Skip to main content

Nonlinear -Fuzzy stability of cubic functional equations

Abstract

We establish some stability results for the cubic functional equations

3 f x +  3 y + f 3 x - y =  15 f x + y +  15 f x - y +  8 0 f y ,
f 2 x + y + f 2 x - y =  2 f x + y +  2 f x - y +  12 f x

and

f 3 x + y + f 3 x - y =  3 f x + y +  3 f x - y +  48 f x

in the setting of various -fuzzy normed spaces that in turn generalize a Hyers-Ulam stability result in the framework of classical normed spaces. First, we shall prove the stability of cubic functional equations in the -fuzzy normed space under arbitrary t-norm which generalizes previous studies. Then, we prove the stability of cubic functional equations in the non-Archimedean -fuzzy normed space. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis.

Mathematics Subject Classification (2000): Primary 54E40; Secondary 39B82, 46S50, 46S40.

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [1] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [2]. Subsequently, the result of Hyers was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The article [4] of Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. For more informations on such problems, refer to the papers [515].

The functional equations

3 f x +  3 y + f 3 x - y =  15 f x + y +  15 f x - y +  8 0 f y ,
(1.1)
f 2 x + y + f 2 x - y =  2 f x + y +  2 f x - y +  12 f x
(1.2)

and

f 3 x + y + f 3 x - y =  3 f x + y +  3 f x - y +  48 f x
(1.3)

are called the cubic functional equations, since the function f(x) = cx3 is their solution. Every solution of the cubic functional equations is said to be a cubic mapping. The stability problem for the cubic functional equations was studied by Jun and Kim [16] for mappings f : XY, where X is a real normed space and Y is a Banach space. Later a number of mathematicians worked on the stability of some types of cubic equations [4, 1719]. Furthermore, Mirmostafaee and Moslehian [20], Mirmostafaee et al. [21], Alsina [22], Miheţ and Radu [23] and others [2428] investigated the stability in the settings of fuzzy, probabilistic, and random normed spaces.

2. Preliminaries

In this section, we recall some definitions and results which are needed to prove our main results.

A triangular norm (shorter t-norm) is a binary operation on the unit interval [0,1], i.e., a function T : [0,1] × [0,1] → [0,1] such that for all a, b, c [0,1] the following four axioms are satisfied:

  1. (i)

    T (a, b) = T (b, a) (: commutativity);

  2. (ii)

    T (a, (T (b, c))) = T (T (a, b), c) (: associativity);

  3. (iii)

    T (a, 1) = a (: boundary condition);

  4. (iv)

    T (a, b) ≤ T (a, c) whenever bc (: monotonicity).

Basic examples are the Lukasiewicz t-norm T L , T L (a, b) = max(a + b - 1, 0) a, b [0,1] and the t-norms T P , T M , T D , where T P (a, b) := ab, T M (a, b) := min{a, b},

T D a , b : = min a , b , if max a , b = 1 ; 0 , otherwise .

If T is a t-norm then x T n is defined for every x [0,1] and n N {0} by 1, if n = 0 and T x T n - 1 , x , if n ≥ 1. A t-norm T is said to be of Hadžić-type (we denote by T ) if the family x T n n N is equicontinuous at x = 1 (cf. [29]).

Other important triangular norms are (see [30]):

  • the Sugeno-Weber family T λ SW λ - 1 , is defined by T - 1 SW = T D , T SW = T P and

    T λ SW x , y = max 0 , x + y - 1 + λ x y 1 + λ

if λ (-1, ∞).

  • the Domby family T λ D λ 0 , , defined by TD, if λ = 0, TM, if λ = ∞ and

    T λ D ( x , y ) = 1 1 + 1 - x x λ + 1 - y y λ 1 / λ

if λ (0, ∞).

  • the Aczel-Alsina family T λ AA λ 0 , , defined by TD, if λ = 0, TM, if λ = ∞ and

    T λ AA x , y = e - log x λ + log y λ 1 / λ

if λ (0, ∞).

A t-norm T can be extended (by associativity) in a unique way to an n-array operation taking for (x1, . . . , x n ) [0,1]n the value T (x1, . . . , x n ) defined by

T i = 1 0 x i = 1 , T i = 1 n x i = T T i = 1 n - 1 x i , x n = T x 1 , . . . , x n .

T can also be extended to a countable operation taking for any sequence (x n ) nN in [0,1] the value

T i = 1 x i = lim n T i = 1 n x i .
(2.1)

The limit on the right side of (2.1) exists, since the sequence T i = 1 n x i n is non-increasing and bounded from below.

Proposition 2.1. [30] (1) For TT L the following implication holds:

lim n T i = 1 x n + i = 1 n = 1 ( 1 - x n ) < .
  1. (2)

    If T is of Hadžić-type then

    lim n T i = 1 x n + i = 1

for every sequence {x n }nNin [0, 1] such that li m n x n = 1 .

  1. (3)

    If T { T λ AA } λ ( 0 , ) { T λ D } λ ( 0 , ) , then

    lim n T i = 1 x n + i = 1 n = 1 ( 1 - x n ) α < .
  2. (4)

    If T { T λ sw } λ [ - 1 , ) , then

    lim n T i = 1 x n + i = 1 n = 1 ( 1 - x n ) < .

3. -Fuzzy normed spaces

The theory of fuzzy sets was introduced by Zadeh [31]. After the pioneering study of Zadeh, there has been a great effort to obtain fuzzy analogs of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology [3240, 4350]. One of the problems in -fuzzy topology is to obtain an appropriate concept of -fuzzy metric spaces and -fuzzy normed spaces. Saadati and Park [40], respectively, introduced and studied a notion of intuitionistic fuzzy metric (normed) spaces and then Deschrijver et al. [41] generalized the concept of intuitionistic fuzzy metric (normed) spaces and studied a notion of -fuzzy metric spaces and -fuzzy normed spaces (also, see [41, 42, 5155]). In this section, we give some definitions and related lemmas for our main results.

In this section, we give some definitions and related lemmas which are needed later.

Definition 3.1 ([43]). Let L= ( L , L ) be a complete lattice and U be a non-empty set called universe. A -fuzzy set on U is defined as a mapping A:UL. For any u U, A u represents the degree (in L) to which u satisfies .

Lemma 3.2 ([44]). Consider the set L* and operation L * defined by:

L * = { ( x 1 , x 2 ) : ( x 1 , x 2 ) [ 0 , 1 ] 2 a n d x 1 + x 2 1 } ,

( x 1 , x 2 ) L * ( y 1 , y 2 ) x 1 y 1 and x 2 y 2 for all (x1, x2), (y1, y2) L*. Then (L*, ≤ L* ) is a complete lattice.

