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Abstract

In this article, we establish some new Ostrowski type integral inequalities on time
scales involving functions of two independent variables for k* points, which on one
hand unify continuous and discrete analysis, on the other hand extend some known
results in the literature. The established results can be used in the estimate of error
bounds for some numerical integration formulae, and some of the results are sharp.
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1. Introduction
Recently many authors have studied various inequalities, among which the Ostrowski
type inequalities have attracted much attention in the literature. The Ostrowski
inequality was originally presented in [1] (see also in [[2], pp. 468]) as stated in the fol-
lowing theorem.

Theorem 1.1. Let f: I — R be a differentiable mapping in the interior Int/ of I,
where I C R is an interval, and let a, b € Intl a <b. If |f(t)| < M, Vt € [a, b], then we

have
< a+ b>2
1 * 2
(b—a)M,

< +

4 (b-a)

b
‘f(x) -, L [ 1w

for x € [a, b].

In recent years, various generalizations of the Ostrowski inequality including contin-
uous and discrete versions have been established (for example, see [3-14] and the refer-
ences therein). On the other hand, Hilger [15] initiated the theory of time scales as a
theory capable of treating continuous and discrete analysis in a consistent way, based
on which some authors have studied the Ostrowski type inequalities on time scales
(see [16-24]). The established Ostrowski type inequalities on time scales unify continu-
ous and discrete analysis, and can be used to provide explicit error bounds for some

known and some new numerical quadrature formulae.
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In this article, we will establish some new Ostrowski type inequalities on time scales
involving functions of two independent variables for k* points, which on one hand
extend some known results in the literature, on the other hand unify continuous and
discrete analysis.

First we will give some preliminaries on time scales. A time scale is an arbitrary
nonempty closed subset of the real numbers. If T denotes an arbitrary time scale, then
on T we define the forward and backward jump operators o € (T, T) and p € (T, T)
such that o(t) =inf{s € T,s > t}, p(t) =sup(s € T,s > ¢).

Definition 1.2. A point ¢ € T is said to be left-dense if p(f) = ¢ and ¢ # infT, right-
dense if o(f) = t and t # sup T, left-scattered if p(f) <t and right-scattered if o(z) >t.

Definition 1.3. The set T is defined to be T if T does not have a left-scattered
maximum, otherwise it is T without the left-scattered maximum.

Definition 1.4. A function f € (T, R) is called rd-continuous if it is continuous at
right-dense points and if the left-sided limits exist at left-dense points, while fis called
regressive if 1 + u()f(t) = 0, where u(t) = o(¢) - t. C,; denotes the set of rd-continuous
functions.

Definition 1.5. For some t € T, and a function f € (T, R), the delta derivative of f
at ¢ is denoted by f*(¢) (provided it exists) with the property such that for every & > 0
there exists a neighborhood ${ of ¢ satisfying

f(o(1)) = f(s) = fA ()0 (1) —s)| < e|o(t) —s| forallse il

Remark 1.6. If T = R, then jA(t) becomes the usual derivative f(), while jA(t) = flt +
1) - At) if T = Z, which represents the forward difference.

Definition 1.7. If F*(¢) = fit), t € T*, then F is called an antiderivative of f, and the
Cauchy integral of fis defined by

b
/ f(t)At = F(b) — F(a).
a
The following two theorem include some important properties for delta derivative

on time scales.
Theorem 1.8.If a, b, ce T, x e R, and f, ge C,, then

b b b

(i)/ [f(t)+g(t)]At=/ f(t)At+/ g(t)At,
b b

(ii)/ (otf)(t)At=ot/ f()At,

b a
(iii)/f(t)At=—/b ()AL,

@) [Pf(0)Ae = [ f()AL+ [P f()AL,
™ [*f()At=0,
(vi) if fit) 2 0 for all @ < ¢ < b, then [*f(1)AL > 0.

Definition 1.9.1;, : T> — R, k = 0, 1, 2 ... are defined by
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t
hre1(t,s) =f he(z,s)Az, Vs, t €T,
N

where hy(t, s) = 1.

For more details about the calculus of time scales, we refer to [25].

Throughout this article, R denotes the set of real numbers and R, = [0,), while Z
denotes the set of integers, and Ny denotes the set of nonnegative integers. For a func-
tion fand two integers m, m;, we have Zﬁlmof = 0 provided mg >m;. T, T, denote
two arbitrary time scales, and for an interval [a, b], [4, b]t, := [a, b]N7,,i = 1,2. Finally,
for the sake of convenience, we denote the forward jump operators on Ty, T, by &

uniformly.

