Skip to main content

Applications of differential subordinations for certain classes of p-valent functions associated with generalized Srivastava-Attiya operator

Abstract

The object of the present paper is to investigate some inclusion relations and other interesting properties for certain classes of p-valent functions involving generalized Srivastava-Attiya operator by using the principle of differential subordination.

MSC:30C45.

1 Introduction

Let A(p) be the class of functions which are analytic and p-valent in the unit disc U={z∈C:|z|<1} of the form

f(z)= z p + ∑ k = 1 ∞ a k + p z k + p (p∈N={1,2,…}).
(1.1)

Let also A(1)= A 1 . For g(z)∈A(p), given by g(z)= z p + ∑ k = 1 ∞ b k + p z k + p , the Hadamard product (or convolution) of f(z) and g(z) is defined by

(f∗g)(z)= z p + ∑ k = 1 ∞ a k + p b k + p z k + p =(g∗f)(z).
(1.2)

Next, in the usual notation, let Φ(z,s,a) denote the Hurwitz-Lerch Zeta function defined as follows:

(1.3)

For further interesting properties and characteristics of the Hurwitz-Lerch Zeta function Φ(z,s,a) see [2, 5, 8, 9, 11], and [21].

Recently, Srivastava and Attiya [20] have introduced the linear operator L s , b : A 1 → A 1 , defined in terms of the Hadamard product by

L s , b (f)(z)= G s , b (z)∗f(z) ( z ∈ U ; b ∈ C ∖ Z 0 − ; s ∈ C ) ,
(1.4)

where

G s , b = ( 1 + b ) s [ Φ ( z , s , b ) − b − s ] (z∈U).
(1.5)

The Srivastava-Attiya operator L s , b contains, among its special cases, the integral operators introduced and investigated by Alexander [1], Libera [7] and Jung et al. [6].

Analogous to L s , b , Liu [10] defined the operator J p , s , b :A(p)→A(p) by

J p , s , b (f)(z)= G p , s , b (z)∗f(z) ( z ∈ U ; b ∈ C ∖ Z 0 − ; s ∈ C ; p ∈ N ) ,
(1.6)

where

G p , s , b = ( 1 + b ) s [ Φ p ( z , s , b ) − b − s ]

and

Φ p (z,s,b)= 1 b s + ∑ k = 0 ∞ z k + p ( k + 1 + b ) s .
(1.7)

It is easy to observe from (1.6) and (1.7) that

J p , s , b (f)(z)= z p + ∑ k = 1 ∞ ( 1 + b k + 1 + b ) s a k + p z k + p .
(1.8)

We note that

  1. (i)

    J p , 0 , b (f)(z)=f(z);

  2. (ii)

    J 1 , 1 , 0 (f)(z)=Lf(z)= ∫ 0 z f ( t ) t dt (f∈ A 1 ), where the operator L was introduced by Alexander [1];

  3. (iii)

    J 1 , s , b (f)(z)= L s , b f(z) (s∈Cb∈C∖ Z 0 − ), where the operator L s , b was introduced by Srivastava-Attiya [20];

  4. (iv)

    J p , 1 , μ + p − 1 (f)(z)= F μ , p (f)(z) (μ>−pp∈N), where the operator F μ , p was introduced by Choi et al. [3];

  5. (v)

    J p , α , p (f)(z)= I p α f(z) (α>0p∈N), where the operator I p α was introduced by Shams et al. [18];

  6. (vi)

    J p , γ , p − 1 (f)(z)= J p γ f(z) (γ∈ N 0 =N∪{0}p∈N), where the operator J p γ was introduced by El-Ashwah and Aouf [4];

  7. (vii)

    J p , γ , p + l − 1 (f)(z)= J p γ (l)f(z) (γ∈ N 0 p∈Nl≥0), where the operator J p γ (l) was introduced by El-Ashwah and Aouf [4].

It follows from (1.8) that

z ( J p , s , b ( f ) ( z ) ) ′ =(b+1) J p , s − 1 , b (f)(z)−(b+1−p) J p , s , b (f)(z).
(1.9)

For two analytic functions f,g∈A(p), we say that f is subordinate to g, written f(z)≺g(z) if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0)=0 and |w(z)|<1 for all z∈U, such that f(z)=g(w(z))z∈U. Furthermore, if the function g(z) is univalent in U, then we have the following equivalence (see [14]):

f(z)≺g(z)⇔f(0)=g(0)andf(U)⊂g(U).