Definition 3.3 ([45]). An intuitionistic fuzzy set A ζ , η on a universe U is an object A ζ , η = { ( ζ A ( u ) , η A ( u ) ) : u U } , where, for all u U, ζ A ( u ) [ 0 , 1 ] and η A ( u ) [ 0 , 1 ] are called the membership degree and the non-membership degree, respectively, of u in A ζ , η and, furthermore, satisfy ζ A ( u ) + η A ( u ) 1.

In Section 2, we presented the classical definition of t-norm, which can be easily extended to any lattice L= ( L , L ) . Define first 0 L =infL and 1 L =supL.

Definition 3.4. A triangular norm (t-norm) on is a mapping T: L 2 L satisfying the following conditions:

  1. (i)

    for any xL,T ( x , 1 L ) =x (: boundary condition);

  2. (ii)

    for any ( x , y ) L 2 ,T ( x , y ) =T ( y , x ) (: commutativity);

  3. (iii)

    for any ( x , y , z ) L 3 ,T ( x , T ( y , z ) ) =T ( T ( x , y ) , z ) (: associativity);

  4. (iv)

    for any ( x , x , y , y ) L 4 ,x L x and y L y T ( x , y ) L T ( x , y ) (: monotonicity).

A t-norm can also be defined recursively as an (n + 1)-array operation (n N \ {0}) by T 1 =T and

T n ( x ( 1 ) , , x ( n + 1 ) ) = T ( T n - 1 ( x ( 1 ) , , x ( n ) ) , x ( n + 1 ) ) , n 2 , x ( i ) L .

The t-norm M defined by

M ( x , y ) = x if  x L y y if  y L x

is a continuous t-norm.

Definition 3.5. A t-norm T on L* is said to be t-representable if there exist a t-norm T and a t-conorm S on [0,1] such that

T ( x , y ) = ( T ( x 1 , y 1 ) , S ( x 2 , y 2 ) ) , x = ( x 1 , x 2 ) , y = ( y 1 , y 2 ) L * .

Definition 3.6. A negation on is any strictly decreasing mapping N:LLsatisfying N ( 0 L ) = 1 L and N ( 1 L ) = 0 L . If N ( N ( x ) ) =xfor all x L, then is called an involutive negation.

In this article, let N:LL be a given mapping. The negation N s on ([0,1], ≤) defined as N s (x) = 1 - x for all x [0, 1] is called the standard negation on ([0,1], ≤).

Definition 3.7. The 3-tuple ( V , P , T ) is said to be a -fuzzy normed space if V is a vector space, T is a continuous t-norm on and is a -fuzzy set on V × ] 0 , + [ satisfying the following conditions: for all x, y V and t, s ]0, +∞[,

  1. (i)

    0 L < L P ( x , t ) ;

  2. (ii)

    P ( x , t ) = 1 L if and only if x = 0;

  3. (iii)

    P ( α x , t ) = P ( x , t | α | ) for all α ≠ 0;

  4. (iv)

    T ( P ( x , t ) , P ( y , s ) ) L P ( x + y , t + s ) ;

  5. (v)

    P ( x , · ) : ] 0 , [ L is continuous;

  6. (vi)

    lim t 0 P ( x , t ) = 0 L and lim t P ( x , t ) = 1 L .

In this case, is called a -fuzzy norm. If P= P μ , ν is an intuitionistic fuzzy set and the t-norm T is t-representable, then the 3-tuple ( V , P μ , v , T ) is said to be an intuitionistic fuzzy normed space.

Definition 3.8. (1) A sequence {x n } in X is called a Cauchy sequence if, for any εL\ { 0 L } and t > 0, there exists a positive integer n0 such that

N ( ε ) < L P ( x n + p - x n , t ) , n n 0 , p > 0 .
  1. (2)

    If every Cauchy sequence is convergent, then the -fuzzy norm is said to be complete and the -fuzzy normed space is called a -fuzzy Banach space, where is an involutive negation.

  2. (3)

    The sequence {x n } is said to be convergent to x V in the -fuzzy normed space ( V , P , T ) (denoted by x n P x)if P ( x n - x , t ) 1 L , whenever n → + ∞ for all t > 0.

Lemma 3.9 ([46]). Let P be a -fuzzy norm on V. Then

  1. (1)

    For all × V, P ( x , t ) is nondecreasing with respect to t.

  2. (2)

    P ( x - y , t ) =P ( y - x , t ) for all x, y V and t ]0, +∞ [.

Definition 3.10. Let ( V , P , T ) be a -fuzzy normed space. For any t ]0, +∞[, we define the open ball B(x, r, t) with center x V and radius rL\ { 0 L , 1 L } as

B ( x , r , t ) = { y V : N ( r ) < L P ( x - y , t ) } .

4. Stability result in -fuzzy normed spaces

In this section, we study the stability of functional equations in -fuzzy normed spaces.

Theorem 4.1. Let X be a linear space and ( Y , P , T ) be a complete -fuzzy normed space. If f : ×Y is a mapping with f (0) = 0 and Q is a -fuzzy set on X2 × (0, ) with the following property:

P ( 3 f ( x + 3 y ) + f ( 3 x - y ) - 15 f ( x + y ) - 15 f ( x - y ) - 80 f ( y ) , t ) L Q ( x , y , t ) , x , y X , t > 0 .
(4.1)

If

T i = 1 ( Q ( 3 n + i - 1 x , 0 , 3 3 n + 2 i + 1 t ) ) = 1 L , x X , t > 0 ,

and

lim n Q ( 3 n x , 3 n y , 3 3 n t ) = 1 L , x , y X , t > 0 ,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) L T i = 1 ( Q ( 3 i - 1 x , 0 , 3 2 i + 2 t ) ) , x X , t > 0 .
(4.2)

Proof. We brief the proof because it is similar as the random case [47, 27]. Putting y = 0 in (4.1), we have

P f ( 3 x ) 27 - f ( x ) , t L * Q ( x , 0 , 3 3 t ) , x X , t > 0 .

Therefore, it follows that

P f ( 3 k + 1 x ) 3 3 ( k + 1 ) - f ( 3 k x ) 3 3 k , t 3 k + 1 L Q ( 3 k x , 0 , 3 2 ( k + 1 ) t ) . k 1 , t > 0 .