2. Main results
Theorem 2.1. Let a,b € Ty,¢,d € Ty, f :€ Cy([a, b]r, % [¢, d]T,,R) such that the par-
tial delta derivative of order 2 exists and there exists a constant K with

2f(5,1
A1sAst

su
a<s<b, c<t<d

=K. Suppose that

xi € [a,blr,, i€ led]r,,i=0,1,.,k:a=x) <x; <--- <Xp—1 <X, =b is a divi-
sion of the interval [a, b]y,, while Ji : ¢ = yo <y1 < ... <Yi1 <yx = d is a division of the

interval [c, d|t,.o € [xi—1, xi]T,, Bi € [Vi1,VilT,,i=1,2,.... k. Then we have

k—1 k—1 k-1
Z Z (etiv1 — i) (Bj1 — By) f (i y3) + Z (etier — ai) (v — Br)f (%0, 1)
i=1 j=1 i=1
k-1
=Y (eirs — @) (yo — B1)f (% yo)
i=1
k—1

+ Z(xk — o) (Bje1 — Bif (%, ) + (% — ) (Ve — Br)f (X vie) — (e — @) (Yo — B1)f (% ¥0)
i-1
)kfl
=2 (%0 — @1)(By1 — B)f (xo, 1) — (%0 — &) (k= Bi)f (%o, 1) + (%0 — 1) (yo — B1)f (%0, ¥o)
;:11 (1)
-1 b
- Z/ (Binn = B (o (s), vj) Ars — / [(ve = B)f (o (). &) = (vo — BL)f (o (5). vo)]A1s

j=1 74

k—1 d d
=3 [ e = o )8t~ [ [~ )0 () = (30 — ) o ()]

i=1 V¢

. / b / o) () At

k—1 k—1

<KD [hawi i) + ha(in )] Y 2 (s Bir) + ha(er, Bian)] f -

=0 j=0

The inequality (1) is sharp in the sense that the right side of (1) can not be replaced
by a smaller one.
Proof. Define

H(s, t, I, Ji) = (s = i1 (t = Bjer), (5, 1) € [, x001) X [Yj, V1), 1,j=0,1,..,k—1. (2)
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Then we obtain

b k=1 k=1 Vi f(S, [)
/ / H(s, t, I, ],,) A tAys = ;}Z}:ft f (s —ain)(t=f1) ony Dathis
k=1 k1 » of (s, i Y 3f (s, o
- ;):;,:/x (s — ais1) |:()’;+1 Bjs1) f(s yJ ) = — Bjs1) fisl?) —/y.) f(sAls(t))Azt]
Aqs
k=1 k—
=33 {6 = @)@ p) = (65— @)@ p) 1050 — B
i=0 j=0
= [Ceier — atien )f (xivn, 1) — (i — i )f (%0, y) 1 (v — Bjs1)
*/x N [(jer = Bjs)f (0 (). ¥js1) = (v = Bp1 ) (0 (), 1) | As
[ (1 = ) 1,0 (0) — 35— i ) 5 0 () 82t
Yi
/ f f(o(s), o(t))ArtAss
k=1 k—1 k—1
=303 (etir — ) (@jen — B ) (i i) + D (5 — @) (jer — Bjon)f (o 1)
i=1 j=0 j=0
k-1
(%0 = 1) (¥js1 — Bjs1)f (X0, ¥j+1)
j=0
k=1 k—1 k=1
=) (e — ) — B ) () — Y (e — @) (5 — B )f (%1 3y)
i=1 j=0 =0 (3)
k—1
+ (0 — 1) (yj — Bjs1)f (x0, %))
j=0
k=1

/[(Ym By )f (0 (), vj1) = (¥ = Bjs1)f (0 (5), )] Aas

—Z / (i1 = 1) (i1, (0)) = o5 — et ) i, 0 ()| At + / f fo(s) o (1) AatArs

i=0 V¢
k=1 k— k—1 k=1
=3 Z (i1 — @) (B — B (xir i) + 3 (ctier — ) (e — B (oo i) = D (@ier — @) (vo — A1) (xir o)

i=1 j=1 i=1 i=1

k—1
+ Z (% — i) (Bjs1 — Bi)f (ks ¥7) + (o — i) (Ve — Bre)f (% ¥ie) — (X1 — ) (Yo — B1)f (ks Yo)

j=1

k—1

- Z (%0 — 1)(Bj+1 — Bj)f (%0, 13) — (%0 — 1) (¥ — Bi)f (%o, i) + (0 — e1)(yo — B1)f (%o, ¥0)
k-1

