Skip to main content

Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables

Abstract

In this article, we establish some new Ostrowski type integral inequalities on time scales involving functions of two independent variables for k2 points, which on one hand unify continuous and discrete analysis, on the other hand extend some known results in the literature. The established results can be used in the estimate of error bounds for some numerical integration formulae, and some of the results are sharp.

Mathematical Subject Classification 2010: 26E70; 26D15; 26D10.

1. Introduction

Recently many authors have studied various inequalities, among which the Ostrowski type inequalities have attracted much attention in the literature. The Ostrowski inequality was originally presented in [1] (see also in [[2], pp. 468]) as stated in the following theorem.

Theorem 1.1. Let f : IR be a differentiable mapping in the interior IntI of I, where I R is an interval, and let a, b IntI. a < b. If |f'(t)| ≤ M, t [a, b], then we have

f ( x ) - 1 b - a a b f ( t ) d t 1 4 + x - a + b 2 2 ( b - a ) 2 ( b - a ) M ,

for x [a, b].

In recent years, various generalizations of the Ostrowski inequality including continuous and discrete versions have been established (for example, see [314] and the references therein). On the other hand, Hilger [15] initiated the theory of time scales as a theory capable of treating continuous and discrete analysis in a consistent way, based on which some authors have studied the Ostrowski type inequalities on time scales (see [1624]). The established Ostrowski type inequalities on time scales unify continuous and discrete analysis, and can be used to provide explicit error bounds for some known and some new numerical quadrature formulae.

In this article, we will establish some new Ostrowski type inequalities on time scales involving functions of two independent variables for k2 points, which on one hand extend some known results in the literature, on the other hand unify continuous and discrete analysis.

First we will give some preliminaries on time scales. A time scale is an arbitrary nonempty closed subset of the real numbers. If denotes an arbitrary time scale, then on we define the forward and backward jump operators σ ( T , T ) and ρ ( T , T ) such that σ ( t ) =inf { s T , s > t } ,ρ ( t ) =sup ( s T , s > t ) .

Definition 1.2. A point tT is said to be left-dense if ρ(t) = t and tinfT, right-dense if σ(t) = t and tsupT, left-scattered if ρ(t) < t and right-scattered if σ(t) > t.

Definition 1.3. The set T κ is defined to be if does not have a left-scattered maximum, otherwise it is without the left-scattered maximum.

Definition 1.4. A function f ( T , ) is called rd-continuous if it is continuous at right-dense points and if the left-sided limits exist at left-dense points, while f is called regressive if 1 + μ(t)f(t) ≠ 0, where μ(t) = σ(t) - t. C rd denotes the set of rd-continuous functions.

Definition 1.5. For some t T κ , and a function f ( T , ) , the delta derivative of f at t is denoted by fΔ(t) (provided it exists) with the property such that for every ε > 0 there exists a neighborhood  U  of t satisfying

f ( σ ( t ) ) - f ( s ) - f Δ ( t ) ( σ ( t ) - s ) ε σ ( t ) - s for all s .

Remark 1.6. If T=, then fΔ(t) becomes the usual derivative f'(t), while fΔ(t) = f(t + 1) - f(t) if T=, which represents the forward difference.

Definition 1.7. If FΔ(t) = f(t), t T κ , then F is called an antiderivative of f, and the Cauchy integral of f is defined by

a b f ( t ) Δ t = F ( b ) - F ( a ) .

The following two theorem include some important properties for delta derivative on time scales.

Theorem 1.8. If a,b,cT, α , and f, g C rd , then

  1. (i)

    a b f ( t ) + g ( t ) Δ t = a b f ( t ) Δ t + a b g ( t ) Δ t ,

  2. (ii)

    a b ( α f ) ( t ) Δ t = α a b f ( t ) Δ t ,

  3. (iii)

    a b f ( t ) Δ t = - b a f ( t ) Δ t ,

  4. (iv)

    a b f ( t ) Δt= a c f ( t ) Δt+ c b f ( t ) Δt,

  5. (v)

    a a f ( t ) Δt=0,

  6. (vi)

    if f(t) ≥ 0 for all atb, then a b f ( t ) Δt0.

Definition 1.9. h k : T 2 , k = 0, 1, 2 ... are defined by

h k + 1 ( t , s ) = s t h k ( τ , s ) Δ τ , s , t T ,

where h0(t, s) = 1.

For more details about the calculus of time scales, we refer to [25].

Throughout this article, denotes the set of real numbers and + = [0,∞), while denotes the set of integers, and 0 denotes the set of nonnegative integers. For a function f and two integers m0, m1, we have s = m 0 m 1 f=0 provided m0 > m1. T 1 , T 2 denote two arbitrary time scales, and for an interval [ a , b ] , [ a , b ] T i := [ a , b ] T i , i=1,2. Finally, for the sake of convenience, we denote the forward jump operators on T 1 , T 2 by σ uniformly.