By the triangle inequality, it follows that

P f ( 3 n x ) 27 n - f ( x ) , t L T i = 1 n ( Q ( 3 i - 1 x , 0 , 3 2 i + 2 t ) ) , x X , t > 0 .
(4.3)

In order to prove the convergence of the sequence f ( 3 n x ) 27 n , we replace x with 3mx in (4.3) to find that, for all m, n > 0,

P f ( 3 n + m x ) 27 ( n + m ) - f ( 3 m x ) 27 m , t L T i = 1 n ( Q ( 3 i + m - 1 x , 0 , 3 2 i + 3 m + 2 t ) ) , x X , t > 0 .

Since the right-hand side of the inequality tends to 1 L as m tends to infinity, the sequence f ( 3 n x ) 3 3 n is a Cauchy sequence. Thus, we may define C ( x ) = lim n f ( 3 n x ) 3 3 n for all x X. Replacing x, y with 3nx and 3ny, respectively, in (4.1), it follows that C is a cubic mapping. To prove (4.2), take the limit as n → ∞ in (4.3). To prove the uniqueness of the cubic mapping C subject to (4.2), let us assume that there exists another cubic mapping C' which satisfies (4.2). Obviously, we have C(3nx) = 33nC(x) and C'(3nx) = 33nC'(x) for all x X and n . Hence it follows from (4.2) that

P C ( x ) - C ( x ) , t L P C ( 3 n x ) - C ( 3 n x ) , 3 3 n t L T P C ( 3 n x ) - f ( 3 n x ) , 3 3 n - 1 t , P f ( 3 n x ) - C ( 3 n x ) , 2 3 n - 1 t L T T i = 1 ( Q ( 3 n + i - 1 x , 0 , 3 3 n + 2 i + 1 t ) ) , T i = 1 ( Q ( 3 n + i - 1 x , 0 , 3 3 n + 2 i + 1 t ) = T ( 1 L , 1 L ) = 1 L , x X , t > 0 ,

which proves the uniqueness of C. This completes the proof.

Theorem 4.2. Let X be a linear space and ( Y , P , T ) be a complete -fuzzy normed space. If f : XY is a mapping with f (0) = 0 and Q is a -fuzzy set on X2 × (0, ∞) with the following property:

P ( f ( 2 x + y ) + f ( 2 x - y ) - 2 f ( x + y ) - 2 f ( x - y ) - 12 f ( x ) , t )
(4.4)
L Q ( x , y , t ) , x , y X , t > 0 .

If

T i = 1 ( Q ( 2 n + i - 1 x , 0 , 2 3 n + 2 i + 1 t ) ) = 1 L , x X , t > 0 ,

and

lim n Q ( 2 n x , 2 n y , 2 3 n t ) = 1 L , x , y X , t > 0 ,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) L T i = 1 ( Q ( 2 i - 1 x , 0 , 2 2 i + 1 t ) ) , x X , t > 0 .
(4.5)

Proof. We omit the proof because it is similar as the last theorem and see [28].

Corollary 4.3. Let ( X , P , T ) be -fuzzy normed space and ( Y , P , T ) be a complete -fuzzy normed space. If f : XY is a mapping such that

P ( f ( 2 x + y ) + f ( 2 x - y ) - 2 f ( x + y ) - 2 f ( x - y ) - 12 f ( x ) , t )
L P ( x + y , t ) , x , y X , t > 0 ,

and

lim n T i = 1 ( P ( x , 2 2 n + i + 2 t ) ) = 1 L , x X , t > 0 ,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) L T i = 1 ( P ( x , 2 i + 2 t ) ) , x X , t > 0 .

Proof. See [28].

Now, we give an example to validate the main result as follows:

Example 4.4 ([28]). Let (X, || · ||) be a Banach space, ( X , P μ , ν , T M ) be an intuitionistic fuzzy normed space in which T M ( a , b ) = ( min { a 1 , b 1 } , max { a 2 , b 2 } ) and

P μ , ν ( x , t ) = t t + | | x | | , | | x | | t + | | x | | , x X , t > 0 ,

also ( Y , P μ , ν , T M ) be a complete intuitionistic fuzzy normed space. Define a mapping f : XY by f (x) = x3 + x0 for all x X, where x0 is a unit vector in X. A straightforward computation shows that

P μ , ν ( f ( 2 x + y ) + f ( 2 x - y ) - 2 f ( x + y ) - 2 f ( x - y ) - 12 f ( x ) , t ) L * P μ , ν ( x + y , t ) , x , y X , t > 0 .

Also, we have

lim n T M , i = 1 ( P μ , ν ( x , 2 2 n + i + 1 t ) ) = lim n lim m T M , i = 1 m ( P μ , ν ( x , 2 2 n + i + 1 t ) ) = lim n lim m P μ , ν ( x , 2 2 n + 2 t ) = lim n P μ , ν ( x , 2 2 n + 2 t ) = 1 L * .

Therefore, all the conditions of Theorem 4.2 hold and so there exists a unique cubic mapping C : XY such that

P μ , ν ( f ( x ) - C ( x ) , t ) L * P μ , ν ( x , 2 2 t ) , x X , t > 0 .

5. Non-Archimedean L-fuzzy normed spaces

In 1897, Hensel [?] introduced a field with a valuation in which does not have the Archimedean property.

Definition 5.1. Let be a field. A non-Archimedean absolute value on is a function ||:K [ 0 , + [ such that, for any a, b ,

  1. (i)

    |a| ≥ 0 and equality holds if and only if a = 0;

  2. (ii)

    |ab| = |a| |b|;

  3. (iii)

    |a + b| ≤ max {|a|, |b|} (: the strict triangle inequality).

Note that |n| ≤ 1 for each integer n ≥ 1. We always assume, in addition, that | · | is non-trivial, i.e., there exists a0 such that |a0| ≠ 0, 1.

Definition 5.2. A non-Archimedean -fuzzy normed space is a triple ( V , P , T ) , where V is a vector space, is a continuous t-norm on and is a -fuzzy set on V × ]0, +∞[ satisfying the following conditions: for all x, y V and t, s ]0, +∞[,

  1. (i)

    0 L < L P ( x , t ) ;

  2. (ii)

    P ( x , t ) = 1 L if and only if x = 0;

  3. (iii)

    P ( α x , t ) = P ( x , t | α | ) for all α ≠ 0;

  4. (vi)

    T ( P ( x , t ) , P ( y , s ) ) L P ( x + y , max { t , s } ) ;

  5. (v)

    P ( x , ) :]0, [ L is continuous;

  6. (vi)

    lim t 0 P ( x , t ) = 0 L and lim t P ( x , t ) = 1 L .