—Z / (Bt — B (5), 1) As — / [ — BOF@ (). 1) — (o — BF((5),yo) ] Ass
¥ / (@1 — @) (i (1)) Aot — [ (5 — o) (3 0 (1)) — (50 — 1) (0, (1) At

o ' [ o) o Aa

On the other hand, we have

b pd k=1 k it
//|H(S,I,Iklfk)|A2tA5=Z / / |(s — i1 ) (t = Bj1) | AatAss
a ¢ i=0 j=0

L e[ e na]

k=1 Wis1 Xis1 k=1 Bjs1 Jjal (4')
:{Z[/); (oz,-+1—s)A15+/a (s—a,;l)Als]}{]Z[/‘ (Bjs1 — 1) AQH;{.

i=0 is1
(t = Bj1)Ast]}
k—1 k—1

= D [ i) + ha (%, @i1)] Y [ha (v Bjer) + Ba (v, Bju) -

i=0 j=0

—1

._.
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Combining (3) and (4) we get the desired inequality (1).
In order to prove the sharpness of (1), we take k = 1, oty = b, By = d, fis, t) = st. Then
the left side of (1) becomes

b opd b b
[/a(s)a(t)AztAls—(d—c)f C(r(s)Als—(b—a)/ ao (t)Ast + (d — ¢)(b — a)ac

/b [d [o(s)o(t) — co(s) — ao (t) +ac]AxtAys

b opd
=‘/ f lo(s) — a][o(t) — c]AstAys

b opd
//{[(3*0)2]“0*6)2]?*[(0(5)*a)(t*6)+(0(i)*C)(S*ﬂ)+(5*a)(lff)]}AzlA13

b d
ff{[(s—a)z]f[(t—c)zlf—[[(s—a)zl?u—c)+[(t—c)21f(s—a)—(t—c)(s—anmzmls

(b—a)*(d—c)> = (b—a)? /E‘d (t—c)Ast— (d—c)? /db (s—a)Ars +/ab /cd (t—c)(s —a)AstAss

/ah/;d(t—d)(s—b)AztAls =/ab/cd (d—t)(b—s)AztAls=/: (s—b)AIS/:(t—d)Azt

= ha(a, b)ha(c, d).
On the other hand, Using K = 1, the right side of (1) reduces to h, (a, b)h, (¢, d),
which implies (2) holds for equality form, and then the sharpness of (1) is proved.
Remark 2.2. Theorem 2.1 is the 2D extension of [[24], Theorem 3].
From Theorem 2.1 we can obtain some particular Ostrowski type inequalities on

time scales. For example, if we take k = 1, o, = b, §; = d, then we have

b pd b d
/ﬂ[f(a(s),c(t))AztAls—(d—c)/ﬂf(a(s),yO)Als—(b—a)/ f(x0,0(t))Ast + (d—

c)(b — a)f (x0, yo)|
< K hy(a, b)hy(c, d).

If we take k = 1, &; = a, B; = ¢, then we have

b pd b d
[ [ feeowaas-@-o [ feosmas-t-a [ fx o -

) (b= a)f (x1,y,)]
< K hy(b, a)hy(d, ).

If we take k=1, 0; = a;b,ﬂl = C;d, then we have

b d _ b _ d
/ / F(o(s), 0 () AatArs — d2 C/ (@) y1) + f(o(5), 7o) Ars — 2“[ [f (x1,0(0))+
f(xo 0 (8))] Azt

b—a)(d-
ST 1) 50,000 +03) + 0 10))

SK[hz (a,a+b)+h2 (b’a+b)] |:h2 (C,c+d>+h2 (d,c+d>].
2 2 2 2

If wetake k=2, 01 =a, 0y = b, 1 = ¢ Po =d, x1 = x, y; =y, then we have

b d b d
/ / F(0(), 0 (D) Astdrs — (d— ) / (0 (), ) Ars— (b— a) / f(x 0 (0)A

+(b—a)(d - )f (x,y)]
< K[ha(x, a) + ha(x, b)][h2(y, ¢) + ha(y, d)].

