# Multiple positive periodic solutions for a food-limited two-species Gilpin-Ayala competition patch system with periodic harvesting terms

## Abstract

By using Mawhin’s coincidence degree theory and some inequality techniques, this paper establishes a new sufficient condition on the existence of at least eight positive periodic solutions for a food-limited two-species Gilpin-Ayala competition patch system with periodic harvesting terms. An example is given to illustrate the effectiveness of the result.

## 1 Introduction

In the past years, the study of population dynamics with harvesting in mathematical bioeconomics, due to its theoretical and practical significance in the optimal management of renewable resources, has attracted much attention . Huusko and Hyvarinen in  pointed out that ‘the dynamics of exploited populations are clearly affected by recruitment and harvesting, and the changes in harvesting induced a tendency to generation cycling in the dynamics of a freshwater fish population.’ Recently, some researchers have paid much attention to the investigation of harvesting-induced multiple positive periodic solutions for some population systems under the assumption of periodicity of the parameters by using Mawhin’s coincidence degree theory . In 1973, Gilpin and Ayala in  firstly proposed and studied a few Gilpin-Ayala type competition models. Since then, many papers have been published on the dynamics of Gilpin-Ayala type competition models (for example, see ).

In this paper, we consider a food-limited two-species Gilpin-Ayala competition patch system with harvesting terms:

$\left\{\begin{array}{c}{x}_{1}^{\mathrm{\prime }}\left(t\right)=\frac{{x}_{1}\left(t\right)}{{k}_{1}\left(t\right)+{c}_{1}\left(t\right){x}_{1}\left(t\right)}\left[{a}_{1}\left(t\right)-{a}_{11}\left(t\right){x}_{1}^{{\theta }_{1}}\left(t\right)-{a}_{13}\left(t\right){y}^{{\theta }_{3}}\left(t\right)\right]\hfill \\ \phantom{{x}_{1}^{\mathrm{\prime }}\left(t\right)=}+{D}_{1}\left(t\right)\left[{x}_{2}\left(t\right)-{x}_{1}\left(t\right)\right]-{H}_{1}\left(t\right),\hfill \\ {x}_{2}^{\mathrm{\prime }}\left(t\right)=\frac{{x}_{2}\left(t\right)}{{k}_{2}\left(t\right)+{c}_{2}\left(t\right){x}_{2}\left(t\right)}\left[{a}_{2}\left(t\right)-{a}_{22}\left(t\right){x}_{2}^{{\theta }_{2}}\left(t\right)\right]+{D}_{2}\left(t\right)\left[{x}_{1}\left(t\right)-{x}_{2}\left(t\right)\right]-{H}_{2}\left(t\right),\hfill \\ {y}^{\mathrm{\prime }}\left(t\right)=\frac{y\left(t\right)}{{k}_{3}\left(t\right)+{c}_{3}\left(t\right)y\left(t\right)}\left[{a}_{3}\left(t\right)-{a}_{33}\left(t\right){y}^{{\theta }_{3}}\left(t\right)-{a}_{31}\left(t\right){x}_{1}^{{\theta }_{1}}\left(t\right)\right]-{H}_{3}\left(t\right),\hfill \end{array}$
(1.1)

where ${x}_{1}$ and y are the population densities of species x and y in patch 1, and ${x}_{2}$ is the density of species x in patch 2. Species y is confined to patch 1, while species x can diffuse between two patches due to the spatial heterogeneity and unbalanced food resources. ${D}_{i}\left(t\right)$ ($i=1,2$) are diffusion coefficients of species x. ${a}_{1}\left(t\right)$ (${a}_{2}\left(t\right)$) is the natural growth rate of species x in patch 1 (patch 2), ${a}_{3}\left(t\right)$ is the natural growth rate of species y, ${a}_{13}\left(t\right)$, ${a}_{31}\left(t\right)$ are the inter-species competition coefficients. ${a}_{ii}\left(t\right)$ ($i=1,2,3$) are the density-dependent coefficients. ${k}_{i}\left(t\right)$ ($i=1,2$) are the population numbers of species x at saturation in patch 1 (patch 2), and ${k}_{3}\left(t\right)$ is the population number of species y at saturation in patch 1, respectively. ${H}_{i}\left(t\right)$ ($i=1,2,3$) denote the harvesting rates. ${\theta }_{i}$ ($i=1,2,3$) represent a nonlinear measure of interspecific interference. When ${c}_{i}\left(t\right)\ne 0$ ($i=1,2,3$), $\frac{{a}_{i}\left(t\right)}{{k}_{i}\left(t\right){c}_{i}\left(t\right)}$ ($i=1,2,3$) are the rate of replacement of mass in the population at saturation (including the replacement of metabolic loss and of dead organisms). In this case, system (1.1) is a food-limited population model. For other food-limited population models, we refer to .

To our knowledge, few papers have been published on the existence of multiple positive periodic solutions for Gilpin-Ayala type competition patch models. Motivated by the work of Chen , we study the existence of multiple positive periodic solutions of (1.1) by using Mawhin’s coincidence degree theory. Since system (1.1) involves the diffusion terms, the rates of replacement and the interspecific interference, the methods used in  are not available to system (1.1).

## 2 Existence of multiple positive periodic solutions

For the sake of convenience and simplicity, we denote

$\overline{g}=\frac{1}{T}{\int }_{0}^{T}g\left(t\right)\phantom{\rule{0.2em}{0ex}}dt,\phantom{\rule{2em}{0ex}}{g}^{l}=\underset{t\in \left[0,T\right]}{min}g\left(t\right),\phantom{\rule{2em}{0ex}}{g}^{u}=\underset{t\in \left[0,T\right]}{max}g\left(t\right),$

where g is a nonnegative continuous T-periodic function.