2. Main results

Theorem 2.1. Let a , b T 1 , c , d T 2 , f : C r d ( [ a , b ] T 1 × [ c , d ] T 2 , ) such that the partial delta derivative of order 2 exists and there exists a constant K with sup a < s < b , c < t < d 2 f ( s , t ) Δ 1 s Δ 2 t =K. Suppose that x i [ a , b ] T 1 , y i [ c , d ] T 2 ,i=0,1,...,k. I k :a= x 0 < x 1 << x k - 1 < x k =b is a division of the interval [ a , b ] T 1 , while J k : c = y0 < y1 < < yk-1< y k = d is a division of the interval [ c , d ] T 2 . α i [ x i - 1 , x i ] T 1 , β i [ y i - 1 , y i ] T 2 , i = 1 , 2 , . . . , k . Then we have

i = 1 k - 1 j = 1 k - 1 ( α i + 1 - α i ) ( β j + 1 - β j ) f ( x i , y j ) + i = 1 k - 1 ( α i + 1 - α i ) ( y k - β k ) f ( x i , y k ) - i = 1 k - 1 ( α i + 1 - α i ) ( y 0 - β 1 ) f ( x i , y 0 ) + j = 1 k - 1 ( x k - α k ) ( β j + 1 - β j ) f ( x k , y j ) + ( x k - α k ) ( y k - β k ) f ( x k , y k ) - ( x k - α k ) ( y 0 - β 1 ) f ( x k , y 0 ) - j = 1 k - 1 ( x 0 - α 1 ) ( β j + 1 - β j ) f ( x 0 , y i ) - ( x 0 - α 1 ) ( y k - β k ) f ( x 0 , y k ) + ( x 0 - α 1 ) ( y 0 - β 1 ) f ( x 0 , y 0 ) - j = 1 k - 1 a b ( β j + 1 - β j ) f ( σ ( s ) , y j ) Δ 1 s - a b [ ( y k - β k ) f ( σ ( s ) , y k ) - ( y 0 - β 1 ) f ( σ ( s ) , y 0 ) ] Δ 1 s - i = 1 k - 1 c d ( α i + 1 - α i ) f ( x i σ ( t ) ) Δ 2 t - c d [ ( x k - α k ) f ( x k , σ ( t ) ) - ( x 0 - α 1 ) f ( x 0 , σ ( t ) ) ] Δ 2 t + a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s K i = 0 k - 1 [ h 2 ( x i , α i + 1 ) + h 2 ( x i + 1 , α i + 1 ) ] j = 0 k - 1 [ h 2 ( y j , β j + 1 ) + h 2 ( y j + 1 , β j + 1 ) ] .
(1)

The inequality (1) is sharp in the sense that the right side of (1) can not be replaced by a smaller one.

Proof. Define

H ( s , t , I k , J k ) = ( s - α i + 1 ) ( t - β j + 1 ) , ( s , t ) [ x i , x i + 1 ) × [ y j , y j + 1 ) , i , j = 0 , 1 , . . . , k - 1 .
(2)

Then we obtain

a b c d H ( s , t , I k , J k ) 2 f ( s , t ) Δ 1 s Δ 2 t Δ 2 t Δ 1 s = i = 0 k 1 j = 0 k 1 x i x i + 1 y j y j + 1 ( s α i + 1 ) ( t β j + 1 ) 2 f ( s , t ) Δ 1 s Δ 2 t Δ 2 t Δ 1 s = i = 0 k 1 j = 0 k 1 x i x i + 1 ( s α i + 1 ) [ ( y j + 1 β j + 1 ) f ( s , y j + 1 ) Δ 1 s ( y j β j + 1 ) f ( s , y j ) Δ 1 s y j y j + 1 f ( s , σ ( t ) ) Δ 1 s Δ 2 t ] Δ 1 s = i = 0 k 1 j = 0 k 1 { [ ( x i + 1 α i + 1 ) f ( x i + 1 , y j + 1 ) ( x i α i + 1 ) f ( x i , y j + 1 ) ] ( y j + 1 β j + 1 ) [ ( x i + 1 α i + 1 ) f ( x i + 1 , y j ) ( x i α i + 1 ) f ( x i , y j ) ] ( y j β j + 1 ) x i x i + 1 [ ( y j + 1 β j + 1 ) f ( σ ( s ) , y j + 1 ) ( y j β j + 1 ) f ( σ ( s ) , y j ) ] Δ 1 s y j y j + 1 [ ( x i + 1 α i + 1 ) f ( x i + 1 , σ ( t ) ) ( x i α i + 1 ) f ( x i , σ ( t ) ) ] Δ 2 t + x i x i + 1 y j y j + 1 f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s } = i = 1 k 1 j = 0 k 1 ( α i + 1 α i ) ( y j + 1 β j + 1 ) f ( x i , y j + 1 ) + j = 0 k 1 ( x k α k ) ( y j + 1 β j + 1 ) f ( x k , y j + 1 ) j = 0 k 1 ( x 0 α 1 ) ( y j + 1 β j + 1 ) f ( x 0 , y j + 1 ) i = 1 k 1 j = 0 k 1 ( α i + 1 α i ) ( y j β j + 1 ) f ( x i , y j ) j = 0 k 1 ( x k α k ) ( y j β j + 1 ) f ( x k , y j ) + j = 0 k 1 ( x 0 α 1 ) ( y j β j + 1 ) f ( x 0 , y j ) j = 0 k 1 a b [ ( y j + 1 β j + 1 ) f ( σ ( s ) , y j + 1 ) ( y j β j + 1 ) f ( σ ( s ) , y j ) ] Δ 1 s i = 0 k 1 c d [ ( x i + 1 α i + 1 ) f ( x i + 1 , σ ( t ) ) ( x i α i + 1 ) f ( x i , σ ( t ) ) ] Δ 2 t + a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s = i = 1 k 1 j = 1 k 1 ( α i + 1 α i ) ( β j + 1 β j ) f ( x i , y i ) + i = 1 k 1 ( α i + 1 α i ) ( y k β k ) f ( x i , y k ) i = 1 k 1 ( α i + 1 α i ) ( y 0 β 1 ) f ( x i , y 0 ) + j = 1 k 1 ( x k α k ) ( β j + 1 β j ) f ( x k , y j ) + ( x k α k ) ( y k β k ) f ( x k , y k ) ( x k α k ) ( y 0 β 1 ) f ( x k , y 0 ) j = 1 k 1 ( x 0 α 1 ) ( β j + 1 β j ) f ( x 0 , y j ) ( x 0 α 1 ) ( y k β k ) f ( x 0 , y k ) + ( x 0 α 1 ) ( y 0 β 1 ) f ( x 0 , y 0 ) j = 1 k 1 a b ( β j + 1 β j ) f ( σ ( s ) , y j ) Δ 1 s a b [ ( y k β k ) f ( σ ( x ) , y k ) ( y 0 β 1 ) f ( σ ( s ) , y 0 ) ] Δ 1 s i = 1 k 1 c d ( α i + 1 α i ) f ( x i σ ( t ) ) Δ 2 t c d [ ( x k α k ) f ( x k , σ ( t ) ) ( x 0 α 1 ) f ( x 0 , σ ( t ) ) ] Δ 2 t + a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s .
(3)