Page 5 of 11
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If we take k=2, a; = a+x,a2_x+b, 1= c+y, 2=y+d

= ,X1 =X,y1 =V, then we
2 2 2 g Ty

have

b pd _ b _ d
[ [ re@ow anss= 79 [o@nms-C70 [wamn

b _ _ d _ _
- [19 100m+ O e ]a [0 00w+ & ttnow]

Oy O D gy O Dy 70D )
L @ a)4(d Vo) + @7 Y)4(b "y + U7 C)4(b )
+ (d- y)4(x - a)f(xo,h) + - c)fc B a)f(xol Yo)

< (0 ) em (5T o (575 ) o (575 ) ]
[ 5353) (1 3 ) o073

If we furthermore take x = b ; a,y = d; ¢ in the inequality above, then we obtain

the time scale version of Simpson’s inequality [26], which is omitted here.
In Theorem 2.1, if we take Ty, T, for some special time scales, then we immediately

obtain the following three corollaries.

Corollary 2.3 (Continuous case). Let T; =T, =R in Theorem 2.1, then

2
ho(t,s) = _25) , and we obtain

k—1 k-1 k-1

D (@i — @) (B — B (i) + Y (erier — o) (vie — B (i )

i=1 j=1 i=1

RN

-1

= > (it = @) (yo — B1)f (xi, o)
i=1
k-1

+ 3 (= @) (Bier — B (e vy) + (5 — o) (ke — B)f (3 7)) — (e — o) (Yo — B1)f (%, ¥o)
j=1
k—1
= > (0 — @1)(Bje1 — B (%0, 3}) — (%0 — 0r1) (vie — Be)f (o, &) + (%o — 0t1) (¥o — B1)f (%o, Y0) (5)

j=1

k=1 p b
=3 [ B = st s = [ 10~ BFs ) = 00 = S G o)lds

=17

k-1 .4 d b pd
=3 [ e et = [ )0 (0 — o 0lde [ [ (s s

i=1 V¢
k-1 2 27 k=1 2 2
(xi —ain1)” (i1 — @is1) i = Bis1)” (V1 — Bjs1)
ol gl )
i=0 j=0
0%f (s, t
where K= sup f(s:0) .
a<s<b, c<t<d dsat

Corollary 2.4 (Discrete case). Let Ty =T, =2, a=my, b=my, c=n; ,d=n, in
Theorem 2.1. Suppose that x; € [my, mylz, y; € [ny, nalz, i = 0,1, .k I - my = xo <xy
< v <Xp1 <X = My is a division of [my, m,)z, while Ji @ ny = yo <y1 < o <Ype1 <Yk = 1

is a division of [ny, o)z o € [x;.1, xi]z, Bi € v, ¥ilz i = 1,2,....k. Then we have

Page 6 of 11



Feng and Meng Journal of Inequalities and Applications 2012, 2012:74
http://www.journalofinequalitiesandapplications.com/content/2012/1/74

k=1 k=1 k=1
(i1 — ) (B — B (i) + D (erier — i) (e — Br)f (i 1)
i=1 j=1 i=1
k—1
=Y (@i — @) (vo — B1)f (xir¥o0)
i=1
k-1

+ Z (% — ) (Birr = B)f (% 13) + (0 — ) (Ve — Br)f (% vie) — (% — ) (Yo — B1)f (% o)
-
= > (xo— 1) (Bj1 — B)f (%o, 1) — (X0 — or1) (vie — B (Ko, 1) + (%0 — @1) (o — B1)f (¥o, ¥o)

j=1

(6)
k=1 my my
- Z Z (B — B (s,7)) — Z [(ve = Br)f (s v) — (vo — B1)f (s: y0)]
j=1 s=m;+1 s=my+1
k=1 ny ny my ny
- Z Z (etiv1 — ai)f (xir t) — Z [Gor — o )f (xes t) — (w0 — e1)f (x0, )] + Z Z f(st)
i=1 t=n;+1 t=n;+1 s=my+1 t=ny+1
k-1
- (i — i) (6 — i1 — 1) (X1 — o) (X1 — i1 — 1)
<K {g [ 2 + N :| X
k-1
= B) = B = 1) (o = Ben) (1 = B = 1)
B0, |

where K denotes the maximum value of the absolute value of the difference AjA,f

over [my, my-1]z x [ny, ny-1]z.

(t=s)(t—s
2

-1
As long as we notice h,(t,s) = ) for Vt, s € Z, we can easily get the

desired result.

