Skip to main content

A note on Euler number and polynomials

Abstract

We investigate some properties of non-Archimedean integration which is defined by Kim. By using our results in this paper, we can give an answer to the problem which is introduced by I.-C. Huang and S.-Y. Huang in 1999.

[1234567891011]

References

  1. 1.

    Carlitz L: -Bernoulli numbers and polynomials. Duke Mathematical Journal 1948, 15: 987–1000. 10.1215/S0012-7094-48-01588-9

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Huang I-C, Huang S-Y: Bernoulli numbers and polynomials via residues. Journal of Number Theory 1999,76(2):178–193. 10.1006/jnth.1998.2364

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Kim T: On a-analogue of the-adic log gamma functions and related integrals. Journal of Number Theory 1999,76(2):320–329. 10.1006/jnth.1999.2373

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Kim T: -Volkenborn integration. Russian Journal of Mathematical Physics 2002,9(3):288–298.

    MATH  MathSciNet  Google Scholar 

  5. 5.

    Kim T: An invariant-adic integral associated with Daehee numbers. Integral Transforms and Special Functions 2002,13(1):65–69. 10.1080/10652460212889

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Kim T: On-adic--functions and sums of powers. Discrete Mathematics 2002,252(1–3):179–187.

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Kim T: Non-Archimedean-integrals associated with multiple Changhee-Bernoulli polynomials. Russian Journal of Mathematical Physics 2003,10(1):91–98.

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Kim T: On Euler-Barnes' multiple zeta functions. Russian Journal of Mathematical Physics 2003,10(3):261–267.

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Kim T: -adic-integrals associated with the Changhee-Barnes'-Bernoulli polynomials. Integral Transforms and Special Functions 2004,15(5):415–420. 10.1080/10652460410001672960

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Kim T: Analytic continuation of multiple-zeta functions and their values at negative integers. Russian Journal of Mathematical Physics 2004,11(1):71–76.

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Kim T, Rim SH: On Changhee-Barnes'-Euler numbers and polynomials. Advanced Studies in Contemporary Mathematics 2004,9(2):81–86.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lee-Chae Jang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jang, LC., Kim, SD., Park, DW. et al. A note on Euler number and polynomials. J Inequal Appl 2006, 34602 (2006). https://doi.org/10.1155/JIA/2006/34602

Download citation

Keywords

  • Euler Number
\