Example 5.3. Let (X, || · ||) be a non-Archimedean normed linear space. Then the triple ( X , P , min ) , where

P ( x , t ) = 0 , if t | | x | | ; 1 , if t > | | x | | ,

is a non-Archimedean -fuzzy normed space in which L = [0,1].

Example 5.4. Let (X, ||·||) be a non-Archimedean normed linear space. Denote T M ( a , b ) = ( min { a 1 , b 1 } , max { a 2 , b 2 } ) for all a = (a1, a2), b = (b1, b2) L* and P μ , ν be the intuitionistic fuzzy set on X × ]0, +∞[ defined as follows:

P μ , ν ( x , t ) = t t + | | x | | , | | x | | t + | | x | | ,xX,t + .

Then ( X , P μ , ν , T M ) is a non-Archimedean intuitionistic fuzzy normed space.

6. -fuzzy Hyers-Ulam-Rassias stability for cubic functional equations in non-Archimedean-fuzzy normed space

Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over . In this section, we investigate the stability of the cubic functional equation (1.1).

Next, we define a -fuzzy approximately cubic mapping. Let Ψ be a -fuzzy set on X × X × [0, ∞) such that Ψ (x, y, ·) is nondecreasing,

Ψ ( c x , c x , t ) L Ψ x , x , t | c | ,xX,c0

and

lim t Ψ ( x , y , t ) = 1 L ,x,yX,t>0.

Definition 6.1. A mapping f : XY is said to be Ψ-approximately cubic if

P ( 3 f ( x + 3 y ) + f ( 3 x - y ) - 15 f ( x + y ) - 15 f ( x - y ) - 80 f ( y ) , t ) L Ψ ( x , y , t ) , x , y X , t > 0 .
(6.1)

Here, we assume that 3 ≠ 0 in (i.e., characteristic of is not 3).

Theorem 6.2. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over : Let f: XY be a Ψ-approximately cubic mapping. If there exist a α (α > 0) and an integer k, k ≥ 2 with | 3k| < α and | 3| ≠ 1 such that

Ψ ( 3 - k x , 3 - k y , t ) L Ψ ( x , y , α t ) , x , y X , t > 0 ,
(6.2)

and

lim n T j = n M x , α j t | 3 | k j = 1 L ,xX,t>0,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) T i = 1 M x , α i + 1 t | 3 | k i , x X , t > 0 ,
(6.3)

where

M ( x , t ) :=T ( Ψ ( x , 0 , t ) , Ψ ( 3 x , 0 , t ) , , Ψ ( 3 k - 1 x , 0 , t ) ) ,xX,t>0.

Proof. First, we show, by induction on j, that, for all x X, t > 0 and j ≥ 1,

P ( f ( 3 j x ) - 2 7 j f ( x ) , t ) L M j ( x , t ) :=T ( Ψ ( x , 0 , t ) , , Ψ ( 3 j - 1 x , 0 , t ) ) .
(6.4)

Putting y = 0 in (6.1), we obtain

P ( f ( 3 x ) - 27 f ( x ) , t ) L Ψ ( x , 0 , t ) ,xX,t>0.

This proves (6.4) for j = 1. Let (6.4) hold for some j > 1. Replacing y by 0 and x by 3jx in (6.1), we get

P ( f ( 3 j + 1 x ) - 27 f ( 3 j x ) , t ) L Ψ ( 3 j x , 0 , t ) ,xX,t>0.

Since | 27| ≤ 1, it follows that

P ( f ( 3 j + 1 x ) - 2 7 j + 1 f ( x ) , t ) L T P ( f ( 3 j + 1 x ) - 27 f ( 3 j x ) , t ) , P ( 8 f ( 3 j x ) - 27 j + 1 f ( x ) , t ) = T P ( f ( 2 j + 1 x ) - 8 f ( 2 j x ) , t ) , P f ( 3 j x ) - 27 j f ( x ) , t | 27 | L T P ( f ( 3 j + 1 x ) - 27 f ( 3 j x ) , t ) , P ( f ( 3 j x ) - 27 j f ( x ) , t ) L T ( Ψ ( 3 j x , 0 , t ) , M j ( x , t ) ) = M j + 1 ( x , t ) , x X , t > 0 .

Thus (6.4) holds for all j ≥ 1. In particular, we have

P ( f ( 3 k x ) - 2 7 k f ( x ) , t ) L M ( x , t ) ,xX,t>0.
(6.5)

Replacing x by 3-(kn+k)x in (6.5) and using the inequality (6.2), we obtain

P f x 3 k n - 27 k f x 3 k n + k , t L M x 3 k n + k , t L M ( x , α n + 1 t ) x X , t > 0 , n 0

and so

P ( 3 3 k ) n f x ( 3 k ) n - ( 3 3 k ) n + 1 f x ( 3 k ) n + 1 , t L M x , α n + 1 | ( 3 3 k ) n | t L M x , α n + 1 | ( 3 k ) n | t , x X , t > 0 , n 0 .

Hence, it follow that

P ( 3 3 k ) n f x ( 3 k ) n - ( 3 3 k ) n + p f x ( 3 k ) n + p , t L T j = n n + p P 3 3 k j f x ( 3 k ) j - ( 3 3 k ) j + p f x ( 3 k ) j + p , t L T j = n n + p M x , α j + 1 | ( 3 k ) j | t , x X , t > 0 , n 0 .

