• Research
• Open Access

# Inequalities for a polynomial and its derivative

Journal of Inequalities and Applications20122012:210

https://doi.org/10.1186/1029-242X-2012-210

• Received: 14 December 2011
• Accepted: 13 September 2012
• Published:

## Abstract

For a polynomial $p\left(z\right)$ of degree n which has no zeros in $|z|<1$, Liman et al. (Appl. Math. Comput. 218:949-955, 2011) established

for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge 1$ and $|z|=1$. In this paper, we extend the above inequality for the polynomials having no zeros in $|z|, $k\le 1$. Our result generalizes certain well-known polynomial inequalities.

MSC:30A10, 30C10, 30D15.

## Keywords

• polynomial
• inequality
• maximum modulus
• derivative
• restricted zeros

## 1 Introduction and statement of results

Let $p\left(z\right)$ be a polynomial of degree n and ${p}^{\prime }\left(z\right)$ be its derivative. Then it is well known that
$\underset{|z|=1}{max}|{p}^{\prime }\left(z\right)|\le n\underset{|z|=1}{max}|p\left(z\right)|,$
(1.1)
and
$\underset{|z|=R>1}{max}|p\left(z\right)|\le {R}^{n}\underset{|z|=1}{max}|p\left(z\right)|.$
(1.2)

Inequality (1.1) is a famous result due to Bernstein , whereas inequality (1.2) is a simple consequence of the maximum modulus principle (see ). Both the above inequalities are sharp, and an equality in each holds for the polynomials having all their zeros at the origin.

For the class of polynomials having no zeros in $|z|<1$, inequalities (1.1) and (1.2) have respectively been replaced by
$\underset{|z|=1}{max}|{p}^{\prime }\left(z\right)|\le \frac{n}{2}\underset{|z|=1}{max}|p\left(z\right)|,$
(1.3)
and
$\underset{|z|=R>1}{max}|p\left(z\right)|\le \frac{{R}^{n}+1}{2}\underset{|z|=1}{max}|p\left(z\right)|.$
(1.4)

Inequality (1.3) was conjectured by Erdös and later proved by Lax , whereas inequality (1.4) was proved by Ankeny and Rivlin , for which they made use of (1.3). Both these inequalities are also sharp, and an equality in each holds for polynomials having all their zeros on $|z|=1$.

As an extension to (1.3) and (1.4), Malik  and Shah , respectively, proved that if $p\left(z\right)\ne 0$ in $|z|, $k\ge 1$, then
$\underset{|z|=1}{max}|{p}^{\prime }\left(z\right)|\le \frac{n}{1+k}\underset{|z|=1}{max}|p\left(z\right)|,$
(1.5)
and
$\underset{|z|=R>1}{max}|p\left(z\right)|\le \frac{{R}^{n}+k}{1+k}\underset{|z|=1}{max}|p\left(z\right)|.$
(1.6)
Aziz and Dawood  refined inequalities (1.3) and (1.4) by proving that if $p\left(z\right)$ is a polynomial of degree n which does not vanish in $|z|<1$, then
$\underset{|z|=1}{max}|{p}^{\prime }\left(z\right)|\le \frac{n}{2}\left\{\underset{|z|=1}{max}|p\left(z\right)|-\underset{|z|=1}{min}|p\left(z\right)|\right\},$
(1.7)
and
$\underset{|z|=R>1}{max}|p\left(z\right)|\le \left(\frac{{R}^{n}+1}{2}\right)\underset{|z|=1}{max}|p\left(z\right)|-\left(\frac{{R}^{n}-1}{2}\right)\underset{|z|=1}{min}|p\left(z\right)|.$
(1.8)

Both these inequalities are also sharp, and an equality in each holds for $p\left(z\right)=\alpha {z}^{n}+\gamma$ with $|\alpha |=|\gamma |$.

As a refinement of inequalities (1.7) and (1.8), Dewan and Hans [8, 9] proved that under the same assumptions, for every $|\beta |\le 1$, $R>1$ and $|z|=1$, we have

Both these inequalities are also sharp, and an equality in each holds for polynomials having all their zeros on $|z|=1$.

Liman et al.  further generalized inequalities (1.9) and (1.10) by proving that if $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|<1$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge 1$ and $|z|=1$, we have

As an extension to inequality (1.11), we propose the following result.

Theorem 1 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ and $|z|=1$, we have

If we take $k=1$ in Theorem 1, then inequality (1.12) reduces to (1.11).