Set

${N}_{1}=max\left\{{\left[{\left(\frac{{a}_{1}}{{a}_{11}}\right)}^{u}\right]}^{1/{\theta }_{1}},{\left[{\left(\frac{{a}_{2}}{{a}_{22}}\right)}^{u}\right]}^{1/{\theta }_{2}}\right\},\phantom{\rule{2em}{0ex}}{N}_{2}={\left[{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}\right]}^{1/{\theta }_{3}}.$

From now on, we always assume that

(H1) ${k}_{i}\left(t\right)$, ${a}_{i}\left(t\right)$, ${a}_{ii}\left(t\right)$, ${H}_{i}\left(t\right)$, ${c}_{i}\left(t\right)$ ($i=1,2,3$), ${a}_{13}\left(t\right)$, ${a}_{31}\left(t\right)$, ${D}_{i}\left(t\right)$ ($i=1,2$) are positive continuous T-periodic functions. ${\theta }_{i}$ ($i=1,2,3$) are positive constants.

(H2) $\frac{{k}_{1}^{l}}{{k}_{1}^{l}+{c}_{1}^{u}{N}_{1}}{\left(\frac{{a}_{1}}{{k}_{1}}\right)}^{l}>{\left(\frac{{a}_{13}}{{k}_{1}}\right)}^{u}{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}+{D}_{1}^{u}+\left(1+{\theta }_{1}\right){\left[{\left(\frac{{a}_{11}}{{k}_{1}}\right)}^{u}\right]}^{\frac{1}{1+{\theta }_{1}}}{\left[\frac{{H}_{1}^{u}}{{\theta }_{1}}\right]}^{\frac{{\theta }_{1}}{1+{\theta }_{1}}}$.

(H3) $\frac{{k}_{2}^{l}}{{k}_{2}^{l}+{c}_{2}^{u}{N}_{1}}{\left(\frac{{a}_{2}}{{k}_{2}}\right)}^{l}>{D}_{2}^{u}+\left(1+{\theta }_{2}\right){\left[{\left(\frac{{a}_{22}}{{k}_{2}}\right)}^{u}\right]}^{\frac{1}{1+{\theta }_{2}}}{\left[\frac{{H}_{2}^{u}}{{\theta }_{2}}\right]}^{\frac{{\theta }_{2}}{1+{\theta }_{2}}}$.

(H4) $\frac{{k}_{3}^{l}}{{k}_{3}^{l}+{c}_{3}^{u}{N}_{2}}{\left(\frac{{a}_{3}}{{k}_{3}}\right)}^{l}>{\left(\frac{{a}_{31}}{{k}_{3}}\right)}^{u}{N}_{1}^{{\theta }_{1}}+\left(1+{\theta }_{3}\right){\left[{\left(\frac{{a}_{33}}{{k}_{3}}\right)}^{u}\right]}^{\frac{1}{1+{\theta }_{3}}}{\left[\frac{{H}_{3}^{u}}{{\theta }_{3}}\right]}^{\frac{{\theta }_{3}}{1+{\theta }_{3}}}$.

(H5) ${H}_{i}^{l}>{D}_{i}^{u}{N}_{1}$ ($i=1,2$).

We first make the following preparations .

Let X, Z be normed vector spaces, $L:domL\subset X\to Z$ be a linear mapping, $N:X×\left[0,1\right]\to Z$ be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if $dimKerL=codimImL<+\mathrm{\infty }$ and ImL is closed in Z. If L is a Fredholm mapping of index zero, then there exist continuous projectors $P:X\to X$ and $Q:Z\to Z$ such that $ImP=KerL$, $ImL=KerQ=Im\left(I-Q\right)$. If we define ${L}_{P}:domL\cap KerP\to ImL$ as the restriction $L{|}_{domL\phantom{\rule{0.2em}{0ex}}\cap \phantom{\rule{0.2em}{0ex}}KerP}$ of L to $domL\cap KerP$, then ${L}_{P}$ is invertible. We denote the inverse of that map by ${K}_{P}$. If Ω is an open bounded subset of X, the mapping N will be called L-compact on $\overline{\mathrm{\Omega }}×\left[0,1\right]$ if $QN\left(\overline{\mathrm{\Omega }}×\left[0,1\right]\right)$ is bounded and ${K}_{P}\left(I-Q\right)N:\overline{\mathrm{\Omega }}×\left[0,1\right]\to X$ is compact, i.e., continuous and such that ${K}_{P}\left(I-Q\right)N\left(\overline{\mathrm{\Omega }}×\left[0,1\right]\right)$ is relatively compact. Since ImQ is isomorphic to KerL, there exists an isomorphism $J:ImQ\to KerL$.

For convenience, we introduce Mawhin’s continuation theorem [, p.29] as follows.

Lemma 2.1 Let L be a Fredholm mapping of index zero and let $N:\overline{\mathrm{\Omega }}×\left[0,1\right]\to Z$ be L-compact on $\overline{\mathrm{\Omega }}×\left[0,1\right]$. Suppose

1. (a)

$Lu\ne \lambda N\left(u,\lambda \right)$ for every $u\in domL\cap \partial \mathrm{\Omega }$ and every $\lambda \in \left(0,1\right)$;

2. (b)

$QN\left(u,0\right)\ne 0$ for every $u\in \partial \mathrm{\Omega }\cap KerL$;

3. (c)

Brouwer degree ${deg}_{B}\left(JQN\left(\cdot ,0\right){|}_{KerL},\mathrm{\Omega }\cap KerL,0\right)\ne 0$.

Then $Lu=N\left(u,1\right)$ has at least one solution in $domL\cap \overline{\mathrm{\Omega }}$.