Definition 1 For fixed parameters A and B, with −1≤B<A≤1, we say that f∈A(p) is in the class S p s , b (A,B) if it satisfies the following subordination condition:

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ≺ 1 + A z 1 + B z (p∈N).
(1.10)

In view of the definition of subordination (1.10) is equivalent to the following condition:

| ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 − 1 B ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 − A |<1(z∈U).

For convenience, we write S p s , b (1− 2 η p ,−1)= S p s , b (η), where S p s , b (η) denotes the class of functions in A(p) satisfying the inequality

Re ( ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ) >η(0≤η<1;p∈N;z∈U).

In the present paper, we investigate some inclusion relations and other interesting properties for certain classes of p-valent functions involving an integral operator.

2 Preliminaries

To establish our main results, we need the following lemmas.

Lemma 1 ([13, 14])

Let h be analytic and convex (univalent) in U withh(0)=1. Suppose also that the function φ given by

φ(z)=1+ c m z m + c m + 1 z m + 1 +⋯,
(2.1)

is analytic in U, where m is a positive integer. If

φ(z)+ z φ ′ ( z ) ϱ ≺h(z) ( Re { ϱ } ≥ 0 ; ϱ ≠ 0 ) ,
(2.2)

then

φ(z)≺ψ(z)= ϱ m z − ϱ m ∫ 0 z t ϱ m − 1 h(t)dt≺h(z)
(2.3)

andψ(z)is the best dominant of (2.2).

We denote by H(ϱ) the class of functions Φ(z) given by

Φ(z)=1+ c 1 z+ c 2 z 2 +⋯,
(2.4)

which are analytic in U and satisfy the following inequality:

Re { Φ ( z ) } >ϱ(0≤ϱ<1;z∈U).

Lemma 2 ([17])

Let the functionΦ(z)∈H(ϱ), whereΦ(z)given by (2.4). Then

Re { Φ ( ϱ ) } ≥2ϱ−1+ 2 ( 1 − ϱ ) 1 + | z | (0≤ϱ<1;z∈U).

Lemma 3 ([22])

For0≤ ϱ 1 , ϱ 2 <1,

H( ϱ 1 )∗H( ϱ 2 )⊂H( ϱ 3 ), ϱ 3 =1−2(1− ϱ 1 )(1− ϱ 2 ).

The result is best possible.

Lemma 4 ([24])

Let μ be a positive measure on the unit interval[0,1]. Letg(z,t)be a complex valued function defined onU×[0,1]such thatg(0,t)is analytic in U for eacht∈[0,1]and such thatg(z,0)is μ integrable on[0,1]for allz∈U. In addition, suppose thatRe{g(z,t)}>0, g(−r,t)is real and

Re { 1 g ( z , t ) } ≥ 1 g ( − r , t ) ( | z | ≤ r < 1 ; t ∈ [ 0 , 1 ] ) .

If G is defined by

G(z)= ∫ 0 1 g(z,t)dμ(t),

then

Re { 1 G ( z ) } ≥ 1 G ( − r ) ( | z | ≤ r < 1 ) .

Lemma 5 ([19])

Let the function g be analytic in U withg(0)=1andRe{g(z)}> 1 2 (z∈U). Then, for any function F analytic in U, (g∗F)(U)is contained in the convex hull ofF(U).

Lemma 6 ([16])

Let φ be analytic in U withφ(0)=1andφ(z)=0for0<|z|<1and letA,B∈CwithA≠B, |B|≤1.

  1. (i)

    LetB≠0andγ∈ C ∗ =C∖{0}satisfy either| γ ( A − B ) B −1|≤1or| γ ( A − B ) B +1|≤1. If φ satisfies

    1+ z φ ′ ( z ) γ φ ( z ) ≺ 1 + A z 1 + B z ,
    (2.5)

then

φ(z)≺ ( 1 + B z ) γ ( A − B B ) ,

and this is best dominant.

  1. (ii)

    LetB=0andγ∈ C ∗ be such that|γA|<π. If φ satisfies (2.5), then

    φ(z)≺ e γ A z

and this is the best dominant.