Corollary 2.5 (Quantum calculus case). Let T; = g][{‘lol'[l'2 = qg"" in Theorem 2.1,

where my, my, n;, n, € Ny and ¢; > 1, i = 1, 2. Suppose that

xi € [qTI/CITl]qfo,yj € [q;‘,qu][go,ﬁ 0,1,....k I:qi"=xg<x1 < <xp1 <xe=47" is a divi-
. m m . . e .
sion of [qll,qlz]NU, while Jp:qy =yo <y1 <+ <Vi—1 < ¥k =q5 is a division of

[qgl,qu]qNoai € [xi—lzxi]qll“ozlgi € [yi—lz}/j]qlz“ori =1,2,...,k . Then we have

k=1 k-1 k-1
Z Z (aiv1 — i) (B — B)f (xi ) + Z (@tiv1 — i) (Ve = Bi)f (xi vie)
o1 jo1 i=1

-1

=Y (e = ) (vo — 1) (xir¥o)

i=1

-1
+ Z (% — o) (Bje1 — B)f () + (%0 — ) (Ve — Bre)f (X1 vie) — (X1 — ) (Yo — B1)f (% yo)
-0
o
= >~ (%0 — an)(Bjr — B (%0, 1) — (X0 — 1) (v = B)f (%o, v&) + (%0 — @1) (o — B1)f (%o, ¥o)
j=1
k—1my—1 my—1
—qM (@ 1) 'Z o " B = B ) = Y @ " e~ B )
j=1 s=my s=my (7)

=W = B (4 y0)1}

k—1n—1

n—1
— a3 1) {Z 3 s (i — o) (3,0 ) — 3 5™ (e — ) (e g

i=1 t=n t=n

= (%0 = e1)f (xo, 4" )1}

my—1ny;—1

+q™M @y (g — D2 —1) Y > a7 (@ q)

s=my t=n;

IA

K E [(xi — dtis1) (X — q1ctie1) N (i1 — i) (Xie1 — 4104141)] «
s 1+q: 1+q:
k-1

(v — B1) (v — 42B541) . (¥js1 = Bir1) (i1 — G2Bj1)
5 I

P 1+q, 1+q2

Page 7 of 11
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where K denotes the maximum value of the absolute value of the g; ¢,-difference
Dyg,.f (1, ) over [ql i 1] x5 ay ™ o,

hi(t,s) = 1:[ — s

Proof. Since e 2”: for Vs, t € quNo,i = 1,2, we have

ha(t, s) = (t_sl)itqf qis), i=1,2. (8)

Substituting (8) into (1) we get the desired result.
Theorem 2.6. Under the conditions of Theorem 2.1, if there exist constants Kj, K,

%f(s,1)

such that K; <
A1sAst

< K,, then we have the following inequality

k—1 k-1 k—1
DD (i — ) (B — B (e ) + D (etier — ) (v — B (i i)
i=1 j=1 i=1

k—1

- Z (etiv1 = ai) (Yo — B1)f (xi yo)
k-1

# (= ) (B — B (¥ ) + (51 — @) (v = B (o ve) — (3 — ) (vo — B1)f (¥ o)
j=1
k-1

=2 (%o —an)(Bjr = B (xo, ) — (%0 — @) (v = Bi)f (xo, vi) + (x0 — @1) (yo = B1)f (%o, ¥o)

j=1
k=1 .p b

=3 [ B = Be@mas - [ 100- A1) - 00— B0 )]s )
=1 Ja a

k=1 g d
=D (e — a)f(xio (1)) At — f [Goe — o) (%0 0 (1)) — (x0 — o1)f (%0, 0 ()] Azt

i=1 ¢

+/b /df(a(s),a(t))AzfAIS

K+ Kz k-1 k-1
— [ha (xiv1, @i1) — ho(xi, ctis1)] Z [h2(Vje1, Bir1) — ha(yj Bjs1)]
i=0 j=0

j=0

k-1
{Z [hz(xz aul) + hl(le o7 )] Z [hz()ﬁ /SJH) + hz(}’]n ,B]+1 )]}

Proof. We notice that

k—1 k—1 Xis1 Viey
/ / H(s, t, I, Je) At Aqs = ZZ/ / (s —aiv1)(t — ﬁj+1)A2tA15
i=0 j=0 i
Xir1 Yjs1
Z/ al_,.l)AlSZ/ ‘3]‘_,.1)A2t (10)

k—1 k—1

=Y [ha(ir, i) — ha (i i) Y (3,10 Bier) — ha (v Bjer)]s

i=0 j=0
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%f(s,t) K +K K; —K
We also have e R < 2 ! and
A1sAst 2
b pd 2
d b K; + K
/ / H(SI t/ Ikr]k) f(s ) - ! K 2 AztAlS
a Je A1sAt 2
b (11)
K, — K
<7 1/'/|HQLMMHAﬂAw
2 a Cc
Then combining (4), (10) and (11) we obtain the desired inequality (9).
Remark 2.7. If we take

b— b— - -
Ti=Ty=R k=2, a5 =a+h 2a,a2=b7)» 2“, B =c+h 26,ﬁ2=d7)» 26,x1=x, yi=y, where 1 €

[0,1], then Theorem 2.6 reduces to [[11], Theorem 4].