Theorem 1 reduces to the following result by taking $\alpha =1$.

Corollary 1.1 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then for every $\beta \in \mathbb{C}$ with $|\beta |\le 1$, $R>r\ge k$ and $|z|=1$, we have

Dividing both sides of inequality (1.13) by $\left(R-r\right)$ and then making $R\to r$, we get the following generalization of inequality (1.9).

Corollary 1.2 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then for every $\beta \in \mathbb{C}$ with $|\beta |\le 1$, $r\ge k$ and $|z|=1$, we have
$\begin{array}{rcl}|z{p}^{\prime }\left(rz\right)+\frac{n\beta }{r+k}p\left(rz\right)|& \le & \frac{n}{2}\left\{\left[{k}^{-n}|{r}^{n-1}+\frac{\beta }{r+k}{r}^{n}|+|\frac{\beta }{r+k}|\right]\underset{|z|=1}{max}|p\left(z\right)|\\ -\left[{k}^{-n}|{r}^{n-1}+\frac{\beta }{r+k}{r}^{n}|-|\frac{\beta }{r+k}|\right]\underset{|z|=k}{min}|p\left(z\right)|\right\}.\end{array}$
(1.14)

Taking $\alpha =0$ in Theorem 1, we also obtain the following generalization of inequality (1.10).

Corollary 1.3 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then for every $\beta \in \mathbb{C}$ with $|\beta |\le 1$, $R>r\ge k$ and $|z|=1$, we have

If we take $\beta =0$ in Theorem 1, then we have the following consequence.

Corollary 1.4 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha |\le 1$, $R>r\ge k$ and $|z|=1$, we have
$\begin{array}{rcl}|p\left(Rz\right)-\alpha p\left(rz\right)|& \le & \frac{1}{2}\left[\left\{{k}^{-n}|{R}^{n}-\alpha {r}^{n}|+|1-\alpha |\right\}\underset{|z|=1}{max}|p\left(z\right)|\\ -\left\{{k}^{-n}|{R}^{n}-\alpha {r}^{n}|-|1-\alpha |\right\}\underset{|z|=k}{min}|p\left(z\right)|\right].\end{array}$
(1.16)

If we take $\alpha =0$ in Corollary 1.4, then we get

Corollary 1.5 If $p\left(z\right)$ is a polynomial of degree n having no zeros in $|z|, $k\le 1$, then
$\underset{|z|=R>1}{max}|p\left(z\right)|\le \left(\frac{{R}^{n}+{k}^{n}}{2{k}^{n}}\right)\underset{|z|=1}{max}|p\left(z\right)|-\left(\frac{{R}^{n}-{k}^{n}}{2{k}^{n}}\right)\underset{|z|=k}{min}|p\left(z\right)|.$
(1.17)

Taking $k=1$ in Corollary 1.5, inequality (1.17) reduces to inequality (1.8).

## 2 Lemmas

For the proof of Theorem 1, we need the following lemmas. The first lemma is due to Aziz and Zargar .

Lemma 2.1 If $p\left(z\right)$ is a polynomial of degree n having all zeros in the closed disk $|z|\le k$, where $k\ge 0$, then for every $R\ge r$ and $rR\ge {k}^{2}$,
$|p\left(Rz\right)|\ge {\left(\frac{R+k}{r+k}\right)}^{n}|p\left(rz\right)|,\phantom{\rule{1em}{0ex}}|z|=1.$
(2.1)
Lemma 2.2 Let $F\left(z\right)$ be a polynomial of degree n having all zeros in $|z|\le k$, where $k\ge 0$, and $f\left(z\right)$ be a polynomial of degree not exceeding that of $F\left(z\right)$. If $|f\left(z\right)|\le |F\left(z\right)|$ for $|z|=k$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ and $|z|\ge 1$, we have
Proof By the inequality $|f\left(z\right)|\le |F\left(z\right)|$ for $|z|=k$, any zero of $F\left(z\right)$ that lies on $|z|=k$, is a zero of $f\left(z\right)$. On the other hand, from Rouche’s theorem, it is obvious that for δ with $|\delta |<1$, $F\left(z\right)+\delta f\left(z\right)$ has as many zeros in $|z| as $F\left(z\right)$ does. So, all the zeros of $H\left(z\right):=F\left(z\right)+\delta f\left(z\right)$ lie in $|z|\le k$. Applying Lemma 2.1, for $R>r\ge k$, we get
$|H\left(Rz\right)|\ge {\left(\frac{R+k}{r+k}\right)}^{n}|H\left(rz\right)|>|H\left(rz\right)|,\phantom{\rule{1em}{0ex}}|z|=1.$
(2.3)
Therefore, for any α with $|\alpha |\le 1$, we have
$\begin{array}{rcl}|H\left(Rz\right)-\alpha H\left(rz\right)|& \ge & |H\left(Rz\right)|-|\alpha ||H\left(rz\right)|\\ \ge & \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}|H\left(rz\right)|,\phantom{\rule{1em}{0ex}}|z|=1,\end{array}$
i.e.,
$|H\left(Rz\right)-\alpha H\left(rz\right)|\ge \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}|H\left(rz\right)|,\phantom{\rule{1em}{0ex}}|z|=1.$
(2.4)
Since $H\left(Rz\right)$ has all its zeros in $|z|\le \frac{k}{R}<1$, a direct application of Rouche’s theorem on inequality (2.3) shows that the polynomial $H\left(Rz\right)-\alpha H\left(rz\right)$ has all its zeros in $|z|<1$. Therefore, similar to the first paragraph, it follows that for every $\beta \in \mathbb{C}$ with $|\beta |<1$ and $R>r\ge k$, all the zeros of the polynomial
$T\left(z\right)=H\left(Rz\right)-\alpha H\left(rz\right)+\beta \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}H\left(rz\right)$