Set

$h\left(x\right)=b-a{x}^{\alpha }-\frac{c}{x},\phantom{\rule{1em}{0ex}}x\in \left(0,+\mathrm{\infty }\right).$

Lemma 2.2 Assume that a, b, c, α are positive constants and

$b>\left(1+\alpha \right){a}^{\frac{1}{1+\alpha }}{\left(\frac{c}{\alpha }\right)}^{\frac{\alpha }{1+\alpha }}.$

Then there exist $0<{x}^{-}<{x}^{+}$ such that Proof Since

${h}^{\prime }\left(x\right)=-a\alpha {x}^{\alpha -1}+\frac{c}{{x}^{2}}=0,\phantom{\rule{1em}{0ex}}x\in \left(0,+\mathrm{\infty }\right)$

implies that

$x={\left(\frac{c}{a\alpha }\right)}^{\frac{1}{1+\alpha }},$

we have

$\underset{x\in \left(0,+\mathrm{\infty }\right)}{sup}h\left(x\right)=b-a{\left(\frac{c}{a\alpha }\right)}^{\frac{\alpha }{1+\alpha }}-\frac{c}{{\left(\frac{c}{a\alpha }\right)}^{\frac{1}{1+\alpha }}}=b-\left(1+\alpha \right){a}^{\frac{1}{1+\alpha }}{\left(\frac{c}{\alpha }\right)}^{\frac{\alpha }{1+\alpha }}>0.$

From this, it is easy to see that the assertion holds.

Set □

Lemma 2.3 Assume that (H1)-(H5) hold. Then the following assertions hold:

1. (1)

There exist $0<{u}_{i}^{-}<{u}_{i}^{+}$ such that

${M}_{i}\left({u}_{i}^{-}\right)={M}_{i}\left({u}_{i}^{+}\right)=0,$

and

${M}_{i}\left(x\right)>0\phantom{\rule{1em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left({u}_{i}^{-},{u}_{i}^{+}\right),\phantom{\rule{2em}{0ex}}{M}_{i}\left(x\right)<0\phantom{\rule{1em}{0ex}}\phantom{\rule{0.5em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left(0,{u}_{i}^{-}\right)\cup \left({u}_{i}^{+},+\mathrm{\infty }\right),i=1,2,3.$
1. (2)

There exist $0<{x}_{i}^{-}<{x}_{i}^{+}$ such that

${p}_{i}\left({x}_{i}^{-}\right)={p}_{i}\left({x}_{i}^{+}\right)=0,$

and

${p}_{i}\left(x\right)>0\phantom{\rule{1em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left({x}_{i}^{-},{x}_{i}^{+}\right),\phantom{\rule{2em}{0ex}}{p}_{i}\left(x\right)<0\phantom{\rule{1em}{0ex}}\phantom{\rule{0.5em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left(0,{x}_{i}^{-}\right)\cup \left({x}_{i}^{+},+\mathrm{\infty }\right),i=1,2,3.$
1. (3)

There exist $0<{l}_{i}^{-}<{l}_{i}^{+}$ such that

${m}_{i}\left({l}_{i}^{-}\right)={m}_{i}\left({l}_{i}^{+}\right)=0,$

and

${m}_{i}\left(x\right)>0\phantom{\rule{1em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left({l}_{i}^{-},{l}_{i}^{+}\right),\phantom{\rule{2em}{0ex}}{m}_{i}\left(x\right)<0\phantom{\rule{1em}{0ex}}\phantom{\rule{0.5em}{0ex}}\mathit{\text{for}}\phantom{\rule{0.5em}{0ex}}x\in \left(0,{l}_{i}^{-}\right)\cup \left({l}_{i}^{+},+\mathrm{\infty }\right),i=1,2,3.$

(4)

${l}_{i}^{-}<{x}_{i}^{-}<{u}_{i}^{-}<{u}_{i}^{+}<{x}_{i}^{+}<{l}_{i}^{+},\phantom{\rule{1em}{0ex}}i=1,2,3.$
(2.1)

Proof It follows from (H1)-(H5) and Lemma 2.2 that the assertions (1)-(3) hold. Noticing that we have

${m}_{i}\left(x\right)<{p}_{i}\left(x\right)<{M}_{i}\left(x\right),\phantom{\rule{1em}{0ex}}i=1,2,3.$

It follows from this and the assertions (1)-(3) that the assertion (4) also holds. □

Lemma 2.4 

Assume that $x\ge 0$, $y\ge 0$, $p>1$, $q>1$, and $\frac{1}{p}+\frac{1}{q}=1$. Then the following inequality holds:

${x}^{\frac{1}{p}}{y}^{\frac{1}{q}}\le \frac{x}{p}+\frac{y}{q}.$

Now, we are ready to state the following main result of this paper.

Theorem 2.1 Assume that (H1)-(H5) hold. Then system (1.1) has at least eight positive T-periodic solutions.

Proof Since we are concerned with positive solutions of (1.1), we make the change of variables

${x}_{j}\left(t\right)={e}^{{u}_{j}\left(t\right)}\phantom{\rule{1em}{0ex}}\left(j=1,2\right),\phantom{\rule{2em}{0ex}}y\left(t\right)={e}^{{u}_{3}\left(t\right)}.$