In the following, we will establish a generalized Ostrowski-Griiss type integral
inequality on time scales based on the result of Theorem 2.1.

Lemma 2.8 (2D Griiss’ inequality on time scales). Let f,g € Cu([a, blr, x [¢, d]t,,R)
such that ¢ < fly, y) < ® and y < g(x, y) < T for all x € [a,b]r,,y € [c, d]t,, where @, O,

7% T are constants. Then we have

1 b pd 1 b pd 1
'(d_c)(b_a)/a [ s nsaais= o e oamss

b opd
/ / 8(s, t)AxtAgs
a c

The proof for Lemma 2.6 is similar to [[27], pp. 295-296], and we omit it here.

(12)

<, @=a)T 7).

Theorem 2.9. Under the conditions of Theorem 2.1, if there exist constants K;, K

*f(s,t)

such that K; <
A1sAst

< K, then we have the following inequality

k=1 k=1 k=1
DD (i =) (Ber = B (i) + D (etion — ) (v = Bi)f (i )
i=1 j=1 i=1
k-1
— > (@i — @) (yo — B1)f (xir o)
i=1
k—1
+ 3 (o — ) (B — B)f (1) + (5 — ) e — B (e 1) — (1 — ) (vo — B1)f (e yo)

=1

k—1

=3 (%o — @) (B — B (%0, %)) — (%0 — &) (v — Bi)f (o, 1) + (%0 — @1)(yo — B1)f (%o, y0)

j=1

k-1 Lp b
=3 [ B = B a0 [ 1= A1) = G0 = AV 1)l (13)
]-=1 a a

k-1 .4 d
-3 / (@1 — a)f (31,0 (6)) Mgt — / (66 — n)f (3 0 () — (0 — e )f (0, (£)) | At

+/uh /:if(a(s),a(t))AztAls

b,d _ b, _ ,d ) k—1 k—1
_vea) ];EJ f)a)(c{(fc)) +f@ol > Tha(ien @) — ha (i, i)Y [ (ers Biot)
s =0

—ha (. B1)]|

_ _ 2
@ a)‘(ld )l (K — K1).
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Proof. From the definition of H(s, t, I, Ji) in (2) we observe that max(H(s, &, I, J)) -
min(H(s, t, I, Ji)) < (b - a)(d - ¢), and on the other hand,

b pd 92
fu f aAf S(Z? AstAs = f(b,d) — (b, ) — f(a,d) + f(a,c). (14)

So by Lemma 2.8 we have

1 b opd 82f (s, 1)
(b—a)(d—c)/a‘ ‘/C‘ H(S,I,Ik,]k) AlsAztAZtAls

1 b d b d 82](‘(5’ t)
— 2 / / H(S, t,Ik,]k)Az[Alsf / AsrtAqs
[(b—a)d—c)]" Ja Je o Jo AisAgt

_ [max(H(s, t, I, Ji)) — min(H(s, t, I, Ji))] (b—a)(d—-c)
- 4 4

(15)

(K2 —Kp) < (Ky — K1).

Then combining (3), (10), (14), (15) we get the desired result.

Remark 2.10. If we take k = 2, then Theorem 2.9 becomes the 2D extension on time
scales of [[20], Theorem 4]. If we take k= 2, T = R, then Theorem 2.9 becomes the 2D
extension in the continuous case of [[12], Theorem 2.1].

Remark 2.11. For Theorems 2.6 and 2.9, we can also obtain similar results as shown
in Corollaries 2.3-2.5, which are omitted here.

3. Conclusions

In this article, we establish some new generalized Ostrowski type inequalities on time
scales involving functions of two independent variables for &* points, which unify con-
tinuous and discrete analysis. We note that the presented inequalities in Theorems 2.6
and 2.9 are not sharp, and the sharp version of them are supposed to further research.
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