On the other hand, we have

a b c d | H ( s , t , I k , J k ) | Δ 2 t Δ s = i = 0 k 1 j = 0 k 1 x i x i + 1 y j y j + 1 | ( s α i + 1 ) ( t β j + 1 ) | Δ 2 t Δ 1 s = [ i = 0 k 1 x i x i + 1 | ( s α i + 1 ) | Δ 1 s ] [ j = 0 k 1 y j y j + 1 | ( t β i + 1 ) | Δ 2 t ] = { i = 0 k 1 [ x i α i + 1 ( α i + 1 s ) Δ 1 s + α i + 1 x i + 1 ( s α i + 1 ) Δ 1 s ] } { j = 0 k 1 [ y j β j + 1 ( β j + 1 t ) Δ 2 t + β j + 1 y j + 1 ( t β j + 1 ) Δ 2 t ] } = i = 0 k 1 [ h 2 ( x i , α i + 1 ) + h 2 ( x i + 1 , α i + 1 ) ] j = 0 k 1 [ h 2 ( y j , β j + 1 ) + h 2 ( y j + 1 , β j + 1 ) ] .
(4)

Combining (3) and (4) we get the desired inequality (1).

In order to prove the sharpness of (1), we take k = 1, α1 = b, β1 = d, f(s, t) = st. Then the left side of (1) becomes

a b c d σ ( s ) σ ( t ) Δ 2 t Δ 1 s - ( d - c ) a b c σ ( s ) Δ 1 s - ( b - a ) c b a σ ( t ) Δ 2 t + ( d - c ) ( b - a ) a c = a b c d [ σ ( s ) σ ( t ) - c σ ( s ) - a σ ( t ) + a c ] Δ 2 t Δ 1 s = a b c d [ σ ( s ) - a ] [ σ ( t ) - c ] Δ 2 t Δ 1 s = a b c d { [ ( s - a ) 2 ] s Δ [ ( t - c ) 2 ] t Δ - [ ( σ ( s ) - a ) ( t - c ) + ( σ ( t ) - c ) ( s - a ) + ( s - a ) ( t - c ) ] } Δ 2 t Δ 1 s = a b c d { [ ( s - a ) 2 ] s Δ [ ( t - c ) 2 ] t Δ - [ [ ( s - a ) 2 ] s Δ ( t - c ) + [ ( t - c ) 2 ] t Δ ( s - a ) - ( t - c ) ( s - a ) ] } Δ 2 t Δ 1 s = ( b - a ) 2 ( d - c ) 2 - ( b - a ) 2 c d ( t - c ) Δ 2 t - ( d - c ) 2 a b ( s - a ) Δ 1 s + a b c d ( t - c ) ( s - a ) Δ 2 t Δ 1 s = a b c d ( t - d ) ( s - b ) Δ 2 t Δ 1 s = a b c d ( d - t ) ( b - s ) Δ 2 t Δ 1 s = b a ( s - b ) Δ 1 s d c ( t - d ) Δ 2 t = h 2 ( a , b ) h 2 ( c , d ) .

On the other hand, Using K = 1, the right side of (1) reduces to h2 (a, b)h2 (c, d), which implies (2) holds for equality form, and then the sharpness of (1) is proved.

Remark 2.2. Theorem 2.1 is the 2D extension of [[24], Theorem 3].

From Theorem 2.1 we can obtain some particular Ostrowski type inequalities on time scales. For example, if we take k = 1, α1 = b, β1 = d, then we have

| a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s ( d c ) a b f ( σ ( s ) , y 0 ) Δ 1 s ( b a ) c d f ( x 0 , σ ( t ) ) Δ 2 t + ( d c ) ( b a ) f ( x 0 , y 0 ) | K h 2 ( a , b ) h 2 ( c , d ) .

