Skip to main content

Schur-convexity of the complete elementary symmetric function


We prove that the complete elementary symmetric function and the function are Schur-convex functions in, where are nonnegative integers,,. For which, some inequalities are established by use of the theory of majorization. A problem given by K. V. Menon (Duke Mathematical Journal 35 (1968), 37–45) is also solved.



  1. 1.

    Beckenbach EF, Bellman R: Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F.. Volume 30. Springer, Berlin; 1961:xii+198.

    Google Scholar 

  2. 2.

    Detemple DW, Robertson JM: On generalized symmetric means of two variables. Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika 1979, (634–677):236–238.

    Google Scholar 

  3. 3.

    Guan K: Inequalities of generalized-order symmetric mean. Journal of Chongqing Teachers College (Natural Science Edition) 1998,15(3):40–43.

    Google Scholar 

  4. 4.

    Hardy GH, Littlewood JE, Pólya G: Some simple inequalities satisfied by convex functions. Messenger of Mathematics 1929, 58: 145–152.

    MATH  Google Scholar 

  5. 5.

    Kuang JC: Applied Inequalities. 2nd edition. Human education Press, Changsha; 1993:xxvi+794.

    Google Scholar 

  6. 6.

    Marshall AW, Olkin I: Inequalities: Theory of Majorization and Its Applications, Mathematics in Science and Engineering. Volume 143. Academic Press, New York; 1979:xx+569.

    Google Scholar 

  7. 7.

    Menon KV: Inequalities for symmetric functions. Duke Mathematical Journal 1968, 35: 37–45. 10.1215/S0012-7094-68-03504-7

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Mitrinović DS: Analytic Inequalities, Die Grundlehren der mathematischen Wisenschaften. Volume 1965. Springer, New York; 1970:xii+400.

    Google Scholar 

  9. 9.

    Roberts AW, Varberg DE: Convex Functions, Pure and Applied Mathematics. Volume 57. Academic Press, New York; 1973:xx+300.

    Google Scholar 

  10. 10.

    Shi HN: Refinement and generalization of a class of inequalities for symmetric functions. Mathematics in Practice and Theory 1999,29(4):81–84.

    MathSciNet  Google Scholar 

  11. 11.

    Zhang X-M: Optimization of Schur-convex functions. Mathematical Inequalities & Applications 1998,1(3):319–330.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kaizhong Guan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guan, K. Schur-convexity of the complete elementary symmetric function. J Inequal Appl 2006, 67624 (2006).

Download citation


  • Nonnegative Integer
  • Symmetric Function
  • Mathematical Journal
  • Elementary Symmetric Function
  • Duke Mathematical Journal