Since lim n T j = n M x , α j + 1 | ( 3 k ) j | t = 1 L for all x X and t > 0, ( 3 3 k ) n f x ( 3 k ) n n is a Cauchy sequence in the non-Archimedean -fuzzy Banach space ( Y , P , T ) . Hence we can define a mapping C : XY such that

lim n P ( 3 3 k ) n f x ( 3 k ) n - C ( x ) , t = 1 L , x X , t > 0 .
(6.6)

Next, for all n ≥ 1, x X and t > 0, we have

P ( f ( x ) ( 3 3 k ) n f ( x ( 3 k ) n ) , t ) = ( i = 0 n 1 ( 3 3 k ) i f ( x ( 3 k ) i ) ( 3 3 k ) i + 1 f ( x ( 3 k ) i + 1 ) , t ) L T i = 0 n 1 ( ( ( 3 3 k ) i f ( x ( 3 k ) i ) ( 3 3 k ) i + 1 f ( x ( 3 k ) i + 1 ) , t ) ) L T i = 0 n 1 ( x , α i + 1 t | 3 k | i )

and so

P ( f ( x ) - C ( x ) , t ) L T P f ( x ) - ( 3 3 k ) n f x ( 3 k ) n , t , P ( 3 3 k ) n f x ( 3 k ) n - C ( x ) , t L P T i = 0 n - 1 M x , α i + 1 t | 3 k | i , P ( ( 3 3 k ) n f x ( 3 k ) n - C ( x ) , t ) .
(6.7)

Taking the limit as n → ∞ in (6.7), we obtain

P ( f ( x ) - C ( x ) , t ) L T i = 1 M x , α i + 1 t | 3 k | i ,

which proves (6.3). As is continuous, from a well known result in -fuzzy (probabilistic) normed space (see, [51, Chap. 12]), it follows that

lim n P ( ( 2 7 k ) n f ( 3 - k n ( x + 3 y ) ) + ( 2 7 k ) n f ( 3 - k n ( 3 x - y ) ) - 15 ( 2 7 k ) n f ( 3 - k n ( x + y ) ) - 15 ( 2 7 k ) n f ( 3 - k n ( x - y ) ) - 80 ( 2 7 k ) n f ( 3 - k n y ) , t ) = P ( C ( x + 3 y ) + C ( 3 x - y ) - 15 C ( x + y ) - 15 C ( x - y ) - 80 C ( y ) , t ) , t > 0 .

On the other hand, replacing x, y by 3-knx, 3-kny in (6.1) and (6.2), we get

P ( ( 2 7 k ) n f ( 3 - k n ( x + 3 y ) ) + ( 2 7 k ) n f ( 3 - k n ( 3 x - y ) ) - 15 ( 2 7 k ) n f ( 3 - k n ( x + y ) ) - 15 ( 2 7 k ) n f ( 3 - k n ( x - y ) ) - 80 ( 2 7 k ) n f ( 3 - k n y ) , t ) L Ψ 3 - k n x , 3 - k n y , t | 3 3 k | n L Ψ x , y , α n t | 3 k | n , x , y X , t > 0 .

Since lim n Ψ x , y , α n t | 3 k | n = 1 L , we infer that C is a cubic mapping.

For the uniqueness of C, let C' : XY be another cubic mapping such that

P ( C ( x ) - f ( x ) , t ) L M ( x , t ) ,xX,t>0.

Then we have, for all x, y X and t > 0,

P ( C ( x ) - C ( x ) , t ) L T P C ( x ) - ( 3 3 k ) n f x ( 3 k ) n , t , P ( 3 3 k ) n f x ( 3 k ) n - C ( x ) , t , t ) .

Therefore, from (6.6), we conclude that C = C'. This completes the proof.

Corollary 6.3. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over under a t-norm. Let f: XY be a Ψ-approximately cubic mapping. If there exist α (α > 0),| 3| ≠ 1 and an integer k, k ≥ 3 with | 3k| < α such that

Ψ ( 3 - k x , 3 - k y , t ) L Ψ ( x , y , α t ) ,x,yX,t>0,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) L T i = 1 M x , α i + 1 t | 3 | k i ,xX,t>0,

where

M ( x , t ) :=T ( Ψ ( x , 0 , t ) , Ψ ( 3 x , 0 , t ) , , Ψ ( 3 k - 1 x , 0 , t ) ) ,xX,t>0.

Proof. Since

lim n M x , α j t | 3 | k j = 1 L ,xX,t>0,

and is of Hadžić type, it follows from Proposition 2.1 that

lim n T j = n M x , α j t | 3 | k j = 1 L ,xX,t>0.

Now, if we apply Theorem 6.2, we get the conclusion.

Now, we give an example to validate the main result as follows:

Example 6.4. Let (X, || · ||) be a non-Archimedean Banach space, ( X , P μ , ν , T M ) be non-Archimedean -fuzzy normed space (intuitionistic fuzzy normed space) in which

P μ , ν ( x , t ) = t t + | | x | | , | | x | | t + | | x | | ,xX,t>0,

and ( Y , P μ , ν , T M ) be a complete non-Archimedean -fuzzy normed space (intuitionistic fuzzy normed space) (see, Example 5.4). Define

Ψ ( x , y , t ) = t 1 + t , 1 1 + t ,x,yX,t>0.

It is easy to see that (6.2) holds for α = 1. Also, since

M ( x , t ) = t 1 + t , 1 1 + t ,xX,t>0,

we have

lim n T M , j = n M x , α j t | 3 | k j = lim n lim m T M , j = n m M x , t | 3 | k j = lim n lim m t t + | 3 k | n , | 2 k | n t + | 3 k | n = ( 1 , 0 ) = 1 L * , x X , t > 0 .

Let f : XY be a Ψ-approximately cubic mapping. Therefore, all the conditions of Theorem 6.2 hold and so there exists a unique cubic mapping C : XY such that

P μ , ν ( f ( x ) - C ( x ) , t ) L * t t + | 3 k | , | 3 k | t + | 3 k | ,xX,t>0.

Definition 6.5. A mapping f : XY is said to be Ψ-approximately cubic I if

P ( f ( 2 x + y ) + f ( 2 x - y ) - 2 f ( x + y ) - 2 f ( x - y ) - 12 f ( x ) , t )
(6.8)
L Ψ ( x , y , t ) , x , y X , t > 0 .

In this section, we assume that 2 ≠ 0 in (i.e., the characteristic of is not 2).

Theorem 6.6. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over. Let f : XY be a Ψ-approximately cubic I mapping. If | 2| ≠ 1 and for some α , α > 0, and some integer k, k ≥ 2 with | 2k| < α,

Ψ ( 2 - k x , 2 - k y , t ) L Ψ ( x , y , α t ) ,x,yX,t>0,
(6.9)

and

lim n T j = n M x , α j t | 2 | k j = 1 L ,xX,t>0,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) T i = 1 M x , α i + 1 t | 2 | k i , x X , t > 0 ,
(6.10)

where

M ( x , t ) :=T ( Ψ ( x , 0 , t ) , Ψ ( 2 x , 0 , t ) , , Ψ ( 2 k - 1 x , 0 , t ) ) ,xX,t>0.

Proof. We omit the proof because it is similar as the random case (see, [28]).