If we take k = 1, α1 = a, β1 = c, then we have

| a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s ( d c ) a b f ( σ ( s ) , y 1 ) Δ 1 s ( b a ) c d f ( x 1 , σ ( t ) ) Δ 2 t + ( d c ) ( b a ) f ( x 1 , y 1 ) | K h 2 ( b , a ) h 2 ( d , c ) .

If we take k=1, α 1 = a + b 2 , β 1 = c + d 2 , then we have

| a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s d c 2 a b [ f ( σ ( s ) , y 1 ) + f ( σ ( s ) , y 0 ) ] Δ 1 s d a 2 c d [ f ( x 1 , σ ( t ) ) + f ( x 0 , σ ( t ) ) ] Δ 2 t + ( b a ) ( d c ) 4 [ f ( x 1 , y 1 ) + f ( x 1 , y 0 ) + f ( x 0 , y 1 ) + f ( x 0 , y 0 ) ] | K [ h 2 ( a , a + b 2 ) + h 2 ( b , a + b 2 ) ] [ h 2 ( c , c + d 2 ) + h 2 ( d , c + d 2 ) ] .

If we take k = 2, α1 = a, α2 = b, β1 = c, β2 = d, x1 = x, y1 = y, then we have

a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s - ( d - c ) a b f ( σ ( s ) , y ) Δ 1 s - ( b - a ) c d f ( x , σ ( t ) ) Δ 2 t + ( b - a ) ( d - c ) f ( x , y ) K [ h 2 ( x , a ) + h 2 ( x , b ) ] [ h 2 ( y , c ) + h 2 ( y , d ) ] .

If we take k=2, α 1 = a + x 2 , α 2 = x + b 2 , β 1 = c + y 2 , β 2 = y + d 2 , x 1 =x, y 1 =y, then we have

a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s - ( d - c ) 2 a b f ( σ ( s ) , y ) Δ 1 s - ( b - a ) 2 c d f ( x , σ ( t ) ) Δ 2 t - a b ( d - y ) 2 f ( σ ( s ) , y 2 ) + ( y - c ) 2 f ( σ ( s ) , y 0 ) Δ 1 s - c d ( b - x ) 2 f ( x 2 , σ ( t ) ) + ( x - a ) 2 f ( x 0 , σ ( t ) ) Δ 2 t + ( b - a ) ( d - c ) 4 f ( x , y ) + ( b - a ) ( d - y ) 4 f ( x , y 2 ) + ( b - a ) ( y - c ) 4 f ( x , y 0 ) + ( d - c ) ( b - x ) 4 f ( x 2 , y ) + ( x - a ) ( d - c ) 4 f ( x 0 , y ) + ( d - y ) ( b - x ) 4 f ( x 2 , y 2 ) + ( y - c ) ( b - x ) 4 f ( x 2 , y 0 ) + ( d - y ) ( x - a ) 4 f ( x 0 , y 2 ) + ( y - c ) ( x - a ) 4 f ( x 0 , y 0 ) K h 2 a , a + x 2 + h 2 x , a + x 2 + h 2 x , x + b 2 + h 2 b , x + b 2 × h 2 c , c + y 2 + h 2 y , c + y 2 + h 2 y , y + d 2 + h 2 d , y + d 2 .

If we furthermore take x= b + a 2 ,y= d + c 2 in the inequality above, then we obtain the time scale version of Simpson's inequality [26], which is omitted here.

In Theorem 2.1, if we take T 1 , T 2 for some special time scales, then we immediately obtain the following three corollaries.

Corollary 2.3 (Continuous case). Let T 1 = T 2 = in Theorem 2.1, then h 2 ( t , s ) = ( t - s ) 2 2 , and we obtain

i = 1 k - 1 j = 1 k - 1 ( α i + 1 - α i ) ( β j + 1 - β j ) f ( x i , y j ) + i = 1 k - 1 ( α i + 1 - α i ) ( y k - β k ) f ( x i , y k ) - i = 1 k - 1 ( α i + 1 - α i ) ( y 0 - β 1 ) f ( x i , y 0 ) + j = 1 k - 1 ( x k - α k ) ( β j + 1 - β j ) f ( x k , y j ) + ( x k - α k ) ( y k - β k ) f ( x k , y k ) - ( x k - α k ) ( y 0 - β 1 ) f ( x k , y 0 ) - j = 1 k - 1 ( x 0 - α 1 ) ( β j + 1 - β j ) f ( x 0 , y j ) - ( x 0 - α 1 ) ( y k - β k ) f ( x 0 , y k ) + ( x 0 - α 1 ) ( y 0 - β 1 ) f ( x 0 , y 0 ) - j = 1 k - 1 a b ( β j + 1 - β j ) f ( s , y j ) d s - a b [ ( y k - β k ) f ( s , y k ) - ( y 0 - β 1 ) f ( s , y 0 ) ] d s - i = 1 k - 1 c d ( α i + 1 - α i ) f ( x i , t ) d t - c d [ ( x k - α k ) f ( x k , t ) - ( x 0 - α 1 ) f ( x 0 , t ) ] d t + a b c d f ( s , t ) d t d s K i = 0 k - 1 ( x i - α i + 1 ) 2 2 + ( x i + 1 - α i + 1 ) 2 2 j = 0 k - 1 ( y i - β j + 1 ) 2 2 + ( y j + 1 - β j + 1 ) 2 2 ,
(5)

where K = sup a < s < b , c < t < d 2 f ( s , t ) s t .

