Skip to content


  • Research Article
  • Open Access

Embedding theorems in Banach-valued -spaces and maximal -regular differential-operator equations

Journal of Inequalities and Applications20062006:16192

  • Received: 28 September 2004
  • Accepted: 4 May 2006
  • Published:


The embedding theorems in anisotropic Besov-Lions type spaces are studied; here and are two Banach spaces. The most regular spaces are found such that the mixed differential operators are bounded from to , where are interpolation spaces between and depending on and . By using these results the separability of anisotropic differential-operator equations with dependent coefficients in principal part and the maximal -regularity of parabolic Cauchy problem are obtained. In applications, the infinite systems of the quasielliptic partial differential equations and the parabolic Cauchy problems are studied.


  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Cauchy Problem
  • Differential Operator


Authors’ Affiliations

Department of Electrical & Electronics Engineering, Engineering Faculty, Istanbul University, Istanbul, Avcilar, 34320, Turkey


  1. Agmon S, Nirenberg L: Properties of solutions of ordinary differential equations in Banach space. Communications on Pure and Applied Mathematics 1963, 16: 121–239. 10.1002/cpa.3160160204MATHMathSciNetView ArticleGoogle Scholar
  2. Agranovič MS, Višik MI: Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Matematicheskikh Nauk 1964,19(3 (117)):53–161.MathSciNetGoogle Scholar
  3. Amann H: Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics. Volume 89. Birkhäuser Boston, Massachusetts; 1995:xxxvi+335.View ArticleGoogle Scholar
  4. Amann H: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Mathematische Nachrichten 1997, 186: 5–56.MATHMathSciNetView ArticleGoogle Scholar
  5. Amann H: Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Matematički. Serija III 2000,35(55)(1):161–177.MathSciNetMATHGoogle Scholar
  6. Ashyralyev A: On well-posedness of the nonlocal boundary value problems for elliptic equations. Numerical Functional Analysis and Optimization 2003,24(1–2):1–15. 10.1081/NFA-120020240MATHMathSciNetView ArticleGoogle Scholar
  7. Aubin J-P: Abstract boundary-value operators and their adjoints. Rendiconti del Seminario Matematico della Università di Padova 1970, 43: 1–33.MATHMathSciNetGoogle Scholar
  8. Besov OV, Il'in VP, Nikol'skiĭ SM: Integral representations of functions, and embedding theorems. Izdat. "Nauka", Moscow; 1975:480.MATHGoogle Scholar
  9. Burkholder DL: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Proceedings of Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser.. Wadsworth, California; 1983:270–286.Google Scholar
  10. Calderón A-P: Intermediate spaces and interpolation, the complex method. Studia Mathematica 1964, 24: 113–190.MATHMathSciNetGoogle Scholar
  11. Clément P, de Pagter B, Sukochev FA, Witvliet H: Schauder decomposition and multiplier theorems. Studia Mathematica 2000,138(2):135–163.MATHMathSciNetGoogle Scholar
  12. Denk R, Hieber M, Prüss J: -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society 2003,166(788):viii+114.View ArticleMathSciNetMATHGoogle Scholar
  13. Dore G, Yakubov S: Semigroup estimates and noncoercive boundary value problems. Semigroup Forum 2000,60(1):93–121. 10.1007/s002330010005MATHMathSciNetView ArticleGoogle Scholar
  14. Girardi M, Weis L: Operator-valued Fourier multiplier theorems on Besov spaces. Mathematische Nachrichten 2003,251(1):34–51. 10.1002/mana.200310029MATHMathSciNetView ArticleGoogle Scholar
  15. Gorbachuk VI, Gorbachuk ML: Boundary value problems for operator-differential equations. "Naukova Dumka", Kiev; 1984:284.MATHGoogle Scholar
  16. Grisvard P: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics. Volume 24. Pitman, Massachusetts; 1985:xiv+410.Google Scholar
  17. Komatsu H: Fractional powers of operators. Pacific Journal of Mathematics 1966,19(2):285–346.MATHMathSciNetView ArticleGoogle Scholar
  18. Kreĭn SG: Linear Differential Equations in Banach Space. American Mathematical Society, Rhode Island; 1971:v+390.Google Scholar