Corollary 6.7. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over under a t-norm . Let f : XY be a Ψ-approximately cubic I mapping. If there exist a α (α > 0) and an integer k, k ≥ 2 with |2k| < α such that

Ψ ( 2 - k x , 2 - k y , t ) L Ψ ( x , y , α t ) ,x,yX,t>0,

then there exists a unique cubic mapping C : XY such that

P ( f ( x ) - C ( x ) , t ) L T i = 1 M x , α i + 1 t | 2 | k i ,xX,t>0,

where

M ( x , t ) :=T ( Ψ ( x , 0 , t ) , Ψ ( 2 x , 0 , t ) , , Ψ ( 2 k - 1 x , 0 , t ) ) ,xX,t>0.

Proof. Since

lim n M x , α j t | 2 | k j = 1 L ,xX,t>0,

and is of Hadžić type, it follows from Proposition 2.1 that

lim n T j = n M x , α j t | 2 | k j = 1 L ,xX,t>0.

Now, if we apply Theorem 6.2, we get the conclusion.

Now, we give an example to validate the main result as follows:

Example 6.8. Let (X, || · || be a non-Archimedean Banach space, ( X , P μ , ν , T M ) be non-Archimedean -fuzzy normed space (intuitionistic fuzzy normed space) in which

P μ , ν ( x , t ) = t t + | | x | | , | | x | | t + | | x | | ,xX,t>0,

and ( Y , P μ , ν , T M ) be a complete non-Archimedean -fuzzy normed space (intuitionistic fuzzy normed space) (see, Example 5.4). Define

Ψ ( x , y , t ) = t 1 + t , 1 1 + t ,x,yX,t>0.

It is easy to see that (6.9) holds for α = 1. Also, since

M ( x , t ) = t 1 + t , 1 1 + t ,xX,t>0,

we have

lim n T M , j = n M x , α j t | 2 | k j = lim n lim m T M , j = n m M x , t | 2 | k j = lim n lim m t t + | 2 k | n , | 2 k | n t + | 2 k | n = ( 1 , 0 ) = 1 L * , x X , t > 0 .

Let f : XY be a Ψ-approximately cubic I mapping. Therefore, all the conditions of Theorem 6.6 hold and so there exists a unique cubic mapping C : XY such that

P μ , ν ( f ( x ) - C ( x ) , t ) L * t t + | 2 k | , | 2 k | t + | 2 k | ,xX,t>0.

Definition 6.9. A mapping f : XY is said to be Ψ-approximately cubic II if

P f 3 x + y + f 3 x - y - 3 f x + y - 3 f x - y - 48 f x , t L Ψ x , y , t , x , y X , t > 0 .
(6.11)

Here, we assume that 3 ≠ 0 in (i.e., the characteristic of is not 3).

Theorem 6.10. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) be a non-Archimedean -fuzzy Banach space over . Let f : XY be a Ψ-approximately cubic II function. If |3| ≠ 1 and, for some α , α > 0, and some integer k, k ≥ 3, with |3k| < α,

Ψ 3 - k x , 3 - k y , t L Ψ x , y , α t , x , y X , t > 0 ,
(6.12)

and

lim n T j = n M x , α j t | 3 | k j = 1 L , x X , t > 0 ,
(6.13)

then there exists a unique cubic mapping C : XY such tha

P f x - C x , t T i = 1 M x , α i + 1 t | 3 | k i ,
(6.14)

for all × X and t > 0, where

M x , t : = T Ψ x , 0 , 2 t , Ψ 3 x , 0 , 2 t , . . . , Ψ 3 k - 1 x , 0 , 2 t , x X , t > 0 .

Proof. First, we show, by induction on j, that, for all x X, t > 0 and j ≥ 1,

P f 3 j x - 27 j f x , t L M j x , t : = T Ψ x , 0 , 2 t , . . . , Ψ 3 j - 1 x , 0 , 2 t .
(6.15)

Put y = 0 in (6.11) to obtain

P f 3 x - 27 f x , t L Ψ x , 0 , 2 t , x X , t > 0 .
(6.16)

This proves (6.15) for j = 1. Let (6.15) hold for some j > 1. Replacing y by 0 and x by 3jx in (6.16), we get

P f 3 j + 1 x - 27 f 3 j x , t L Ψ 3 j x , 0 , 2 t , x X , t > 0 .

Since |27| ≤ 1, then we have

P f 3 j + 1 x - 27 j + 1 f x , t L T P f 3 j + 1 x - 27 f 3 j x , t , P 27 f 3 j x - 27 j + 1 f x , t = T P f 3 j + 1 x - 27 f 3 j x , t , P f 3 j x - 27 j f x , t | 27 | L T P f 3 j + 1 x - 27 f 3 j x , t , P f 3 j x - 27 j f x , t L T Ψ 3 j x , 0 , 2 t , M j x , t = M j + 1 x , t , x X .

Thus (6.15) holds for all j ≥ 1. In particular, it follows that

P f 3 k x - 27 k f x , t L M x , t , x X , t > 0 .
(6.17)

Replacing x by 3-(kn+k)x in (6.17) and using inequality (6.12) we obtain

P f x 3 k n - 27 k f x 3 k n + k , t L M x 3 k n + k , t L M x , α n + 1 t , x X , t > 0 , n 0 .
(6.18)

Then we have

P 3 3 k n f x 3 3 k n - 3 3 k n + 1 f x 3 3 k n + 1 , t L M x , α n + 1 | 3 3 k n | t , x X , t > 0 , n 0 .
(6.19)

Hence we have

P f x 3 k n - 27 k f x 3 k n + k , t L M x 3 k n + k , t L M x , α n + 1 t , x X , t > 0 , n 0 .

Since lim n T j = n M x , α j + 1 3 3 k j t = 1 L for all x X and t > 0, {kn f (k--nx)} nN is a Cauchy sequence in the non-Archimedean -fuzzy Banach space ( Y , P , T ) . Hence we can define a mapping C : XY such that

lim n P ( 3 3 k ) n f x ( 3 k ) n - C ( x ) , t = 1 L , x X , t > 0 .
(6.20)

Next, for all n ≥ 1, x X and t > 0,

P f ( x ) - ( 3 3 k ) n f x ( 3 k ) n , t = P i = 0 n - 1 ( 3 3 k ) i f x ( 3 k ) i - ( 3 3 k ) i + 1 f x ( 3 k ) i + 1 , t L T i = 0 n - 1 P ( 3 3 k ) i f x ( 3 k ) i - ( 3 3 k ) i + 1 f x ( 3 k ) i + 1 , t L T i = 0 n - 1 M x , α i + 1 t | 3 3 k | i .
(6.21)

Therefore, we have

P f x - C x , t L T P f x - 3 3 k n f x 3 k n , t , P 3 3 k n f x 3 k n - C x , t L P T i = 0 n - 1 M x , α i + 1 t 3 3 k i , P 3 3 k n f x 3 k n - C x , t .