For real or complex numbers a n and c (c∉ Z 0 − ) and z∈U, the Gaussian hypergeometric function defined by

F 1 2 ( a , n ; c ; z ) = 1 + a n c ⋅ z 1 ! + a ( a + 1 ) n ( n + 1 ) c ( c + 1 ) ⋅ z 2 2 ! + ⋯ = ∑ k = 0 ∞ ( a ) k ( n ) k ( c ) k z k k ! ,
(2.6)

where ( d ) k =d(d+1)⋯(d+k−1) and ( d ) 0 =1. We note that the series defined by (2.6) converges absolutely for z∈U, and hence, F 1 2 represents an analytic function in U (see, for details, [23], Ch.14]).

Lemma 7 ([23])

For real or complex numbers a, n and c (c∉ Z 0 − )

(2.7)
(2.8)

and

F 1 2 (a,n;c;z) = 2 F 1 (n,a;c;z).
(2.9)

3 Main results

Unless otherwise mentioned, we assume throughout this paper that −1≤B<A≤1, s∈C, b∈C∖ Z 0 − , p∈N∖{1}, 0<α≤1, m is a positive integer and the powers are understood as principle values.

Theorem 1 Let f given by (1.1) satisfy the following subordination condition:

(1−α) ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 +α ( J p , s , b ( f ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 ≺ 1 + A z 1 + B z .
(3.1)

Then

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ≺Ψ(z)≺ 1 + A z 1 + B z ,
(3.2)

where

Ψ(z)={ A B + ( 1 − A B ) ( 1 + B z ) − 1 2 F 1 ( 1 , 1 ; p − 1 m α + 1 ; B z 1 + B z ) for B ≠ 0 , 1 + p − 1 m α + p − 1 A z for B = 0 ,
(3.3)

is the best dominant of (3.2). Furthermore,

f∈ S p s , b (β),
(3.4)

where

β={ A B + ( 1 − A B ) ( 1 − B ) − 1 2 F 1 ( 1 , 1 ; p − 1 m α + 1 ; B B − 1 ) for B ≠ 0 , 1 − p − 1 m α + p − 1 A for B = 0 .
(3.5)

The estimate (3.4) is best possible.

Proof Let

θ(z)= ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 (z∈U),
(3.6)

where θ is of the form (2.1) and is analytic in U. Differentiating (3.6) with respect to z, we get

(1−α) ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 +α ( J p , s , b ( f ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 =θ(z)+ α p − 1 z θ ′ (z)≺ 1 + A z 1 + B z .

Applying Lemma 1 for ϱ= p − 1 α and Lemma 7, we have

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ≺ Ψ ( z ) = p − 1 m α z − p − 1 m α ∫ 0 z t p − 1 m α − 1 ( 1 + A t 1 + B t ) d t = { A B + ( 1 − A B ) ( 1 + B z ) − 1 2 F 1 ( 1 , 1 ; p − 1 m α + 1 ; B z 1 + B z ) for B ≠ 0 , 1 + p − 1 m α + p − 1 A z for B = 0 .

This proves the assertion (3.2) of Theorem 1. Next, in order to prove the assertion (3.4) of Theorem 1, it suffices to show that

inf | z | < 1 { Re ( Ψ ( z ) ) } =Ψ(−1).

Indeed, we have

Re { 1 + A z 1 + B z } ≥ 1 − A r 1 − B r ( | z | ≤ r < 1 ) .

Setting

G(z,ζ)= 1 + A ζ z 1 + B ζ z anddν(ζ)= p − 1 m α ζ p − 1 m α − 1 dζ(0≤ζ≤1),

which is a positive measure on the closed interval [0,1], we get

Ψ(z)= ∫ 0 1 G(z,ζ)dν(ζ).

Then

Re { Ψ ( z ) } ≥ ∫ 0 1 1 − A ζ r 1 − B ζ r dν(ζ)=Ψ(−r) ( | z | ≤ r < 1 ) .

Letting r→ 1 − in the above inequality, we obtain the assertion (3.4). Finally, the estimate (3.4) is best possible as Ψ is the best dominant of (3.2). This completes the proof of Theorem 1. □

Theorem 2 Iff∈ S p s , b (η) (0≤η<1), then

Re { ( 1 − α ) ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 + α ( J p , s , b ( f ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 } >η ( | z | < R ) ,

where

R= { ( p − 1 ) 2 + ( m α ) 2 − m α p − 1 } 1 m .
(3.7)

The result is best possible.