Then (1.1) is rewritten as

$\left\{\begin{array}{c}{u}_{1}^{\mathrm{\prime }}\left(t\right)=\frac{1}{{k}_{1}\left(t\right)+{c}_{1}\left(t\right){e}^{{u}_{1}\left(t\right)}}\left[{a}_{1}\left(t\right)-{a}_{11}\left(t\right){e}^{{\theta }_{1}{u}_{1}\left(t\right)}-{a}_{13}\left(t\right){e}^{{\theta }_{3}{u}_{3}\left(t\right)}\right]\hfill \\ \phantom{{u}_{1}^{\mathrm{\prime }}\left(t\right)=}+{D}_{1}\left(t\right)\left[\frac{{e}^{{u}_{2}\left(t\right)}}{{e}^{{u}_{1}\left(t\right)}}-1\right]-\frac{{H}_{1}\left(t\right)}{{e}^{{u}_{1}\left(t\right)}},\hfill \\ {u}_{2}^{\mathrm{\prime }}\left(t\right)=\frac{1}{{k}_{2}\left(t\right)+{c}_{2}\left(t\right){e}^{{u}_{2}\left(t\right)}}\left[{a}_{2}\left(t\right)-{a}_{22}\left(t\right){e}^{{\theta }_{2}{u}_{2}\left(t\right)}\right]+{D}_{2}\left(t\right)\left[\frac{{e}^{{u}_{1}\left(t\right)}}{{e}^{{u}_{2}\left(t\right)}}-1\right]-\frac{{H}_{2}\left(t\right)}{{e}^{{u}_{2}\left(t\right)}},\hfill \\ {u}_{3}^{\mathrm{\prime }}\left(t\right)=\frac{1}{{k}_{3}\left(t\right)+{c}_{3}\left(t\right){e}^{{u}_{3}\left(t\right)}}\left[{a}_{3}\left(t\right)-{a}_{33}\left(t\right){e}^{{\theta }_{3}{u}_{3}\left(t\right)}-{a}_{31}\left(t\right){e}^{{\theta }_{1}{u}_{1}\left(t\right)}\right]-\frac{{H}_{3}\left(t\right)}{{e}^{{u}_{3}\left(t\right)}}.\hfill \end{array}$
(2.2)

Take

$X=Z=\left\{u={\left({u}_{1},{u}_{2},{u}_{3}\right)}^{T}\in C\left(R,{R}^{3}\right):{u}_{i}\left(t+T\right)={u}_{i}\left(t\right),i=1,2,3\right\}$

and define

Equipped with the above norm $\parallel \cdot \parallel$, it is easy to verify that X and Z are Banach spaces.

Set For any $u\in X$, because of the periodicity, we can easily check that ${\mathrm{\Delta }}_{i}\left(u,t,\lambda \right)\in C\left({R}^{2},R\right)$ ($i=1,2,3$) are T-periodic in t.

Let Here, for any $k\in {R}^{3}$, we also identify it as the constant function in X or Z with the constant value k. It is easy to see that

$KerL={R}^{3},\phantom{\rule{2em}{0ex}}ImL=\left\{u\in X:{\int }_{0}^{T}{u}_{i}\left(t\right)\phantom{\rule{0.2em}{0ex}}dt=0,i=1,2,3\right\}$

is closed in Z, $dimKerL=codimImL=3$, and P, Q are continuous projectors such that

$ImP=KerL,\phantom{\rule{2em}{0ex}}ImL=KerQ=Im\left(I-Q\right).$

Therefore, L is a Fredholm mapping of index zero. On the other hand, ${K}_{p}:ImL↦domL\cap KerP$ has the form

${K}_{p}\left(u\right)={\int }_{0}^{t}u\left(s\right)\phantom{\rule{0.2em}{0ex}}ds-\frac{1}{T}{\int }_{0}^{T}{\int }_{0}^{t}u\left(s\right)\phantom{\rule{0.2em}{0ex}}ds\phantom{\rule{0.2em}{0ex}}dt.$

Thus, where

$\begin{array}{rcl}{\mathrm{\Phi }}_{j}\left(u,t,\lambda \right)& =& {\int }_{0}^{t}{\mathrm{\Delta }}_{j}\left(u,s,\lambda \right)\phantom{\rule{0.2em}{0ex}}ds-\frac{1}{T}{\int }_{0}^{T}{\int }_{0}^{t}{\mathrm{\Delta }}_{j}\left(u,s,\lambda \right)\phantom{\rule{0.2em}{0ex}}ds\phantom{\rule{0.2em}{0ex}}dt\\ -\left(\frac{t}{T}-\frac{1}{2}\right){\int }_{0}^{T}{\mathrm{\Delta }}_{j}\left(u,s,\lambda \right)\phantom{\rule{0.2em}{0ex}}ds,\phantom{\rule{1em}{0ex}}j=1,2,3.\end{array}$

Obviously, QN and ${K}_{p}\left(I-Q\right)N$ are continuous. By the Arzela-Ascoli theorem, it is not difficult to show that $\overline{{K}_{p}\left(I-Q\right)N\left(\overline{\mathrm{\Omega }}×\left[0,1\right]}\right)$ is compact for any open bounded set $\mathrm{\Omega }\subset X$. Moreover, $QN\left(\overline{\mathrm{\Omega }}×\left[0,1\right]\right)$ is bounded. Thus, N is L-compact on $\overline{\mathrm{\Omega }}×\left[0,1\right]$ with any open bounded set $\mathrm{\Omega }\subset X$.

In order to apply Lemma 2.1, we need to find eight appropriate open, bounded subsets ${\mathrm{\Omega }}_{i}$ ($i=1,2,\dots ,8$) in X.

Corresponding to the operator equation $Lu=\lambda N\left(u,\lambda \right)$, $\lambda \in \left(0,1\right)$, we have (2.3) (2.4) (2.5)

Suppose that ${\left({u}_{1}\left(t\right),{u}_{2}\left(t\right),{u}_{3}\left(t\right)\right)}^{T}$ is a T-periodic solution of (2.3), (2.4) and (2.5) for some $\lambda \in \left(0,1\right)$.