Corollary 2.4 (Discrete case). Let T 1 = T 2 =,a= m 1 ,b= m 2 ,c= n 1 ,d= n 2 in Theorem 2.1. Suppose that x i [m1, m2], y i [n1, n2], i = 0,1, ...,k. I k : m1 = x0 < x1 < < xk-1< x k = m2 is a division of [m1, m2], while J k : n1 = y0 < y1 < < yk-1< y k = n2 is a division of [n1, n2]. α i [xi-1, x i ], β i [yi-1, y i ], i = 1,2,...,k. Then we have

i = 1 k - 1 j = 1 k - 1 ( α i + 1 - α i ) ( β j + 1 - β j ) f ( x i , y j ) + i = 1 k - 1 ( α i + 1 - α i ) ( y k - β k ) f ( x i , y k ) - i = 1 k - 1 ( α i + 1 - α i ) ( y 0 - β 1 ) f ( x i , y 0 ) + j = 1 k - 1 ( x k - α k ) ( β j + 1 - β j ) f ( x k , y j ) + ( x k - α k ) ( y k - β k ) f ( x k , y k ) - ( x k - α k ) ( y 0 - β 1 ) f ( x k , y 0 ) - j = 1 k - 1 ( x 0 - α 1 ) ( β j + 1 - β j ) f ( x 0 , y j ) - ( x 0 - α 1 ) ( y k - β k ) f ( x 0 , y k ) + ( x 0 - α 1 ) ( y 0 - β 1 ) f ( x 0 , y 0 ) - j = 1 k - 1 s = m 1 + 1 m 2 ( β j + 1 - β j ) f ( s , y j ) - s = m 1 + 1 m 2 [ ( y k - β k ) f ( s , y k ) - ( y 0 - β 1 ) f ( s , y 0 ) ] - i = 1 k - 1 t = n 1 + 1 n 2 ( α i + 1 - α i ) f ( x i , t ) - t = n 1 + 1 n 2 [ ( x k - α k ) f ( x k , t ) - ( x 0 - α 1 ) f ( x 0 , t ) ] + s = m 1 + 1 m 2 t = n 1 + 1 n 2 f ( s , t ) K i = 0 k - 1 ( x i - α i + 1 ) ( x i - α i + 1 - 1 ) 2 + ( x i + 1 - α i + 1 ) ( x i + 1 - α i + 1 - 1 ) 2 × j = 0 k - 1 ( y j - β j + 1 ) ( y j - β j + 1 - 1 ) 2 + ( y j + 1 - β j + 1 ) ( y j + 1 - β j + 1 - 1 ) 2 ,
(6)

where K denotes the maximum value of the absolute value of the difference Δ1Δ2f over [m1, m2-1] × [n1, n2-1].

As long as we notice h 2 ( t , s ) = ( t - s ) ( t - s - 1 ) 2 for t, s , we can easily get the desired result.

Corollary 2.5 (Quantum calculus case). Let T 1 = q 1 0 , T 2 = q 2 0 in Theorem 2.1, where m1, m2, n1, n2 0 and q i > 1, i = 1, 2. Suppose that x i [ q 1 m 1 , q 1 m 2 ] q 1 0 , y j q 2 n 1 , q 2 n 2 q 2 0 , i = 0 , 1 , , k . I k : q 1 m 1 = x 0 < x 1 < < x k - 1 < x k = q 1 m 2 is a division of q 1 m 1 , q 1 m 2 0 , while J k : q 2 n 1 = y 0 < y 1 << y k - 1 < y k = q 2 n 2 is a division of q 2 n 1 , q 2 n 2 q 0 α i [ x i - 1 , x i ] q 1 0 , β i [ y i - 1 , y j ] q 2 0 , i = 1 , 2 , , k . Then we have