Proof Let f∈ S p s , b (η), then we write

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 =η+(1−η)u(z)(z∈U),
(3.8)

where u is of the form (2.1), is analytic in U and has a positive real part in U. Differentiating (3.8) with respect to z, we have

1 1 − η { ( 1 − α ) ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 + α ( J p , s , b ( f ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 − η } =u(z)+ α p − 1 z u ′ (z).
(3.9)

Applying the following well-known estimate [12]:

| z u ′ ( z ) | Re { u ( z ) } ≤ 2 m r m 1 − r 2 m ( | z | = r < 1 ) ,

in (3.9), we have

(3.10)

such that the right-hand side of (3.10) is positive, if r<R, where R is given by (3.7).

In order to show that the bound R is best possible, we consider the function f∈A(p) defined by

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 =η+(1−η) 1 + z m 1 − z m (0≤η<1;z∈U).

Note that

1 1 − η { ( 1 − α ) ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 + α ( J p , s , b ( f ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 − η } = ( p − 1 ) ( 1 − z 2 m ) − 2 α m z m ( p − 1 ) ( 1 − z m ) 2 =0,

for z= R ⋅ exp{ i π m }. This completes the proof of Theorem 2. □

For a function f∈A(p), the generalized Bernardi-Libera-Livingston integral operator F μ , p is defined by

F μ , p ( f ) ( z ) = μ + p z μ ∫ 0 z t μ − 1 f ( t ) d t = ( z p + ∑ k = 1 ∞ μ + p μ + p + k z k + p ) ∗ f ( z ) = z p 2 F 1 ( 1 , μ + p ; μ + p + 1 ; z ) ∗ f ( z ) ( μ > − p ; z ∈ U ) .
(3.11)

From (1.8) and (3.11), we have

z ( J p , s , b F μ , p ( f ( z ) ) ) ′ =(μ+p) J p , s , b (f)(z)−μ J p , s , b F μ , p ( f ( z ) ) (μ>−p;z∈U)
(3.12)

and

J p , s , b F μ , p ( f ( z ) ) = F μ , p ( J p , s , b ( f ) ( z ) ) .

Theorem 3 Letf∈ S p s , b (A,B)and F μ , p be defined by (3.11). Then

( J p , s , b F μ , p ( f ( z ) ) ) ′ p z p − 1 ≺Φ(z)≺ 1 + A z 1 + B z ,
(3.13)

where

Φ(z)={ A B + ( 1 − A B ) ( 1 + B z ) − 1 2 F 1 ( 1 , 1 ; μ + p m + 1 ; B z 1 + B z ) for B ≠ 0 , 1 + μ + p μ + p + m A z for B = 0 ,
(3.14)

is the best dominant of (3.13). Furthermore,

Re { ( J p , s , b F μ , p ( f ( z ) ) ) ′ p z p − 1 } >ψ(z∈U),

where

ψ={ A B + ( 1 − A B ) ( 1 − B ) − 1 2 F 1 ( 1 , 1 ; μ + p m + 1 ; B B − 1 ) for B ≠ 0 , 1 − μ + p μ + p + m A for B = 0 .

The result is best possible.

Proof Let

K(z)= ( J p , s , b F μ , p ( f ( z ) ) ) ′ p z p − 1 (z∈U),
(3.15)

where K is of the form (2.1) and is analytic in U. Using (3.12) in (3.15) and differentiating the resulting equation with respect to z, we have

( J p , s , b ( f ) ( z ) ) ′ p z p − 1 =K(z)+ z K ′ ( z ) p + μ ≺ 1 + A z 1 + B z .

The remaining part of the proof is similar to that of Theorem 1, and so we omit it. □

We note that

( J p , s , b F μ , p ( f ( z ) ) ) ′ p z p − 1 = p + μ p z p + μ ∫ 0 z t μ ( J p , s , b ( f ) ( t ) ) ′ dt ( f ∈ A ( p ) ; z ∈ U ) .
(3.16)

Putting A=1− 2 δ p (0≤δ<1) and B=−1 in Theorem 3 and using (3.16), we obtain the following corollary.

Corollary 1 Iff∈A(p)satisfies the following inequality:

Re { ( J p , s , b f ( z ) ) ′ p z p − 1 } >δ(0≤δ<1;z∈U),

then

Re { p + μ p z p + μ ∫ 0 z t μ ( J p , s , b ( f ) ( t ) ) ′ d t } > δ p + ( 1 − δ p ) [ 2 F 1 ( 1 , 1 ; μ + p m + 1 ; 1 2 ) −1](z∈U).

The result is best possible.

Theorem 4 Letf,g∈A(p)satisfy the following inequality:

Re { J p , s , b ( g ) ( z ) z p } >0(z∈U).