  19. Lindenstrauss J, Tzafriri L: Classical Banach Spaces. II. Function Spaces, Results in Mathematics and Related Areas. Volume 97. Springer, New York; 1979:x+243.View ArticleGoogle Scholar
  20. Lions J-L, Magenes E: Problèmes aux limites non homogénes. VI [Problems and limites non homogenes]. Journal d'Analyse Mathématique 1963, 11: 165–188.MATHMathSciNetView ArticleGoogle Scholar
  21. Lions J-L, Peetre J: Sur une classe d'espaces d'interpolation. Institut des Hautes Études Scientifiques. Publications Mathématiques 1964, 19: 5–68. 10.1007/BF02684796MATHMathSciNetView ArticleGoogle Scholar
  22. Lizorkin PI: -multipliers of Fourier integrals. Doklady Akademii Nauk SSSR 1963,152(4):808–811.MathSciNetMATHGoogle Scholar
  23. Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. I. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (1):70–79.MathSciNetMATHGoogle Scholar
  24. Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. II. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (2):47–54.MathSciNetMATHGoogle Scholar
  25. McConnell TR: On Fourier multiplier transformations of Banach-valued functions. Transactions of the American Mathematical Society 1984,285(2):739–757. 10.1090/S0002-9947-1984-0752501-XMATHMathSciNetView ArticleGoogle Scholar
  26. Nazarov SA, Plamenevsky BA: Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics. Volume 13. Walter de Gruyter, Berlin; 1994:viii+525.View ArticleMATHGoogle Scholar
  27. Schmeisser H-J: Vector-valued Sobolev and Besov spaces. In Seminar Analysis of the Karl-Weierstraß-Institute of Mathematics 1985/1986 (Berlin, 1985/1986), Teubner-Texte Math.. Volume 96. Teubner, Leipzig; 1987:4–44.Google Scholar
  28. Shakhmurov VB: Imbedding theorems for abstract function- spaces and their applications. Mathematics of the USSR-Sbornik 1987,134(1–2):261–276.MathSciNetMATHGoogle Scholar
  29. Shakhmurov VB: Embedding theorems and their applications to degenerate equations. Differential Equations 1988,24(4):475–482.MATHMathSciNetGoogle Scholar
  30. Shakhmurov VB: Coercive boundary value problems for regular degenerate differential-operator equations. Journal of Mathematical Analysis and Applications 2004,292(2):605–620. 10.1016/j.jmaa.2003.12.032MATHMathSciNetView ArticleGoogle Scholar
  31. Shakhmurov VB: Embedding operators and maximal regular differential-operator equations in Banach-valued function spaces. Journal of Inequalities and Applications 2005,2005(4):329–345. 10.1155/JIA.2005.329MATHMathSciNetView ArticleGoogle Scholar
  32. Shakhmurov VB, Dzhabrailov MS: On the compactness of the embedding of-spaces. Akademiya Nauk Azerbaĭ dzhanskoĭ SSR. Doklady, TXLVI 1990,46(3):7–10 (1992).MATHMathSciNetGoogle Scholar
  33. Shklyar AYa: Complete Second Order Linear Differential Equations in Hilbert Spaces, Operator Theory: Advances and Applications. Volume 92. Birkhäuser, Basel; 1997:xii+219.MATHGoogle Scholar
  34. Sobolev SL: Imbedding theorems for abstract functions of sets. Doklady Akademii Nauk SSSR 1957, 115: 57–59.MATHMathSciNetGoogle Scholar
  35. Sobolev SL: Certain Applications of Functional Analysis to Mathematical Physics. Nauka, Moscow; 1968.Google Scholar
  36. Sobolevskiĭ PE: Coerciveness inequalities for abstract parabolic equations. Doklady Akademii Nauk SSSR 1964, 157: 52–55.MathSciNetGoogle Scholar
  37. Triebel H: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library. Volume 18. North-Holland, Amsterdam; 1978:528.Google Scholar
  38. Triebel H: Fractals and Spectra, Monographs in Mathematics. Volume 91. Birkhäuser, Basel; 1997:viii+271.View ArticleMATHGoogle Scholar
  39. Yakubov S: A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integral Equations and Operator Theory 1999,35(4):485–506. 10.1007/BF01228044MATHMathSciNetView ArticleGoogle Scholar
  40. Yakubov S, Yakubov Ya: Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Volume 103. Chapman & Hall/CRC, Florida; 2000:xxvi+541.MATHGoogle Scholar
  41. Zimmermann F: On vector-valued Fourier multiplier theorems. Studia Mathematica 1989,93(3):201–222.MATHMathSciNetGoogle Scholar


© Shakhmurov 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.