By letting n → ∞ in the above inequality, we obtain

P f x - C x , t L T i = 1 M x , α i + 1 t 3 3 k i , x X , t < 0 .

This proves (6.14). Since T is continuous, from the well known result in -fuzzy (probabilistic) normed space (see, [51, Chap. 12]), it follows that

lim n P 3 k n f 3 - k n 3 x + y + 3 k n f 3 - k n 3 x - y - 3 3 k n f 3 - k n ( x + y - 3 3 k n f 3 - k n x - y - 48 3 k n f 3 - k n x , t ) = P C 3 x + y + C 3 x - y - 3 C x + y - 3 C x - y - 48 C x , t , t > 0 .

On the other hand, replace x, y by 3-knx, 3-kny in (6.11) and (6.12) to get

P 3 k n f 3 - k n 3 x + y + 3 k n f 3 - k n 3 x - y - 3 3 k n f 3 - k n x + y - 3 3 k n f 3 - k n x - y - 48 3 k n f 3 - k n y , t ) L Ψ 3 - k n x , 3 - k n y , t 3 k n L Ψ x , y , α n t 3 k n , x , y X , t > 0 .

Since lim n Ψ x , y , α n t 3 k n = 1 L , we infer that C is a cubic mapping.

If C :XY is another cubic mapping such that P C x - f x , t L M x , t for all x X and t > 0, then, for all n ≥ 1, x X and t > 0,

P C x - C x , t L T P ( C x - 3 3 k n f x 3 k n , t ) , P ( ( 3 3 k ) n f x 3 k n - C x , t ) , t ) .

Thus, from (6.20), we conclude that C = C . This completes the proof.

Corollary 6.11. Let be a non-Archimedean field, X be a vector space over and ( Y , P , T ) . be a non-Archimedean -fuzzy Banach space over under a t-norm T . Let f : XY be a Ψ-approximately cubic II function. If, for some α , α > 0 and an integer k, k ≥ 3, with | 3k| < α,

Ψ 3 - k x , 3 - k y , t L Ψ x , y , α t , x X , t > 0 ,

then there exists a unique cubic mapping C : XY such that, for all × X and t > 0,

P f x - C x , t L T i = 1 M x , α i + 1 t 3 k i ,

Where

M x , t : = T Ψ x , 0 , 2 t , Ψ 3 x , 0 , t , . . . , Ψ 3 k - 1 x , 0 , 2 t , x X , t > 0 .

Proof. Since

lim n M x , α j t 3 k j = 1 L , x X , t > 0 ,

and T is of Hadžić type, from Proposition 2.1, it follows that

lim n T j = n M x , α j t 3 k j = 1 L , x X , t > 0 .

Thus, if we apply Theorem 6.10, then we can get the conclusion. This completes the proof.

7. Conclusion

We established the Hyers-Ulam-Rassias stability of the cubic functional equations (1.1), (1.2), and (1.3) in various fuzzy spaces. In Section 4, we proved the stability of functional equations (1.1), (1.2), and (1.3) in a -fuzzy normed space under arbitrary t-norm which is a generalization of [26]. In Section 6, we proved the stability of functional equations (1.1), (1.2), and (1.3) in a non-Archimedean -fuzzy normed space. We therefore provided a link among three various discipline: fuzzy set theory, lattice theory, and mathematical analysis.

References

  1. Ulam SM: Problems in Modern Mathematics, Chapter VI. Science Editions, Wiley, New York; 1964.

    Google Scholar 

  2. Hyers DH: On the stability of the linear functional equation. Proc Nat Acad Sci USA 1941, 27: 222–224.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoki T: On the stability of the linear transformation in Banach spaces. J Math Soc Japan 1950, 2: 64–66.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rassias ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc 1978, 72: 297–300.

    Article  MathSciNet  MATH  Google Scholar 

  5. Baak C, Moslehian MS: On the stability of J* -homomorphisms. Nonlinear Anal 2005, 63: 42–48.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho YJ, Gordji ME, Zolfaghari S: Solutions and stability of generalized mixed type QC functional equations in random normed spaces. J Inequal Appl 2010. Article ID 403101, 16 doi:10.1155/2010/403101

    Google Scholar 

  7. Cho YJ, Park C, Saadati R: Functional inequalities in non-Archimedean in Banach spaces. Appl Math Lett 2010, 60: 1994–2002.

    MathSciNet  MATH  Google Scholar 

  8. Cho YJ, Park C, Sadaati R: Fuzzy functional inequalities. J Comput Anal Appl 2011, 13: 305–320.

    MathSciNet  Google Scholar 

  9. Cho YJ, Rassias ThM, Park C, Saadati R: Inner product spaces and functional equations. J Comput Anal Appl 2011, 13: 296–304.

    MathSciNet  MATH  Google Scholar 

  10. Czerwik S: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ; 2002.

    Google Scholar 

  11. Hyers DH, Isac G, Rassias ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel; 1998.

    Chapter  Google Scholar 

  12. Jung SM: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor; 2001.

    Google Scholar 

  13. Rassias ThM: On the stability of functional equations and a problem of Ulam. Acta Appl Math 2000, 62: 23–130.

    Article  MathSciNet  MATH  Google Scholar 

  14. Rassias ThM: Functional Equations, Inequalities and Applications. Kluwer Academic Publishers, Dordrecht, Boston and London; 2003.

    Chapter  Google Scholar 

  15. Miheţ D: Hyers-Ulam-Rassias stability for Jensen equation in non-Archimedean fuzzy normed spaces. In Proceedings of The Twelfth International Conference on Applied Mthematics and Computer Science, in Automat Comput Appl Math. Volume 17. Baisoara, Romania; 2008:5–13. September 10–13

    Google Scholar 

  16. Jun KW, Kim HM: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J Math Anal Appl 2002, 274: 867–878.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jun KW, Kim HM, Chang IS: On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J Comput Anal Appl 2005, 7: 21–33.

    MathSciNet  MATH  Google Scholar 

  18. Baktash E, Cho YJ, Jalili M, Saadati R, Vaezpour SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J Inequal Appl 2008., 2008: Article ID 902187

    Google Scholar 

  19. Saadati R, Vaezpour SM, Cho YJ: A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces". J Inequal Appl 2009, 2009: Article ID 214530, 6.