If

| J p , s , b ( f ) ( z ) J p , s , b ( g ) ( z ) −1|<1(z∈U),

then

where

(3.17)

Proof Let

q(z)= J p , s , b ( f ) ( z ) J p , s , b ( g ) ( z ) −1= c m z m + c m + 1 z m + 1 +⋯,
(3.18)

where q(z) is analytic in U with q(0)=0 and |q(z)|≤|z | m . Then, by applying the familiar Schwartz Lemma [15], we have q(z)= z m X(z), where X is analytic in U and |X(z)|≤1. Therefore (3.18) leads to

J p , s , b (f)(z)= J p , s , b (g)(z) ( 1 + z m X ( z ) ) (z∈U).
(3.19)

Differentiating (3.19) logarithmically with respect to z, we have

z ( J p , s , b ( f ) ( z ) ) ′ J p , s , b ( f ) ( z ) = z ( J p , s , b ( g ) ( z ) ) ′ J p , s , b ( g ) ( z ) + z m { m X ( z ) + z X ′ ( z ) } 1 + z m X ( z ) .
(3.20)

Letting

ω(z)= J p , s , b ( g ) ( z ) z p (z∈U),

where ω is in the form (2.1), is analytic in URe{ω(z)}>0 and

z ( J p , s , b ( g ) ( z ) ) ′ J p , s , b ( g ) ( z ) = z ω ′ ( z ) ω ( z ) +p,

then we have

Re { z ( J p , s , b ( f ) ( z ) ) ′ J p , s , b ( f ) ( z ) } ≥p−| z ω ′ ( z ) ω ( z ) |−| z m { m X ( z ) + z X ′ ( z ) } 1 + z m X ( z ) |.
(3.21)

Using the following known estimates [12] (see also [15]):

| ω ′ ( z ) ω ( z ) |≤ 2 m r m − 1 1 − r 2 m and| m X ( z ) + z X ′ ( z ) 1 + z m X ( z ) |≤ m 1 − r m ( | z | = r < 1 ) ,

in (3.21), we have

Re { z ( J p , s , b ( f ) ( z ) ) ′ J p , s , b ( f ) ( z ) } ≥ p − 3 m r m − ( p + m ) r 2 m 1 − r 2 m ( | z | = r < 1 ) ,

which is certainly positive, provided that , where is given by (3.17). This completes the proof of Theorem 4. □

Theorem 5 Let−1≤ B i < A i ≤1 (i=1,2) andτ<p. If each of the functions f i ∈A(p)satisfies the following subordination condition:

(1−α) ( J p , s , b ( f i ) ( z ) ) ′ p z p − 1 +α ( J p , s , b ( f i ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 ≺ 1 + A i z 1 + B i z (i=1,2),
(3.22)

then

(1−α) ( J p , s , b ( F ) ( z ) ) ′ p z p − 1 +α ( J p , s , b ( F ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 ≺ 1 + ( 1 − 2 τ p ) z 1 − z ,
(3.23)

where

F(z)= J p , s , b ( f 1 ∗ f 2 )(z)
(3.24)

and

τ=p−4p ( A 1 − B 1 ) ( A 2 − B 2 ) ( 1 − B 1 ) ( 1 − B 2 ) [ 1 − 1 2 2 F 1 ( 1 , 1 ; p − 1 α + 1 ; 1 2 ) ] .
(3.25)

The result is best possible when B 1 = B 2 =−1.

Proof Suppose that the functions f i ∈A(p) (i=1,2) satisfy the condition (3.22). Then by setting

h i (z)=(1−α) ( J p , s , b ( f i ) ( z ) ) ′ p z p − 1 +α ( J p , s , b ( f i ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 (i=1,2),
(3.26)

we have

h i ∈H( ϱ i ), ϱ i = 1 − A i 1 − B i (i=1,2).