Choose ${t}_{i}^{M},{t}_{i}^{m}\in \left[0,T\right]$, $i=1,2,3$, such that

${u}_{i}\left({t}_{i}^{M}\right)=\underset{t\in \left[0,T\right]}{max}{u}_{i}\left(t\right),\phantom{\rule{2em}{0ex}}{u}_{i}\left({t}_{i}^{m}\right)=\underset{t\in \left[0,T\right]}{min}{u}_{i}\left(t\right),\phantom{\rule{1em}{0ex}}i=1,2,3.$

Then it is clear that

${u}_{i}^{\mathrm{\prime }}\left({t}_{i}^{M}\right)=0,\phantom{\rule{2em}{0ex}}{u}_{i}^{\mathrm{\prime }}\left({t}_{i}^{m}\right)=0,\phantom{\rule{1em}{0ex}}i=1,2,3.$

From this and (2.3), (2.4), (2.5), we obtain that (2.6) (2.7) (2.8)

and (2.9) (2.10) (2.11)

Claim A.

$max\left\{{u}_{1}\left({t}_{1}^{M}\right),{u}_{2}\left({t}_{2}^{M}\right)\right\}

and

${u}_{3}\left({t}_{3}^{M}\right)<\frac{1}{{\theta }_{3}}ln{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}=ln{N}_{2}.$

For $u\left({t}_{i}^{M}\right)$ ($i=1,2$), there are two cases to consider.

Case 1. Assume that ${u}_{1}\left({t}_{1}^{M}\right)\ge {u}_{2}\left({t}_{2}^{M}\right)$, then ${u}_{1}\left({t}_{1}^{M}\right)\ge {u}_{2}\left({t}_{1}^{M}\right)$.

From this and (2.6), we have

${a}_{1}\left({t}_{1}^{M}\right)-{a}_{11}\left({t}_{1}^{M}\right){e}^{{\theta }_{1}{u}_{1}\left({t}_{1}^{M}\right)}>0,$

which implies

${e}^{{\theta }_{1}{u}_{1}\left({t}_{1}^{M}\right)}<\frac{{a}_{1}\left({t}_{1}^{M}\right)}{{a}_{11}\left({t}_{1}^{M}\right)}\le {\left(\frac{{a}_{1}}{{a}_{11}}\right)}^{u}.$

That is,

${u}_{2}\left({t}_{2}^{M}\right)\le {u}_{1}\left({t}_{1}^{M}\right)<\frac{1}{{\theta }_{1}}ln{\left(\frac{{a}_{1}}{{a}_{11}}\right)}^{u}\le ln{N}_{1}.$

Case 2. Assume that ${u}_{1}\left({t}_{1}^{M}\right)<{u}_{2}\left({t}_{2}^{M}\right)$, then ${u}_{2}\left({t}_{2}^{M}\right)>{u}_{1}\left({t}_{2}^{M}\right)$.

From this and (2.7), we have

${a}_{2}\left({t}_{2}^{M}\right)-{a}_{22}\left({t}_{2}^{M}\right){e}^{{\theta }_{2}{u}_{2}\left({t}_{2}^{M}\right)}>0,$

which implies

${e}^{{\theta }_{2}{u}_{2}\left({t}_{2}^{M}\right)}<\frac{{a}_{2}\left({t}_{2}^{M}\right)}{{a}_{22}\left({t}_{2}^{M}\right)}\le {\left(\frac{{a}_{2}}{{a}_{22}}\right)}^{u}.$

That is,

${u}_{1}\left({t}_{1}^{M}\right)<{u}_{2}\left({t}_{2}^{M}\right)<\frac{1}{{\theta }_{2}}ln{\left(\frac{{a}_{2}}{{a}_{22}}\right)}^{u}\le ln{N}_{1}.$

Therefore,

$max\left\{{u}_{1}\left({t}_{1}^{M}\right),{u}_{2}\left({t}_{2}^{M}\right)\right\}
(2.12)

For ${u}_{3}\left({t}_{3}^{M}\right)$, it follows from (2.8) that

${a}_{3}\left({t}_{3}^{M}\right)-{a}_{33}\left({t}_{3}^{M}\right){e}^{{\theta }_{3}{u}_{3}\left({t}_{3}^{M}\right)}>0,$

which implies

${u}_{3}\left({t}_{3}^{M}\right)<\frac{1}{{\theta }_{3}}ln{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}=ln{N}_{2}.$
(2.13)

Claim B.

${u}_{i}\left({t}_{i}^{M}\right)>ln{u}_{i}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{i}\left({t}_{i}^{M}\right)

and

${u}_{i}\left({t}_{i}^{m}\right)>ln{u}_{i}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{i}\left({t}_{i}^{m}\right)

It follows from (2.6) that Therefore, From this and noticing that

$\frac{{k}_{1}\left({t}_{1}^{M}\right)}{{k}_{1}\left({t}_{1}^{M}\right)+{c}_{1}\left({t}_{1}^{M}\right){e}^{{u}_{1}\left({t}_{1}^{M}\right)}}\le \frac{{k}_{1}\left({t}_{1}^{M}\right)+\left(1-\lambda \right){c}_{1}\left({t}_{1}^{M}\right){e}^{{u}_{1}\left({t}_{1}^{M}\right)}}{{k}_{1}\left({t}_{1}^{M}\right)+{c}_{1}\left({t}_{1}^{M}\right){e}^{{u}_{1}\left({t}_{1}^{M}\right)}}\le 1,$

we have which implies

$\left[\frac{{k}_{1}^{l}}{{k}_{1}^{l}+{c}_{1}^{u}{N}_{1}}{\left(\frac{{a}_{1}}{{k}_{1}}\right)}^{l}-{\left(\frac{{a}_{13}}{{k}_{1}}\right)}^{u}{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}-{D}_{1}^{u}\right]-{\left(\frac{{a}_{11}}{{k}_{1}}\right)}^{u}{e}^{{\theta }_{1}{u}_{1}\left({t}_{1}^{M}\right)}-\frac{{H}_{1}^{u}}{{e}^{{u}_{1}\left({t}_{1}^{M}\right)}}<0.$

