Skip to main content

An upper bound for the norm of a GCD-related matrix

Abstract

We find an upper bound for the norm of the matrix whose entry is, where and are the greatest common divisor and the least common multiple of and and where and are real numbers. In fact, we show that if and, then for all positive integers, where is the Riemann zeta function.

[123456789101112]

References

  1. Altinisik E, Tuglu N, Haukkanen P: A note on bounds for norms of the reciprocal LCM matrix. Mathematical Inequalities & Applications 2004,7(4):491–496.

    Article  MATH  MathSciNet  Google Scholar 

  2. Apostol TM: Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics. Springer, New York; 1976:xii+338.

    Google Scholar 

  3. Bourque K, Ligh S: Matrices associated with classes of arithmetical functions. Journal of Number Theory 1993,45(3):367–376. 10.1006/jnth.1993.1083

    Article  MATH  MathSciNet  Google Scholar 

  4. Haukkanen P: On thenorm of GCD and related matrices. JIPAM. Journal of Inequalities in Pure and Applied Mathematics 2004,5(3):Article 61, 7 pp..

    MathSciNet  MATH  Google Scholar 

  5. Haukkanen P, Sillanpää J: Some analogues of Smith's determinant. Linear Multilinear Algebra 1996,41(3):233–244. 10.1080/03081089608818478

    Article  MATH  Google Scholar 

  6. Haukkanen P, Wang J, Sillanpää J: On Smith's determinant. Linear Algebra and its Applications 1997, 258: 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  7. Hong S: GCD-closed sets and determinants of matrices associated with arithmetical functions. Acta Arithmetica 2002,101(4):321–332. 10.4064/aa101-4-2

    Article  MATH  MathSciNet  Google Scholar 

  8. Korkee I, Haukkanen P: On meet and join matrices associated with incidence functions. Linear Algebra and its Applications 2003, 372: 127–153.

    Article  MATH  MathSciNet  Google Scholar 

  9. McCarthy PJ: Introduction to Arithmetical Functions, Universitext. Springer, New York; 1986:vii+365.

    Book  Google Scholar 

  10. Sándor J, Crstici B: Handbook of Number Theory, II. Springer, New York; 2004.

    Book  MATH  Google Scholar 

  11. Sivaramakrishnan R: Classical Theory of Arithmetic Functions, Monographs and Textbooks in Pure and Applied Mathematics. Volume 126. Marcel Dekker, New York; 1989:xiv+386.

    Google Scholar 

  12. Smith HJS: On the value of a certain arithmetical determinant. Proceedings of the London Mathematical Society 1875/1876, 7: 208–212.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pentti Haukkanen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Haukkanen, P. An upper bound for the norm of a GCD-related matrix. J Inequal Appl 2006, 25020 (2006). https://doi.org/10.1155/JIA/2006/25020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/JIA/2006/25020

Keywords