k→∞

∥∥xk – tk
∥∥ = . (.)

This completes the proof of Step .
In Step  and Step  of this theorem, we consider weakly clusters of {xk}. It follows from

(.) that the sequence {xk} is bounded, and hence there exists a subsequence {xkj} con-
verging weakly to x̄ as j → ∞. By Step , also the sequences {ykj}, {tkj} and {zkj} converge
weakly to x̄.
Step . Claim that x̄ ∈ ⋂N

i= F(Si).
For each i = , . . . ,N , we suppose that {λkj ,i} converges λ̄i as j → ∞ such that

∑p
i= λ̄i = .

Then we have

Skj (x)→ S(x) :=
N∑
i=

λ̄iSi(x) (as j → ∞),∀x ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/128


Kim and Lim Journal of Inequalities and Applications 2013, 2013:128 Page 12 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/128

Since
∑N

i= λ̄i = , from Step  and

∥∥tkj – S
(
tkj

)∥∥ ≤ ∥∥tkj – S̄kj
(
tkj

)∥∥ +
∥∥S̄kj(tkj) – S

(
tkj

)∥∥
=

∥∥tkj – S̄kj
(
tkj

)∥∥ +

∥∥∥∥∥
N∑
i=

λkj ,iSi
(
tkj

)
–

N∑
i=

λ̄iSi
(
tkj

)∥∥∥∥∥
=

∥∥tkj – S̄kj
(
tkj

)∥∥ +

∥∥∥∥∥
N∑
i=

(λkj ,i – λ̄i)Si
(
tkj

)∥∥∥∥∥
≤ ∥∥tkj – S̄kj

(
tkj

)∥∥ +
N∑
i=

|λkj ,i – λ̄i|
∥∥Si(tkj)∥∥,

we obtain that limk→∞ ‖tkj – S(tkj )‖ = . By Proposition .(b), we have

x̄ ∈ F(S) = F

( N∑
i=

λ̄iSi

)
.

Then, it implies that x̄ ∈ ⋂N
i= F(Si) from Proposition .(e).

Step . Now we prove that if xkj ⇀ x̄ as j → ∞, then we have x̄ ∈ Sol(EP(f )).
Since yk is the unique strongly convex problem

min

{


∥∥x – xk

∥∥ + f
(
xk , y

) ∣∣∣ y ∈ C
}
,

from Lemma ., we have

 ∈ ∂

(
λkf

(
xk , y

)
+


∥∥y – xk

∥∥
)(

yk
)
+NC

(
yk

)
.

It follows that

 = λkw + yk – xk + w̄,

where w ∈ ∂f (xk , yk) and w̄ ∈NC(yk). The definition of the normal cone NC implies that

〈
yk – xk , y – yk

〉 ≥ λk
〈
w, yk – y

〉
, ∀y ∈ C. (.)

On the other hand, since f (xk , ·) is subdifferentiable on C, by the Moreau-Rockafellar the-
orem [], there exists w ∈ ∂f (xk , yk) such that

f
(
xk , y

)
– f

(
xk , yk

) ≥ 〈
w, y – yk

〉
, ∀y ∈ C.

Combining this with (.), we have

λk
(
f
(
xk , y

)
– f

(
xk , yk

)) ≥ 〈
yk – xk , yk – y

〉
, ∀y ∈ C.

Hence

λkj
(
f
(
xkj , y

)
– f

(
xkj , ykj

)) ≥ 〈
ykj – xkj , ykj – y

〉
, ∀y ∈ C.
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Then, using {λk} ⊂ [a,b] ⊂ (, L ), Step , xkj ⇀ x̄ as j → ∞ and weak continuity of f , we
have

f (x̄, y) ≥ , ∀y ∈ C.

This means that x̄ ∈ Sol(EP(f )).
Step . Finally, we claim that the sequences {xk}, {yk}, {zk} and {tk} converge strongly to

the same point x*, where

x* = Pr⋂N
i= F(Si)∩Sol(EP(f ))

(
x

)
.

From Step  and Step  it follows that for every weakly cluster point x̄ of the sequence
{xk},

x̄ ∈
N⋂
i=

F(Si)∩ Sol
(
EP(f )

)
.

On the other hand, using the definition of Qk , we have

xk = PrQk

(
x

)
.