From the assertion (1) of Lemma 2.3 and the above inequality, we have

${u}_{1}\left({t}_{1}^{M}\right)>ln{u}_{1}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{1}\left({t}_{1}^{M}\right)
(2.14)

Similarly, from (2.9), we obtain

${u}_{1}\left({t}_{1}^{m}\right)>ln{u}_{1}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{1}\left({t}_{1}^{m}\right)
(2.15)

By a similar argument, it follows from (2.7) that

$\left[\frac{{k}_{2}^{l}}{{k}_{2}^{l}+{c}_{2}^{u}{N}_{1}}{\left(\frac{{a}_{2}}{{k}_{2}}\right)}^{l}-{D}_{2}^{u}\right]-{\left(\frac{{a}_{22}}{{k}_{2}}\right)}^{u}{e}^{{\theta }_{2}{u}_{2}\left({t}_{2}^{M}\right)}-\frac{{H}_{2}^{u}}{{e}^{{u}_{2}\left({t}_{2}^{M}\right)}}<0.$

From the assertion (1) of Lemma 2.3 and the above inequality, we have

${u}_{2}\left({t}_{2}^{M}\right)>ln{u}_{2}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{2}\left({t}_{2}^{M}\right)
(2.16)

Similarly, from (2.10), we obtain

${u}_{2}\left({t}_{2}^{m}\right)>ln{u}_{2}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{2}\left({t}_{2}^{m}\right)
(2.17)

By a similar argument, it follows from (2.8) and (2.12) that

$\left[\frac{{k}_{3}^{l}}{{k}_{3}^{l}+{c}_{3}^{u}{N}_{2}}{\left(\frac{{a}_{3}}{{k}_{3}}\right)}^{l}-{\left(\frac{{a}_{31}}{{k}_{3}}\right)}^{u}{N}_{1}^{{\theta }_{1}}\right]-{\left(\frac{{a}_{33}}{{k}_{3}}\right)}^{u}{e}^{{\theta }_{3}{u}_{3}\left({t}_{3}^{M}\right)}-\frac{{H}_{3}^{u}}{{e}^{{u}_{3}\left({t}_{3}^{M}\right)}}<0.$

From the assertion (1) of Lemma 2.3 and the above inequality, we have

${u}_{3}\left({t}_{3}^{M}\right)>ln{u}_{3}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{3}\left({t}_{3}^{M}\right)
(2.18)

Similarly, from (2.11), we obtain

${u}_{3}\left({t}_{3}^{m}\right)>ln{u}_{3}^{+}\phantom{\rule{1em}{0ex}}\text{or}\phantom{\rule{1em}{0ex}}{u}_{3}\left({t}_{3}^{m}\right)
(2.19)

Claim C.

$ln{l}_{i}^{-}<{u}_{i}\left({t}_{i}^{M}\right)

and

$ln{l}_{i}^{-}<{u}_{i}\left({t}_{i}^{m}\right)

It follows from (2.6) that Hence, we have

${\left(\frac{{a}_{1}}{{k}_{1}}\right)}^{u}-\frac{{k}_{1}^{l}}{{k}_{1}^{l}+{c}_{1}^{u}{N}_{1}}{\left(\frac{{a}_{11}}{{k}_{1}}\right)}^{l}{e}^{{\theta }_{1}{u}_{1}\left({t}_{1}^{M}\right)}-\frac{{H}_{1}^{l}-{D}_{1}^{u}{N}_{1}}{{e}^{{u}_{1}\left({t}_{1}^{M}\right)}}>0.$

From the assertion (3) of Lemma 2.3 and the above inequality, we have

$ln{l}_{1}^{-}<{u}_{1}\left({t}_{1}^{M}\right)
(2.20)

Similarly, from (2.9), we obtain

$ln{l}_{1}^{-}<{u}_{1}\left({t}_{1}^{m}\right)
(2.21)

By a similar argument, it follows from (2.7) that

${\left(\frac{{a}_{2}}{{k}_{2}}\right)}^{u}-\frac{{k}_{2}^{l}}{{k}_{2}^{l}+{c}_{2}^{u}{N}_{1}}{\left(\frac{{a}_{22}}{{k}_{2}}\right)}^{l}{e}^{{\theta }_{2}{u}_{2}\left({t}_{2}^{M}\right)}-\frac{{H}_{2}^{l}-{D}_{2}^{u}{N}_{1}}{{e}^{{u}_{2}\left({t}_{2}^{M}\right)}}>0.$

From the assertion (3) of Lemma 2.3 and the above inequality, we have

$ln{l}_{2}^{-}<{u}_{2}\left({t}_{2}^{M}\right)
(2.22)

Similarly, from (2.10), we obtain

$ln{l}_{2}^{-}<{u}_{2}\left({t}_{2}^{m}\right)
(2.23)

By a similar argument, it follows from (2.8) that

${\left(\frac{{a}_{3}}{{k}_{3}}\right)}^{u}-\frac{{k}_{3}^{l}}{{k}_{3}^{l}+{c}_{3}^{u}{N}_{2}}{\left(\frac{{a}_{33}}{{k}_{3}}\right)}^{l}{e}^{{\theta }_{3}{u}_{3}\left({t}_{3}^{M}\right)}-\frac{{H}_{3}^{l}}{{e}^{{u}_{3}\left({t}_{3}^{M}\right)}}>0.$

From the assertion (3) of Lemma 2.3 and the above inequality, we have

$ln{l}_{3}^{-}<{u}_{3}\left({t}_{3}^{M}\right)
(2.24)