lie in $|z|<1$.

Replacing $H\left(z\right)$ by $F\left(z\right)+\delta f\left(z\right)$, we conclude that all the zeros of
$\begin{array}{rcl}T\left(z\right)& =& F\left(Rz\right)-\alpha F\left(rz\right)+\beta \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}F\left(rz\right)\\ +\delta \left\{f\left(Rz\right)-\alpha f\left(rz\right)+\beta \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}f\left(rz\right)\right\}\end{array}$
(2.5)
lie in $|z|<1$ for every $R>r\ge k$, $|\alpha |\le 1$, $|\beta |<1$ and $|\delta |<1$. This implies

where $|z|\ge 1$ and $R>r\ge k$.

If inequality (2.6) is not true, then there is a point $z={z}_{0}$ with $|{z}_{0}|\ge 1$ such that
Take
$\delta =-\frac{F\left(R{z}_{0}\right)-\alpha F\left(r{z}_{0}\right)+\beta \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}F\left(r{z}_{0}\right)}{f\left(R{z}_{0}\right)-\alpha f\left(r{z}_{0}\right)+\beta \left\{{\left(\frac{R+k}{r+k}\right)}^{n}-|\alpha |\right\}f\left(r{z}_{0}\right)},$

then $|\delta |<1$, and with this choice of δ, we have $T\left({z}_{0}\right)=0$ for $|{z}_{0}|\ge 1$ from (2.5). But this contradicts the fact that all the zeros of $T\left(z\right)$ lie in $|z|<1$. For β with $|\beta |=1$, (2.6) follows by continuity. This completes the proof. □

If we take $f\left(z\right)={\left(\frac{z}{k}\right)}^{n}{min}_{|z|=k}|p\left(z\right)|$ in Lemma 2.2, we have

Lemma 2.3 If $p\left(z\right)$ is a polynomial of degree n having all zeros in $|z|\le k$, where $k\ge 0$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$, we have

If we take $F\left(z\right)={\left(\frac{z}{k}\right)}^{n}{max}_{|z|=k}|p\left(z\right)|$ in Lemma 2.2, we get

Lemma 2.4 Let $p\left(z\right)$ be a polynomial of degree at most n. Then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k>0$, we have
Lemma 2.5 If $p\left(z\right)$ is a polynomial of degree at most n, having no zeros in $|z|, where $k\ge 0$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ and $|z|\ge 1$, we have

where $Q\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{p\left(\frac{{k}^{2}}{\overline{z}}\right)}$.

Proof If we take $F\left(z\right)=Q\left(z\right)$ in Lemma 2.2, the result follows. □

Lemma 2.6 Let $p\left(z\right)$ be a polynomial of degree at most n, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ ($k\le 1$) and $|z|=1$, we have

where $Q\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{p\left({k}^{2}/\overline{z}\right)}$.