Combining this with (.), we obtain

∥∥x – xk
∥∥ ≤ ∥∥x – x

∥∥
for all x ∈ ⋂N

i= F(Si,C)∩ Sol(EP(f )). For x = x*, we have

∥∥x – xk
∥∥ ≤ ∥∥x – x*

∥∥.
By Lemma ., we know that the sequence {xk} converges strongly to x* as k → ∞, where

x* = Pr⋂N
i= F(Si ,C)∩Sol(EP(f ))

(
x

)
.

We also have that yk , zk , tk → x* as k → ∞ by Step . �

4 Applications
Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be a function
from C into H . In this section, we consider the variational inequality problem which is
presented as follows:
Find x* ∈ C such that

〈
F
(
x*

)
,x – x*

〉 ≥ , ∀x ∈ C. VI(F)

Let f : C×C → R be defined by f (x, y) := 〈F(x), y–x〉. Then problem EP(f ) can bewritten
in VI(F). The set of solutions of VI(F) is denoted by Sol(VI(F)).
The function F is called

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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• strongly monotone on C with β >  if

〈
F(x) – F(y),x – y

〉 ≥ β‖x – y‖, ∀x, y ∈ C;

• monotone on C if

〈
F(x) – F(y),x – y

〉 ≥ , ∀x, y ∈ C;

• pseudomonotone on C if

〈
F(y),x – y

〉 ≥  ⇒ 〈
F(x),x – y

〉 ≥ , ∀x, y ∈ C;

• Lipschitz continuous on C with constants L >  if

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C.

Since

yk = argmin

{
λkf

(
xk , y

)
+


∥∥y – xk

∥∥
∣∣∣ y ∈ C

}

= argmin

{
λk

〈
F
(
xk

)
, y – xk

〉
+


∥∥y – xk

∥∥
∣∣∣ y ∈ C

}

= PrC
(
xk – λkF

(
xk

))
,

from Algorithm ., we obtain the algorithm for finding a common element of the set of
fixed points of p strict pseudocontractions and the solution set of variational inequality
problem VI(F).

Algorithm .
Initialization: Choose positive sequences {λk}, {αk}, {βk}, {γk} and {λk,i} satisfying the

conditions:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk + βk ≤ , ∀k ≥ ,

lim infk→∞ βk ∈ (, ),

lim infk→∞ αk
αk+βk

∈ (L̄, ), where L̄ :=max{Li |  ≤ i≤ N},
lim infk→∞(γk + ( – γk)(αk + βk)) > , {γk} ⊂ (, ),

{λk} ⊂ [a,b] for some a,b ∈ (, L ),∑N
i= λk,i =  for all k ≥ .

Find an initial point x ∈ C.
Iteration k: Perform the three steps below.
• Step . Solve two strongly convex programs:

⎧⎨
⎩yk := PrC(xk – λkF(xk)),

tk := PrC(xk – λkF(yk)).

http://www.journalofinequalitiesandapplications.com/content/2013/1/128
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• Step . Compute the iterations

⎧⎨
⎩ȳk := ( – γk)xk + γktk ,

zk := ( – αk – βk)ȳk + αktk + βk
∑N

i= λk,iSi(tk).

• Step . Set

⎧⎨
⎩Ck := {z ∈ C | ‖zk – z‖ ≤ ‖xk – z‖ – βk( αk

αk+βk
– L̄)‖S̄k(tk) – tk‖},

Qk := {z ∈ C | 〈xk – z,x – xk〉 ≥ }.

Compute xk+ := PrCk∩Qk (x
).

Increase k by one and go back to Step .

Now, we can prove the following convergence theorem with respect to VI(F) from The-
orem ..

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F be a function from C into H such that F is pseudomonotone, weakly continuous and
L-Lipschitz continuous on C. If each i = , . . . ,N , Si : C → C is Li-strict pseudocontraction
for some  ≤ Li <  and

N⋂
i=

F(Si)∩ Sol
(
VI(F)

) �= ∅,

then the sequences {xk}, {yk} and {zk} generated by Algorithm . converge strongly to the
same point x* ∈ ⋂p

i= Fix(Si)∩ Sol(F ,C), where

x* = Pr⋂N
i= F(Si)∩Sol(VI(F))

(
x

)
.
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