    Article  MathSciNet  MATH  Google Scholar 

  20. Mirmostafaee AK, Moslehian MS: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst 2008, 159: 720–729.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mirmostafaee AK, Mirzavaziri M, Moslehian MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2008, 159: 730–738.

    Article  MathSciNet  MATH  Google Scholar 

  22. Alsina C: On the stability of a functional equation arising in probabilistic normed spaces. General Inequalities 1987, 5: 263–271. Oberwolfach, 1986, Birkhäuser, Basel

    MathSciNet  MATH  Google Scholar 

  23. Miheţ D Radu V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl 2008, 343: 567–572.

    Article  MathSciNet  MATH  Google Scholar 

  24. Miheţ D, Saadati R, Vaezpour SM: The stability of the quartic functional equation in random normed spaces. Acta Appl Math doi:10.1007/s10440–009–9476–7

  25. Shakeri S: Intuitionistic fuzzy stability of Jensen type mapping. J Nonlinear Sci Appl 2009, 2: 105–112.

    MathSciNet  MATH  Google Scholar 

  26. Mirmostafaee AK, Moslehian MS: Fuzzy approximately cubic mappings. Inf Sci 2008, 178: 3791–3798.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang S-S, Rassias JM, Saadati R: Stability of a cubic functional equation in intuitionistic random normed spaces. Appl Math Mech English edition. 2010, 31(1):21–26.

    Article  MathSciNet  MATH  Google Scholar 

  28. Saadati R, Vaezpour SM, Park C: The stability of the cubic functional equation in various spaces. Math Commun 2011, 16: 131–145.

    MathSciNet  MATH  Google Scholar 

  29. Hadžić O, Pap E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht; 2001.

    Google Scholar 

  30. Hadžić O, Pap E, Budincević M: Countable extension of triangular norms and their applications to the Fixed point theory in probabilistic metric spaces. Kybernetica 2002, 38: 363–381.

    MathSciNet  MATH  Google Scholar 

  31. Zadeh LA: Fuzzy sets. Inf Control 1965, 8: 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  32. Amini M, Saadati R: Topics in fuzzy metric space. J Fuzzy Math 2003, 4: 765–768.

    MathSciNet  MATH  Google Scholar 

  33. George A, Veeramani P: On some result in fuzzy metric space. Fuzzy Sets Syst 1994, 64: 395–399.

    Article  MathSciNet  MATH  Google Scholar 

  34. George A, Veeramani P: On some result of analysis for fuzzy metric spaces. Fuzzy Sets Syst 1997, 90: 365–368.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gregori V, Romaguera S: Some properties of fuzzy metric spaces. Fuzzy Sets Syst 2000, 115: 485–489.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hosseini SB, Saadati R, Amini M: Alexandroff theorem in fuzzy metric spaces. Math Sci Res J 2004, 8: 357–361.

    MathSciNet  MATH  Google Scholar 

  37. Saadati R, Vaezpour SM: Some results on fuzzy Banach spaces. J Appl Math Comput 2005, 17: 475–484.

    Article  MathSciNet  MATH  Google Scholar 

  38. Adibi H, Cho YJ, O'Regan D, Saadati R: Common Fixed point theorems in -fuzzy metric spaces. Appl Math Comput 2006, 182: 820–828.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sintunavarat W, Cho YJ, Kumam P: Couple coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl 2011, 81.

    Google Scholar 

  40. Saadati R, Park J: On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals 2006, 27: 331–344.

    Article  MathSciNet  MATH  Google Scholar 

  41. Deschrijver G, O'Regan D, Saadati R, Vaezpour SM: L -Fuzzy Euclidean normed spaces and compactness. Chaos, Soliton and Fractals 2009, 42: 40–45.

    Article  MathSciNet  MATH  Google Scholar 

  42. Saadati R: On the -fuzzy topological spaces. Chaos, Solitons and Fractals 2008, 37: 1419–1426.

    Article  MathSciNet  MATH  Google Scholar 

  43. Goguen J: -fuzzy sets. J Math Anal Appl 1967, 18: 145–174.

    Article  MathSciNet  MATH  Google Scholar 

  44. Deschrijver G, Kerre EE: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst 2003, 23: 227–235.

    Article  MathSciNet  MATH  Google Scholar 

  45. Atanassov KT: Intuitionistic fuzzy sets. Fuzzy Sets Syst 1986, 20: 87–96.

    Article  MathSciNet  MATH  Google Scholar 

  46. Saadati R: A note on "Some results on the IF-normed spaces". Chaos, Solitons and Fractals 2009, 41: 206–213.

    Article  MathSciNet  MATH  Google Scholar 

  47. Agarwal RP, Cho YJ, Saadati R: On random topological structures. Abstr Appl Anal, Art ID 2011. 762361, 41

    Google Scholar 

  48. Krishna SV, Sarma KKM: Separation of fuzzy normed linear spaces. Fuzzy Sets Syst 1994, 63: 207–217.

    Article  MathSciNet  MATH  Google Scholar 

  49. Xiao JZ, Zhu XH: Fuzzy normed spaces of operators and its completeness. Fuzzy Sets Syst 2003, 133: 389–399.

    Article  MathSciNet  MATH  Google Scholar 

  50. Katsaras AK: Fuzzy topological vector spaces II. Fuzzy Sets Syst 1984, 12: 143–154.

    Article  MathSciNet  MATH  Google Scholar 

  51. Schweizer B, Sklar A: Probabilistic Metric Spaces. Elsevier, North Holand, New York; 1983.

    Google Scholar 

  52. Bag T, Samanta SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003, 11(3):687–705.

    MathSciNet  MATH  Google Scholar 

  53. Biswas R: Fuzzy inner product spaces and fuzzy norm functions. Inf Sci 1991, 53: 185–190.

    Article  MATH  Google Scholar 

  54. Felbin C: Finite dimensional fuzzy normed linear space. Fuzzy Sets Syst 1992, 48: 239–248.

    Article  MathSciNet  MATH  Google Scholar 

  55. Kramosil I, Michalek J: Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11: 326–334.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P Agarwal.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Agarwal, R.P., Cho, Y.J., Saadati, R. et al. Nonlinear -Fuzzy stability of cubic functional equations. J Inequal Appl 2012, 77 (2012). https://doi.org/10.1186/1029-242X-2012-77

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-77

Keywords