Similarly, from (2.11), we obtain

$ln{l}_{3}^{-}<{u}_{3}\left({t}_{3}^{m}\right)
(2.25)

It follows from (2.14), (2.15), (2.20), (2.21) that (2.26) (2.27)

It follows from (2.16), (2.17), (2.22), (2.23) that (2.28) (2.29)

It follows from (2.18), (2.19), (2.24), (2.25) that (2.30) (2.31)

Clearly, ${l}_{i}^{±}$, ${u}_{i}^{±}$ ($i=1,2,3$) are independent of λ. Now, let us consider $QN\left(u,0\right)$ with $u={\left({u}_{1},{u}_{2},{u}_{3}\right)}^{T}\in {R}^{3}$. Note that

$QN\left(u,0\right)=\left(\begin{array}{c}\overline{\left(\frac{{a}_{1}}{{k}_{1}}\right)}-\overline{\left(\frac{{a}_{11}}{{k}_{1}}\right)}{e}^{{\theta }_{1}{u}_{1}}-\frac{{\overline{H}}_{1}}{{e}^{{u}_{1}}}\\ \overline{\left(\frac{{a}_{2}}{{k}_{2}}\right)}-\overline{\left(\frac{{a}_{22}}{{k}_{2}}\right)}{e}^{{\theta }_{2}{u}_{2}}-\frac{{\overline{H}}_{2}}{{e}^{{u}_{2}}}\\ \overline{\left(\frac{{a}_{3}}{{k}_{3}}\right)}-\overline{\left(\frac{{a}_{33}}{{k}_{3}}\right)}{e}^{{\theta }_{3}{u}_{3}}-\frac{{\overline{H}}_{3}}{{e}^{{u}_{3}}}\end{array}\right).$

Letting $QN\left(u,0\right)=0$, we have (2.32) (2.33) (2.34)

Therefore, it follows from the assertion (2) of Lemma 2.3 that $QN\left(u,0\right)=0$ has eight distinct solutions: (2.35) (2.36) (2.37) (2.38)

Let Then ${\mathrm{\Omega }}_{1},{\mathrm{\Omega }}_{2},\dots ,{\mathrm{\Omega }}_{8}$ are bounded open subsets of X. It follows from (2.1) and (2.35)-(2.38) that ${\stackrel{˜}{u}}_{i}\in {\mathrm{\Omega }}_{i}$ ($i=1,2,\dots ,8$). From (2.1), (2.26)-(2.31), it is easy to see that ${\overline{\mathrm{\Omega }}}_{i}\cap {\overline{\mathrm{\Omega }}}_{j}=\mathrm{\varnothing }$ ($i,j=1,2,\dots ,8$, $i\ne j$) and ${\mathrm{\Omega }}_{i}$ satisfies (a) in Lemma 2.1 for $i=1,2,\dots ,8$. Moreover, $QN\left(u,0\right)\ne 0$ for $u\in \partial {\mathrm{\Omega }}_{i}\cap KerL$. By Lemma 2.2, a direct computation gives Here, J is taken as the identity mapping since $ImQ=KerL$. So far we have proved that ${\mathrm{\Omega }}_{i}$ satisfies all the assumptions in Lemma 2.1. Hence, (2.2) has at least eight T-periodic solutions ${\left({u}_{1}^{i}\left(t\right),{u}_{2}^{i}\left(t\right),{u}_{3}^{i}\left(t\right)\right)}^{T}$ ($i=1,2,\dots ,8$) and ${\left({u}_{1}^{i},{u}_{2}^{i},{u}_{3}^{i}\right)}^{T}\in domL\cap {\overline{\mathrm{\Omega }}}_{i}$. Obviously, ${\left({u}_{1}^{i},{u}_{2}^{i},{u}_{3}^{i}\right)}^{T}$ ($i=1,2,\dots ,8$) are different. Let ${x}_{j}^{i}\left(t\right)={e}^{{u}_{j}^{i}\left(t\right)}$ ($j=1,2$), ${y}^{i}\left(t\right)={e}^{{u}_{3}^{i}\left(t\right)}$ ($i=1,2,\dots ,8$). Then ${\left({x}_{1}^{i}\left(t\right),{x}_{2}^{i}\left(t\right),{y}^{i}\left(t\right)\right)}^{T}$ ($i=1,2,\dots ,8$) are eight different positive T-periodic solutions of (1.1). The proof is complete. □

Corollary 2.1 In addition to (H1), (H5), assume further that the following conditions hold:

(H2) $\frac{{k}_{1}^{l}}{{k}_{1}^{l}+{c}_{1}^{u}{N}_{1}}{\left(\frac{{a}_{1}}{{k}_{1}}\right)}^{l}>{\left(\frac{{a}_{13}}{{k}_{1}}\right)}^{u}{\left(\frac{{a}_{3}}{{a}_{33}}\right)}^{u}+{D}_{1}^{u}+{\left(\frac{{a}_{11}}{{k}_{1}}\right)}^{u}+{H}_{1}^{u}$.

(H3) $\frac{{k}_{2}^{l}}{{k}_{2}^{l}+{c}_{2}^{u}{N}_{1}}{\left(\frac{{a}_{2}}{{k}_{2}}\right)}^{l}>{D}_{2}^{u}+{\left(\frac{{a}_{22}}{{k}_{2}}\right)}^{u}+{H}_{2}^{u}$.

(H4) $\frac{{k}_{3}^{l}}{{k}_{3}^{l}+{c}_{3}^{u}{N}_{2}}{\left(\frac{{a}_{3}}{{k}_{3}}\right)}^{l}>{\left(\frac{{a}_{31}}{{k}_{3}}\right)}^{u}{N}_{1}^{{\theta }_{1}}+{\left(\frac{{a}_{33}}{{k}_{3}}\right)}^{u}+{H}_{3}^{u}$.