| i = 1 k 1 j = 1 k 1 ( α i + 1 α i ) ( β j + 1 β j ) f ( x i , y j ) + i = 1 k 1 ( α i + 1 α i ) ( y k β k ) f ( x i , y k ) i = 1 k 1 ( α i + 1 α i ) ( y 0 β 1 ) f ( x i , y 0 ) + j = 0 k 1 ( x k α k ) ( β j + 1 β j ) f ( x k , y j ) + ( x k α k ) ( y k β k ) f ( x k , y k ) ( x k α k ) ( y 0 β 1 ) f ( x k , y 0 ) j = 1 k 1 ( x 0 α 1 ) ( β j + 1 β j ) f ( x 0 , y j ) ( x 0 α 1 ) ( y k β k ) f ( x 0 , y k ) + ( x 0 α 1 ) ( y 0 β 1 ) f ( x 0 , y 0 ) q 1 m 1 ( q 1 1 ) { j = 1 k 1 s = m 1 m 2 1 q 1 s m 1 ( β j + 1 β j ) f ( q s + 1 , y j ) s = m 1 m 2 1 q 1 s m 1 [ ( y k β k ) f ( q s + 1 , y k ) ( y 0 β 1 ) f ( q s + 1 , y 0 ) ] } q 2 n 1 ( q 2 1 ) { i = 1 k 1 t = n 1 n 2 1 q 2 t n 1 ( α i + 1 α i ) f ( x i , q t + 1 ) t = n 1 n 2 1 q 2 t n 1 [ ( x k α k ) f ( x k , q t + 1 ) ( x 0 α 1 ) f ( x 0 , q t + 1 ) ] } + q 1 m 1 q 2 n 1 ( q 1 1 ) ( q 2 1 ) s = m 1 m 2 1 t = n 1 n 2 1 q 1 s m 1 q 2 t n 1 f ( q s + 1 , q t + 1 ) | K { i = 0 k 1 [ ( x i α i + 1 ) ( x i q 1 α i + 1 ) 1 + q 1 + ( x i + 1 α i + 1 ) ( x i + 1 q 1 α i + 1 ) 1 + q 1 ] × j = 0 k 1 [ ( y j β j + 1 ) ( y j q 2 β j + 1 ) 1 + q 2 + ( y j + 1 β j + 1 ) ( y j + 1 q 2 β j + 1 ) 1 + q 2 ] } ,
(7)

where K denotes the maximum value of the absolute value of the q1 q2-difference D q 1 q 2 f ( t , s ) over q 1 m 1 , q 1 m 2 - 1 q 1 0 × [ q 2 n 1 , q 2 n 2 - 1 ] q 2 0 .

Proof. Since h k ( t , s ) = n = 0 k - 1 t - q i n s μ = 0 n q i μ for s,t q i 0 ,i=1,2, we have

h 2 ( t , s ) = ( t - s ) ( t - q i s ) 1 + q i , i = 1 , 2 .
(8)

Substituting (8) into (1) we get the desired result.

Theorem 2.6. Under the conditions of Theorem 2.1, if there exist constants K1, K2 such that K 1 2 f ( s , t ) Δ 1 s Δ 2 t K 2 , then we have the following inequality

i = 1 k - 1 j = 1 k - 1 ( α i + 1 - α i ) ( β j + 1 - β j ) f ( x i , y j ) + i = 1 k - 1 ( α i + 1 - α i ) ( y k - β k ) f ( x i , y k ) - i = 1 k - 1 ( α i + 1 - α i ) ( y 0 - β 1 ) f ( x i , y 0 ) + j = 1 k - 1 ( x k - α k ) ( β j + 1 - β j ) f ( x k , y j ) + ( x k - α k ) ( y k - β k ) f ( x k , y k ) - ( x k - α k ) ( y 0 - β 1 ) f ( x k , y 0 ) - j = 1 k - 1 ( x 0 - α 1 ) ( β j + 1 - β j ) f ( x 0 , y j ) - ( x 0 - α 1 ) ( y k - β k ) f ( x 0 , y k ) + ( x 0 - α 1 ) ( y 0 - β 1 ) f ( x 0 , y 0 ) - j = 1 k - 1 a b ( β j + 1 - β j ) f ( σ ( s ) , y j ) Δ 1 s - a b [ ( y k - β k ) f ( σ ( s ) , y k ) - ( y 0 - β 1 ) f ( σ ( s ) , y 0 ) ] Δ 1 s - i = 1 k - 1 c d ( α i + 1 - α i ) f ( x i σ ( t ) ) Δ 2 t - c d [ ( x k - α k ) f ( x k , σ ( t ) ) - ( x 0 - α 1 ) f ( x 0 , σ ( t ) ) ] Δ 2 t + a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s - K 1 + K 2 2 i = 0 k - 1 [ h 2 ( x i + 1 , α i + 1 ) - h 2 ( x i , α i + 1 ) ] j = 0 k - 1 [ h 2 ( y j + 1 , β j + 1 ) - h 2 ( y j , β j + 1 ) ] K 2 - K 1 2 i = 0 k - 1 [ h 2 ( x i , α i + 1 ) + h 2 ( x i + 1 , α i + 1 ) ] j = 0 k - 1 [ h 2 ( y j , β j + 1 ) + h 2 ( y j + 1 , β j + 1 ) ] .
(9)

Proof. We notice that

a b c d H ( s , t , I k , J k ) Δ 2 t Δ 1 s = i = 0 k - 1 j = 0 k - 1 x i x i + 1 y j y j + 1 ( s - α i + 1 ) ( t - β j + 1 ) Δ 2 t Δ 1 s = i = 0 k - 1 x i x i + 1 ( s - α i + 1 ) Δ 1 s j = 0 k - 1 y j y j + 1 ( t - β j + 1 ) Δ 2 t = i = 0 k - 1 [ h 2 ( x i + 1 , α i + 1 ) - h 2 ( x i , α i + 1 ) ] j = 0 k - 1 [ h 2 ( y j + 1 , β j + 1 ) - h 2 ( y j , β j + 1 ) ] ,
(10)

We also have 2 f ( s , t ) Δ 1 s Δ 2 t - K 1 + K 2 2 K 2 - K 1 2 , and

a b c d H ( s , t , I k , J k ) 2 f ( s , t ) Δ 1 s Δ 2 t - K 1 + K 2 2 Δ 2 t Δ 1 s K 2 - K 1 2 a b c d H ( s , t , I k , J k ) Δ 2 t Δ 1 s .
(11)

Then combining (4), (10) and (11) we obtain the desired inequality (9).