And

( J p , s , b ( f i ) ( z ) ) ′ = p ( p − 1 ) α z ( 1 − p ) ( 1 − α ) α ∫ 0 z t p − 1 α − 1 h i (t)dt(i=1,2),
(3.27)

from (3.24), (3.26) and (3.27), we have

( J p , s , b ( F ) ( z ) ) ′ = p ( p − 1 ) α z ( 1 − p ) ( 1 − α ) α ∫ 0 z t p − 1 α − 1 H(t)dt(i=1,2).
(3.28)

For convenience,

H ( z ) = ( 1 − α ) ( J p , s , b ( F ) ( z ) ) ′ p z p − 1 + α ( J p , s , b ( F ) ( z ) ) ′ ′ p ( p − 1 ) z p − 2 = p ( p − 1 ) α z ( 1 − p ) α ∫ 0 z t p − 1 α − 1 ( h 1 ∗ h 2 ) ( t ) d t .
(3.29)

Since h i ∈H( ϱ i ) (i=1,2), it follows from Lemma 3 that

( h 1 ∗ h 2 )(z)∈H( ϱ 3 ), ϱ 3 =1−2(1− ϱ 1 )(1− ϱ 2 ).
(3.30)

By using (3.30) in (3.29) and applying Lemmas 2 and 3, we have

Re { H ( z ) } = p ( p − 1 ) α ∫ 0 1 s p − 1 α − 1 Re { ( h 1 ∗ h 2 ) ( s z ) } d s ≥ p ( p − 1 ) α ∫ 0 1 s p − 1 α − 1 ( 2 ϱ 3 − 1 + 2 ( 1 − ϱ 3 ) 1 + s | z | ) d s > p ( p − 1 ) α ∫ 0 1 s p − 1 α − 1 ( 2 ϱ 3 − 1 + 2 ( 1 − ϱ 3 ) 1 + s ) d s = p − 4 p ( A 1 − B 1 ) ( A 2 − B 2 ) ( 1 − B 1 ) ( 1 − B 2 ) [ 1 − p − 1 α ∫ 0 1 s p − 1 α − 1 ( 1 + s ) − 1 d s ] = p − 4 p ( A 1 − B 1 ) ( A 2 − B 2 ) ( 1 − B 1 ) ( 1 − B 2 ) [ 1 − 1 2 2 F 1 ( 1 , 1 ; p − 1 α + 1 ; 1 2 ) ] ( z → − 1 ) = τ ( z ∈ U ) .

When B 1 = B 2 =−1, we consider f i ∈A(p) (i=1,2) satisfy the condition (3.22) and are defined by

( J p , s , b ( f i ) ( z ) ) ′ = p ( p − 1 ) α z ( 1 − p ) ( 1 − α ) α ∫ 0 z t p − 1 α − 1 ( 1 + A i t 1 − t ) dt(i=1,2).

By using (3.29) and applying Lemma 3, we have

H ( z ) = p ( p − 1 ) α ∫ 0 1 s p − 1 α − 1 [ 1 − ( 1 + A 1 ) ( 1 + A 2 ) + ( 1 + A 1 ) ( 1 + A 2 ) 1 − s z ] d s = p − p ( 1 + A 1 ) ( 1 + A 2 ) + p ( 1 + A 1 ) ( 1 + A 2 ) ( 1 − z ) − 1 2 F 1 ( 1 , 1 ; p − 1 α + 1 ; z z − 1 ) → p − p ( 1 + A 1 ) ( 1 + A 2 ) + p 2 ( 1 + A 1 ) ( 1 + A 2 ) 2 F 1 ( 1 , 1 ; p − 1 α + 1 ; 1 2 ) ( z → − 1 ) .

This completes the proof of Theorem 5. □

Remark 1 Putting A i =1−2 θ i (0≤ θ i <1) and B i =−1 (i=1,2) in Theorem 5, we obtain the result obtained by Liu [10], Theorem 5].

Putting A i =1−2 θ i (0≤ θ i <1), B i =−1 (i=1,2) and s=0 in Theorem 5, we obtain the following corollary.

Corollary 2 Letχ<pand f i ∈A(p)satisfy the following inequality:

Re { ( 1 − α ) f i ′ ( z ) p z p − 1 + α f i ′ ′ ( z ) p ( p − 1 ) z p − 2 } > θ i (0≤ θ i <1;i=1,2),

then

Re { ( 1 − α ) ( f 1 ∗ f 2 ) ′ ( z ) p z p − 1 + α ( f 1 ∗ f 2 ) ′ ′ ( z ) p ( p − 1 ) z p − 2 } > χ p ,

where

χ=p−4p(1− θ 1 )(1− θ 2 ) [ 1 − 1 2 2 F 1 ( 1 , 1 ; p − 1 α + 1 ; 1 2 ) ] .

The result is best possible.

Theorem 6 Letf∈ S p s , b (A,B)andg∈A(p)satisfy the following inequality:

Re { g ( z ) z p } > 1 2 (z∈U),
(3.31)

then

(f∗g)(z)∈ S p s , b (A,B).