Proof Let $M={max}_{|z|=k}|p\left(z\right)|$. For any λ with $|\lambda |>1$, it follows, by Rouche’s theorem, that the polynomial $G\left(z\right)=p\left(z\right)-\lambda M$ has no zeros in $|z|. Consequently, the polynomial
$H\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{G\left({k}^{2}/\overline{z}\right)}$
has all zeros in $|z|\le k$ and $|G\left(z\right)|=|H\left(z\right)|$ for $|z|=k$. On applying Lemma 2.2, for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ and $|z|\ge 1$, we have that
Therefore, by the equalities
$H\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{G\left(\frac{{k}^{2}}{\overline{z}}\right)}={\left(\frac{z}{k}\right)}^{n}\overline{p\left(\frac{{k}^{2}}{\overline{z}}\right)}-\overline{\lambda }{\left(\frac{z}{k}\right)}^{n}M=Q\left(z\right)-\overline{\lambda }{\left(\frac{z}{k}\right)}^{n}M,$
or
$H\left(z\right)=Q\left(z\right)-\overline{\lambda }{\left(\frac{z}{k}\right)}^{n}M,$
and substituting for $G\left(z\right)$ and $H\left(z\right)$, we get
As $|p\left(z\right)|=|Q\left(z\right)|$ for $|z|=k$, i.e., $M={max}_{|z|=k}|p\left(z\right)|={max}_{|z|=k}|Q\left(z\right)|$, by Lemma 2.4 for the polynomial $Q\left(z\right)$, we obtain
Making $|\lambda |\to 1$, we have
Then by making use of the maximum modulus principle for the polynomial $p\left(z\right)$ when $k\le 1$, we get
$M=\underset{|z|=k}{max}|p\left(z\right)|\le \underset{|z|=1}{max}|p\left(z\right)|.$

This, in conjunction with (2.13), gives the result. □

Lemma 2.7 Let $p\left(z\right)$ be a polynomial of degree at most n having no zeros in $|z|, $k\le 1$, then for all $\alpha ,\beta \in \mathbb{C}$ with $|\alpha |\le 1$, $|\beta |\le 1$, $R>r\ge k$ and $|z|=1$, we have
Proof Since $p\left(z\right)$ does not vanish in $|z|, applying Lemma 2.5 yields

where $Q\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{p\left({k}^{2}/\overline{z}\right)}$.

This gives the result. □

## 3 Proof of the theorem

The proof follows some known ideas in the literature.

Proof of Theorem 1 If $p\left(z\right)$ has a zero on $|z|=k$, then the result follows from Lemma 2.7. Therefore, we assume that $p\left(z\right)$ has all zeros in $|z|>k$. Then $m={min}_{|z|=k}|p\left(z\right)|>0$ and for λ with $|\lambda |<1$, we have $|\lambda m|, where $|z|=k$. Using Rouche’s theorem, we conclude that the polynomial $G\left(z\right)=p\left(z\right)-\lambda m$ has no zeros in $|z|. Consequently, the polynomial
$H\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{G\left({k}^{2}/\overline{z}\right)}$
has all its zeros in $|z|\le k$ and $|G\left(z\right)|=|H\left(z\right)|$ for $|z|=k$. Therefore, by applying Lemma 2.2 for the polynomials $G\left(z\right)$ and $H\left(z\right)$, we obtain
Using the fact that
$H\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{G\left(\frac{{k}^{2}}{\overline{z}}\right)}={\left(\frac{z}{k}\right)}^{n}\overline{p\left(\frac{{k}^{2}}{\overline{z}}\right)}-\overline{\lambda }m{\left(\frac{z}{k}\right)}^{n}=Q\left(z\right)-\overline{\lambda }m{\left(\frac{z}{k}\right)}^{n},$
or
$H\left(z\right)=Q\left(z\right)-\overline{\lambda }m{\left(\frac{z}{k}\right)}^{n},$
and substituting for $G\left(z\right)$ and $H\left(z\right)$ in (3.1), we get
Since the polynomial $Q\left(z\right)={\left(\frac{z}{k}\right)}^{n}\overline{p\left(\frac{{k}^{2}}{\overline{z}}\right)}$ has all zeros in $|z|\le k$ and $m={min}_{|z|=k}|p\left(z\right)|={min}_{|z|=k}|Q\left(z\right)|$, by applying Lemma 2.3 for the polynomial $Q\left(z\right)$, one can obtain
Making $|\lambda |\to 1$, one obtains

Considering inequalities (3.4) and (3.5) together gives the result. □

## Declarations

### Acknowledgements

The author is grateful to the referees for the careful reading of the paper and for the helpful suggestions and comments. This research was supported by Shahrood University of Technology.

## Authors’ Affiliations

(1)
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

## References 