Remark 2.7. If we take T 1 = T 2 = , k = 2 , α 1 = a + λ b - a 2 , α 2 = b - λ b - a 2 , β 1 = c + λ d - c 2 , β 2 = d - λ d - c 2 , x 1 = x , y 1 = y , where λ [0,1], then Theorem 2.6 reduces to [[11], Theorem 4].

In the following, we will establish a generalized Ostrowski-Grüss type integral inequality on time scales based on the result of Theorem 2.1.

Lemma 2.8 (2D Grüss' inequality on time scales). Let f , g C r d ( [ a , b ] T 1 × [ c , d ] T 2 , ) such that ϕf(x, y) ≤ Φ and γg(x, y) ≤ Γ for all x [ a , b ] T 1 ,y [ c , d ] T 2 , where ϕ, Φ, γ, Γ are constants. Then we have

1 ( d - c ) ( b - a ) a b c d f ( s , t ) g ( s , t ) Δ 2 t Δ 1 s - 1 ( d - c ) ( b - a ) a b c d f ( s , t ) Δ 2 t Δ 1 s 1 ( d - c ) ( b - a ) a b c d g ( s , t ) Δ 2 t Δ 1 s 1 4 ( Φ - ϕ ) ( Γ - γ ) .
(12)

The proof for Lemma 2.6 is similar to [[27], pp. 295-296], and we omit it here.

Theorem 2.9. Under the conditions of Theorem 2.1, if there exist constants K1, K2 such that K 1 2 f ( s , t ) Δ 1 s Δ 2 t K 2 , then we have the following inequality

| i = 1 k 1 j = 1 k 1 ( α i + 1 α i ) ( β j + 1 β j ) f ( x i , y j ) + i = 1 k 1 ( α i + 1 α i ) ( y k β k ) f ( x i , y k ) i = 1 k 1 ( α i + 1 α i ) ( y 0 β 1 ) f ( x i , y 0 ) + j = 1 k 1 ( x k α k ) ( β j + 1 β j ) f ( x k , y j ) + ( x k α k ) ( y k β k ) f ( x k , y k ) ( x k α k ) ( y 0 β 1 ) f ( x k , y 0 ) j = 1 k 1 ( x 0 α 1 ) ( β j + 1 β j ) f ( x 0 , y j ) ( x 0 α 1 ) ( y k β k ) f ( x 0 , y k ) + ( x 0 α 1 ) ( y 0 β 1 ) f ( x 0 , y 0 ) j = 1 k 1 a b ( β j + 1 β j ) f ( σ ( s ) , y j ) Δ 1 s a b [ ( y k β k ) f ( σ ( s ) , y k ) ( y 0 β 1 ) f ( σ ( s ) , y 0 ) ] Δ 1 s i = 1 k 1 c d ( α i + 1 α i ) f ( x i , σ ( t ) ) Δ 2 t c d [ ( x k α k ) f ( x k , σ ( t ) ) ( x 0 α 1 ) f ( x 0 , σ ( t ) ) ] Δ 2 t + a b c d f ( σ ( s ) , σ ( t ) ) Δ 2 t Δ 1 s [ f ( b , d ) f ( b , c ) f ( a , d ) + f ( a , c ) ] ( b a ) ( d c ) i = 0 k 1 [ h 2 ( x i + 1 , α i + 1 ) h 2 ( x i , α i + 1 ) ] j = 0 k 1 [ h 2 ( y j + 1 , β j + 1 ) h 2 ( y j , β j + 1 ) ] | [ ( b a ) ( d c ) ] 2 4 ( K 2 K 1 ) .
(13)

Proof. From the definition of H(s, t, I k , J k ) in (2) we observe that max(H(s, t, I k , J k )) - min(H(s, t, I k , J k )) ≤ (b - a)(d - c), and on the other hand,

a b c d 2 f ( s , t ) Δ 1 s Δ 2 t Δ 2 t Δ 1 s = f ( b , d ) - f ( b , c ) - f ( a , d ) + f ( a , c ) .
(14)

So by Lemma 2.8 we have

1 ( b - a ) ( d - c ) a b c d H ( s , t , I k , J k ) 2 f ( s , t ) Δ 1 s Δ 2 t Δ 2 t Δ 1 s - 1 [ ( b - a ) ( d - c ) ] 2 a b c d H ( s , t , I k , J k ) Δ 2 t Δ 1 s a b c d 2 f ( s , t ) Δ 1 s Δ 2 t Δ 2 t Δ 1 s [ max ( H ( s , t , I k , J k ) ) - min ( H ( s , t , I k , J k ) ) ] 4 ( K 2 - K 1 ) ( b - a ) ( d - c ) 4 ( K 2 - K 1 ) .
(15)

Then combining (3), (10), (14), (15) we get the desired result.

Remark 2.10. If we take k = 2, then Theorem 2.9 becomes the 2D extension on time scales of [[20], Theorem 4]. If we take k=2,T=, then Theorem 2.9 becomes the 2D extension in the continuous case of [[12], Theorem 2.1].