Proof We have

( J p , s , b ( f ∗ g ) ( z ) ) ′ p z p − 1 = ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ∗ g ( z ) z p (z∈U),

where g(z) satisfies (3.31) and 1 + A z 1 + B z is convex (univalent) in U. By using (1.10) and applying Lemma 5, we complete the proof of Theorem 6. □

Theorem 7 Letσ>0andf∈A(p)satisfy the following subordination condition:

(1−α) J p , s , b ( f ) ( z ) z p +α ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 ≺ 1 + A z 1 + B z .
(3.32)

Then

Re { J p , s , b ( f ) ( z ) z p } 1 σ > γ 1 σ ,

where

γ={ A B + ( 1 − A B ) ( 1 − B ) − 1 2 F 1 ( 1 , 1 ; p m α + 1 ; B B − 1 ) for B ≠ 0 , 1 − p m α + p A for B = 0 .

The result is best possible.

Proof Let

M(z)= J p , s , b ( f ) ( z ) z p (z∈U),
(3.33)

where M is of the form (2.1) and is analytic in U. Differentiating (3.33) with respect to z, we have

(1−α) J p , s , b ( f ) ( z ) z p +α ( J p , s , b ( f ) ( z ) ) ′ p z p − 1 =M(z)+ α p z M ′ (z)≺ 1 + A z 1 + B z .

Now, by following steps similar to the proof of Theorem 1 and using the elementary inequality

Re { ϒ 1 / ϰ } ≥ { Re ϒ } 1 / ϰ ( Re { ϒ } > 0 ; ϰ ∈ N ) ,

we obtain the result asserted by Theorem 7. □

Theorem 8 Letν∈ C ∗ andA,B∈CwithA≠Band|B|≤1. Suppose that

Iff∈A(p)with J p , s , b (f)(z)≠0for allz∈ U ∗ =U╲{0}, then

J p , s − 1 , b ( f ) ( z ) J p , s , b ( f ) ( z ) ≺ 1 + A z 1 + B z ,

implies

( J p , s , b ( f ) ( z ) z p ) ν ≺ q 1 (z),

where

q 1 (z)={ ( 1 + B z ) ν ( b + 1 ) ( A − B ) / B , if B ≠ 0 , e ν ( b + 1 ) A z , if B = 0 ,

is the best dominant.

Proof Let us put

φ(z)= ( J p , s , b ( f ) ( z ) z p ) ν (z∈U).
(3.34)

Then φ is analytic in U, φ(0)=1 and φ(z)≠0 for all z∈U. Taking the logarithmic derivatives in both sides of (3.34) and using the identity (1.9), we have

1+ z φ ′ ( z ) ν ( b + 1 ) φ ( z ) = J p , s − 1 , b ( f ) ( z ) J p , s , b ( f ) ( z ) ≺ 1 + A z 1 + B z .

Now the assertions of Theorem 8 follow by using Lemma 6 for γ=ν(b+1). □

Putting B=−1 and A=1−2σ, 0≤σ<1, in Theorem 8, we obtain the following corollary.

Corollary 3 Assume thatν∈ C ∗ satisfies either|2ν(b+1)(1−σ)−1|≤1or|2ν(b+1)(1−σ)+1|≤1. Iff∈A(p)with J p , s , b (f)(z)≠0forz∈ U ∗ , then

Re { J p , s − 1 , b ( f ) ( z ) J p , s , b ( f ) ( z ) } >σ(z∈U),

implies

( J p , s , b ( f ) ( z ) z p ) ν ≺ q 2 (z)= ( 1 − z ) − 2 ν ( b + 1 ) ( 1 − σ ) ,

and q 2 is the best dominant.

Remark 2 Specializing the parameters s and b in the above results of this paper, we obtain the results for the corresponding operators F μ , p , I p α , J p γ and J p γ (l) which are defined in the introduction.