Then system (1.1) has at least eight positive T-periodic solutions.

Proof By Lemma 2.4, we have

$\left(1+{\theta }_{i}\right){\left[{\left(\frac{{a}_{ii}}{{k}_{i}}\right)}^{u}\right]}^{\frac{1}{1+{\theta }_{i}}}{\left[\frac{{H}_{i}^{u}}{{\theta }_{i}}\right]}^{\frac{{\theta }_{i}}{1+{\theta }_{i}}}\le {\left(\frac{{a}_{ii}}{{k}_{i}}\right)}^{u}+{H}_{i}^{u},\phantom{\rule{1em}{0ex}}i=1,2,3.$

Therefore, the conditions in Theorem 2.1 are satisfied. □

Example 2.2 In (1.1), take Then we have Therefore, Hence, the conditions in Corollary 2.1 are satisfied. By Corollary 2.1, system (1.1) has at least eight positive four-periodic solutions.

## References

1. Clark CW: Mathematical Bioeconomics: the Optimal Management of Renewable Resources. Wiley, New York; 1990.

2. Brauer F, Soudack AC: Coexistence properties of some predator-prey systems under constant rate harvesting and stocking. J. Math. Biol. 1981, 12: 101–114.

3. Brauer F, Soudack AC: On constant effort harvesting and stocking in a class of predator-prey systems. J. Math. Biol. 1982, 95: 247–252.

4. Xiao D, Jennings LS: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 2005, 65: 737–753. 10.1137/S0036139903428719

5. Xia YH, Cao JD, Cheng SS: Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses. Appl. Math. Model. 2007, 31: 1947–1959. 10.1016/j.apm.2006.08.012

6. Feng F, Chen S: Four periodic solutions of a generalized delayed predator-prey system. Appl. Math. Comput. 2006, 181: 932–939. 10.1016/j.amc.2006.01.058

7. Zhang ZQ, Tian TS: Multiple positive periodic solutions for a generalized predator-prey system with exploited terms. Nonlinear Anal., Real World Appl. 2007, 9: 26–39.

8. Li YK, Zhao KH, Ye Y: Multiple positive periodic solutions of n species delay competition systems with harvesting terms. Nonlinear Anal., Real World Appl. 2011, 12: 1013–1022. 10.1016/j.nonrwa.2010.08.024

9. Huusko A, Hyvarinen P: A high harvest rate induces a tendency to generation cycling in a freshwater fish population. J. Anim. Ecol. 2005, 74: 525–531. 10.1111/j.1365-2656.2005.00951.x

10. Gilpin ME, Ayala FJ: Global models of growth and competition. Proc. Natl. Acad. Sci. USA 1973, 70: 3590–3593. 10.1073/pnas.70.12.3590

11. Fan M, Wang K: Global periodic solutions of a generalized n-species Gilpin-Ayala competition model. Comput. Math. Appl. 2000, 40: 1141–1151. 10.1016/S0898-1221(00)00228-5

12. Lian B, Hu S: Asymptotic behaviour of the stochastic Gilpin-Ayala competition models. J. Math. Anal. Appl. 2008, 339: 419–428. 10.1016/j.jmaa.2007.06.058

13. Lian B, Hu S: Stochastic delay Gilpin-Ayala competition models. Stoch. Dyn. 2006, 6: 561–576. 10.1142/S0219493706001888

14. He MX, Li Z, Chen FD: Permanence, extinction and global attractivity of the periodic Gilpin-Ayala competition system with impulses. Nonlinear Anal., Real World Appl. 2010, 11: 1537–1551. 10.1016/j.nonrwa.2009.03.007

15. Zhang SW, Tan DJ: The dynamic of two-species impulsive delay Gilpin-Ayala competition system with periodic coefficients. J. Appl. Math. Inform. 2011, 29: 1381–1393.

16. Gopalsamy K, Kulenovic MRS, Ladas G: Environmental periodicity and time delays in a food-limited population model. J. Math. Anal. Appl. 1990, 147: 545–555. 10.1016/0022-247X(90)90369-Q

17. Gourley SA, Chaplain MAJ: Travelling fronts in a food-limited population model with time delay. Proc. R. Soc. Edinb., Sect. A, Math. 2002, 132: 75–89.

18. Gourley SA, So JW-H: Dynamics of a food-limited population model incorporating non-local delays on a finite domain. J. Math. Biol. 2002, 44: 49–78. 10.1007/s002850100109

19. Chen FD, Sun DX, Shi JL: Periodicity in a food-limited population model with toxicants and state dependent delays. J. Math. Anal. Appl. 2003, 288: 136–146. 10.1016/S0022-247X(03)00586-9

20. Chen Y: Multiple periodic solutions of delayed predator-prey systems with type IV functional responses. Nonlinear Anal., Real World Appl. 2004, 59: 45–53.

21. Gaines RE, Mawhin JL: Coincidence Degree and Nonlinear Differential Equation. Springer, Berlin; 1997.

22. Mitrinović DS, Vasić PM: Analytic Inequalities. Springer, Berlin; 1970.

## Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 10971085).

## Author information

Authors

### Corresponding author

Correspondence to Hui Fang.

### Competing interests

The author declares that they have no competing interests.

### Authors’ contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

## Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

Fang, H. Multiple positive periodic solutions for a food-limited two-species Gilpin-Ayala competition patch system with periodic harvesting terms. J Inequal Appl 2012, 291 (2012). https://doi.org/10.1186/1029-242X-2012-291

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1029-242X-2012-291

### Keywords

• Positive Periodic Solution
• Index Zero
• Normed Vector Space
• Open Bounded Subset
• Fredholm Mapping 