Remark 2.11. For Theorems 2.6 and 2.9, we can also obtain similar results as shown in Corollaries 2.3-2.5, which are omitted here.

3. Conclusions

In this article, we establish some new generalized Ostrowski type inequalities on time scales involving functions of two independent variables for k2 points, which unify continuous and discrete analysis. We note that the presented inequalities in Theorems 2.6 and 2.9 are not sharp, and the sharp version of them are supposed to further research.

References

  1. Ostrowski A: Über die Absolutabweichung einer differentiierbaren Funktion von ihren Integralmittel-wert. Comment Math Helv 1938, 10: 226–227.

    Article  MathSciNet  MATH  Google Scholar 

  2. Mitrinović DS, Pečarić J, Fink AM: Inequalities Involving functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht; 1991.

    Chapter  Google Scholar 

  3. Dragomir SS: The discrete version of Ostrowski inequalities in normed linear spaces. J Inequal Pure Appl Math 2002, 3(1):1–16. (Article 2)

    MathSciNet  Google Scholar 

  4. Cerone P, Cheung WS, Dragomir SS: On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation. Comput Math Appl 2007, 54: 183–191.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dragomir SS, Sofo A: An inequality for monotonic functions generalizing Ostrowski and related results. Comput Math Appl 2006, 51: 497–506.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tseng KL, Hwang SR, Dragomir SS: Generalizations of weighted Ostrowski type inequalities for mappings of bounded variation and their applications. Comput Math Appl 2008, 55: 1785–1793.

    Article  MathSciNet  MATH  Google Scholar 

  7. Alomari M, Darus M, Dragomir SS, Cerone P: Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl Math Lett 2010, 23: 1071–1076.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tseng KL, Hwang SR, Yang GS, Chou YM: Improvements of the Ostrowski integral inequality for mappings of bounded variation. I Appl Math Comput 2010, 217: 2348–2355.

    Article  MathSciNet  MATH  Google Scholar 

  9. Anastassiou GA: High order Ostrowski type inequalities. Appl Math Lett 2007, 20: 616–621.

    Article  MathSciNet  MATH  Google Scholar 

  10. Pachpatte BG: On an inequality of Ostrowski type in three independent variables. J Math Anal Appl 2000, 249: 583–591.

    Article  MathSciNet  MATH  Google Scholar 

  11. Xue QL, Zhu J, Liu WJ: A new generalization of Ostrowski-type inequality involving functions of two independent variables. Comput Math Appl 2010, 60: 2219–2224.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragomir SS, Wang S: An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Comput Math Appl 1997, 33(11):15–20.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu Z: Some Ostrowski type inequalities. Math Comput Modelling 2008, 48: 949–960.

    Article  MathSciNet  MATH  Google Scholar 

  14. Aljinović AA, Pečarić J: Discrete weighted montgomery identity and discrete Ostrowski type inequalities. Comput Math Appl 2004, 48: 731–745.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hilger S: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math 1990, 18: 18–56.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bohner M, Matthews T: Ostrowski inequalities on time scales. J Inequal Pure Appl Math 2008, 9(1):1–8. (Article 6)

    MathSciNet  MATH  Google Scholar 

  17. Liu WJ, Ngô QA, Chen WB: Ostrowski type inequalities on time scales for double integrals. Acta Appl Math 2010, 110: 477–497.

    Article  MathSciNet  MATH  Google Scholar 

  18. Özkan UM, Yildirim H: Ostrowski type inequality for double integrals on time scales. Acta Appl Math 2010, 110: 283–288.

    Article  MathSciNet  MATH  Google Scholar 

  19. Karpuz B, Özkan UM: Generalized Ostrowski's inequality on time scales. J Inequal Pure Appl Math

  20. Liu WJ, Ngô QA: An Ostrowski-Grüss type inequality on time scales. Comput Math Appl 2009, 58: 1207–1210.

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu WJ, Ngô QA, Chen WB: A perturbed Ostrowski type inequality on time scales for k points for functions whose second derivatives are bounded. J Inequal Appl 2008, 2008: 1–12. (Article 597241)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu WJ, Ngô QA, Chen WB: A new generalization of Ostrowski type inequality on time scales. Volume 17. An. Şt. Univ. Ovidius Constanţa; 2009:101–114.

    Google Scholar 

  23. Hussain S, Latif MA, Alomari M: Generalized double-integral Ostrowski type inequalities on time scales. Appl Math Lett 2011, 24: 1461–1467.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu WJ, Ngô QA: A generalization of Ostrowski inequality on time scales for k points. Appl Math Comput 2008, 203: 754–760.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.

    Chapter  Google Scholar 

  26. Lü ZX: On sharp inequalities of Simpson type and Ostrowski type in two independent variables. Comput Math Appl 2008, 56: 2043–2047.

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitrinović DS, Pečarić J, Fink AM: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht; 1993.

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (11171178), Natural Science Foundation of Shandong Province (ZR 2009 AM011) (China) and Specialized Research Fund for the Doctoral Program of Higher Education (20103705110003)(China). The authors thank the referees very much for their careful comments and valuable suggestions on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Feng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

QF carried out the main part of this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Feng, Q., Meng, F. Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. J Inequal Appl 2012, 74 (2012). https://doi.org/10.1186/1029-242X-2012-74

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-74

Keywords