References

  1. Alexander JW: Functions which map the interior of the unit circle upon simple regions. Ann. Math., Ser. 2 1915, 17: 12–22. 10.2307/2007212

    Article  Google Scholar 

  2. Choi J, Srivastava HM: Certain families of series associated with the Hurwitz-Lerch Zeta function. Appl. Math. Comput. 2005, 170: 399–409. 10.1016/j.amc.2004.12.004

    Article  MathSciNet  Google Scholar 

  3. Choi JH, Saigo M, Srivastava HM: Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276: 432–445. 10.1016/S0022-247X(02)00500-0

    Article  MathSciNet  Google Scholar 

  4. El-Ashwah RM, Aouf MK: Some properties of new integral operator. Acta Univ. Apulensis, Mat.-Inform. 2010, 24: 51–61.

    MathSciNet  Google Scholar 

  5. Ferreira C, Lopez JL: Asymptotic expansions of the Hurwitz-Lerch Zeta function. J. Math. Anal. Appl. 2004, 298: 210–224. 10.1016/j.jmaa.2004.05.040

    Article  MathSciNet  Google Scholar 

  6. Jung IB, Kim YC, Srivastava HM: The Hardy space of analytic functions associated with certain one parameter families of integral operators. J. Math. Anal. Appl. 1993, 176: 138–147. 10.1006/jmaa.1993.1204

    Article  MathSciNet  Google Scholar 

  7. Libera RJ: Some classes of regular univalent functions. Proc. Am. Math. Soc. 1969, 16: 755–758.

    Article  MathSciNet  Google Scholar 

  8. Lin S-D, Srivastava HM: Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154: 725–733. 10.1016/S0096-3003(03)00746-X

    Article  MathSciNet  Google Scholar 

  9. Lin S-D, Srivastava HM, Wang P-Y: Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions. Integral Transforms Spec. Funct. 2006, 17: 817–827. 10.1080/10652460600926923

    Article  MathSciNet  Google Scholar 

  10. Liu J-L: Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator. Integral Transforms Spec. Funct. 2007, 18: 207–216. 10.1080/10652460701208577

    Article  MathSciNet  Google Scholar 

  11. Luo Q-M, Srivastava HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308: 290–302. 10.1016/j.jmaa.2005.01.020

    Article  MathSciNet  Google Scholar 

  12. MacGregor TH: Radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 1963, 14: 514–520. 10.1090/S0002-9939-1963-0148891-3

    Article  MathSciNet  Google Scholar 

  13. Miller SS, Mocanu PT: Differential subordinations and univalent functions. Mich. Math. J. 1981, 28: 157–171.

    Article  MathSciNet  Google Scholar 

  14. Miller SS, Mocanu PT: Differential Subordination. Theory and Applications. Marcel Dekker, New York; 2000.

    Google Scholar 

  15. Nehari PT: Conformal Mapping. McGraw-Hill, New York; 1952.

    Google Scholar 

  16. Obradovic M, Owa S: On certain properties for some classes of starlike functions. J. Math. Anal. Appl. 1990, 145: 357–364. 10.1016/0022-247X(90)90405-5

    Article  MathSciNet  Google Scholar 

  17. Pashkouleva DZ: The starlikeness and spiral-convexity of certain subclasses of analytic functions. In Current Topics in Analytic Function Theory. Edited by: Srivastava HM, Owa S. World Scientific, Singapore; 1992:266–273.

    Chapter  Google Scholar 

  18. Shams S, Kulkarni SR, Jahangiri JM: Subordination properties of p -valent functions defined by integral operators. Int. J. Math. Math. Sci. 2006., 2006:

    Google Scholar 

  19. Singh R, Singh S: Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106: 145–152. 10.1090/S0002-9939-1989-0994388-6

    Article  Google Scholar 

  20. Srivastava HM, Attiya AA: An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transforms Spec. Funct. 2007, 18: 207–216. 10.1080/10652460701208577

    Article  MathSciNet  Google Scholar 

  21. Srivastava HM, Choi J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht; 2001.

    Book  Google Scholar 

  22. Stankiewicz J, Stankiewicz Z: Some applications of Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie-Skl̄odowska, Sect. A 1986, 40: 251–265.

    MathSciNet  Google Scholar 

  23. Whittaker ET, Watson GN: A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge University Press, Cambridge; 1927.

    Google Scholar 

  24. Wilken DR, Feng J: A remark on convex and starlike functions. J. Lond. Math. Soc., Ser. 2 1980, 21: 287–290. 10.1112/jlms/s2-21.2.287

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees of the paper for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SM Madian.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Aouf, M., Mostafa, A., Shahin, A. et al. Applications of differential subordinations for certain classes of p-valent functions associated with generalized Srivastava-Attiya operator. J Inequal Appl 2012, 153 (2012). https://doi.org/10.1186/1029-242X-2012-153

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-153

Keywords