Skip to main content

Embedding theorems in Banach-valued-spaces and maximal-regular differential-operator equations


The embedding theorems in anisotropic Besov-Lions type spaces are studied; here and are two Banach spaces. The most regular spaces are found such that the mixed differential operators are bounded from to, where are interpolation spaces between and depending on and. By using these results the separability of anisotropic differential-operator equations with dependent coefficients in principal part and the maximal-regularity of parabolic Cauchy problem are obtained. In applications, the infinite systems of the quasielliptic partial differential equations and the parabolic Cauchy problems are studied.



  1. 1.

    Agmon S, Nirenberg L: Properties of solutions of ordinary differential equations in Banach space. Communications on Pure and Applied Mathematics 1963, 16: 121–239. 10.1002/cpa.3160160204

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Agranovič MS, Višik MI: Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Matematicheskikh Nauk 1964,19(3 (117)):53–161.

    MathSciNet  Google Scholar 

  3. 3.

    Amann H: Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics. Volume 89. Birkhäuser Boston, Massachusetts; 1995:xxxvi+335.

    Google Scholar 

  4. 4.

    Amann H: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Mathematische Nachrichten 1997, 186: 5–56.

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Amann H: Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Matematički. Serija III 2000,35(55)(1):161–177.

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ashyralyev A: On well-posedness of the nonlocal boundary value problems for elliptic equations. Numerical Functional Analysis and Optimization 2003,24(1–2):1–15. 10.1081/NFA-120020240

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Aubin J-P: Abstract boundary-value operators and their adjoints. Rendiconti del Seminario Matematico della Università di Padova 1970, 43: 1–33.

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Besov OV, Il'in VP, Nikol'skiĭ SM: Integral representations of functions, and embedding theorems. Izdat. "Nauka", Moscow; 1975:480.

    Google Scholar 

  9. 9.

    Burkholder DL: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Proceedings of Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser.. Wadsworth, California; 1983:270–286.

    Google Scholar 

  10. 10.

    Calderón A-P: Intermediate spaces and interpolation, the complex method. Studia Mathematica 1964, 24: 113–190.

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Clément P, de Pagter B, Sukochev FA, Witvliet H: Schauder decomposition and multiplier theorems. Studia Mathematica 2000,138(2):135–163.

    MATH  MathSciNet  Google Scholar 

  12. 12.

    Denk R, Hieber M, Prüss J: -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society 2003,166(788):viii+114.

    Article  MathSciNet  MATH  Google Scholar 

  13. 13.

    Dore G, Yakubov S: Semigroup estimates and noncoercive boundary value problems. Semigroup Forum 2000,60(1):93–121. 10.1007/s002330010005

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Girardi M, Weis L: Operator-valued Fourier multiplier theorems on Besov spaces. Mathematische Nachrichten 2003,251(1):34–51. 10.1002/mana.200310029

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Gorbachuk VI, Gorbachuk ML: Boundary value problems for operator-differential equations. "Naukova Dumka", Kiev; 1984:284.

    Google Scholar 

  16. 16.

    Grisvard P: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics. Volume 24. Pitman, Massachusetts; 1985:xiv+410.

    Google Scholar 

  17. 17.

    Komatsu H: Fractional powers of operators. Pacific Journal of Mathematics 1966,19(2):285–346.

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Kreĭn SG: Linear Differential Equations in Banach Space. American Mathematical Society, Rhode Island; 1971:v+390.

    Google Scholar 

  19. 19.

    Lindenstrauss J, Tzafriri L: Classical Banach Spaces. II. Function Spaces, Results in Mathematics and Related Areas. Volume 97. Springer, New York; 1979:x+243.

    Google Scholar 

  20. 20.

    Lions J-L, Magenes E: Problèmes aux limites non homogénes. VI [Problems and limites non homogenes]. Journal d'Analyse Mathématique 1963, 11: 165–188.

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Lions J-L, Peetre J: Sur une classe d'espaces d'interpolation. Institut des Hautes Études Scientifiques. Publications Mathématiques 1964, 19: 5–68. 10.1007/BF02684796

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Lizorkin PI: -multipliers of Fourier integrals. Doklady Akademii Nauk SSSR 1963,152(4):808–811.

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. I. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (1):70–79.

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. II. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (2):47–54.

    MathSciNet  MATH  Google Scholar 

  25. 25.

    McConnell TR: On Fourier multiplier transformations of Banach-valued functions. Transactions of the American Mathematical Society 1984,285(2):739–757. 10.1090/S0002-9947-1984-0752501-X

    MATH  MathSciNet  Article  Google Scholar 

  26. 26.

    Nazarov SA, Plamenevsky BA: Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics. Volume 13. Walter de Gruyter, Berlin; 1994:viii+525.

    Google Scholar 

  27. 27.

    Schmeisser H-J: Vector-valued Sobolev and Besov spaces. In Seminar Analysis of the Karl-Weierstraß-Institute of Mathematics 1985/1986 (Berlin, 1985/1986), Teubner-Texte Math.. Volume 96. Teubner, Leipzig; 1987:4–44.

    Google Scholar 

  28. 28.

    Shakhmurov VB: Imbedding theorems for abstract function- spaces and their applications. Mathematics of the USSR-Sbornik 1987,134(1–2):261–276.

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Shakhmurov VB: Embedding theorems and their applications to degenerate equations. Differential Equations 1988,24(4):475–482.

    MATH  MathSciNet  Google Scholar 

  30. 30.

    Shakhmurov VB: Coercive boundary value problems for regular degenerate differential-operator equations. Journal of Mathematical Analysis and Applications 2004,292(2):605–620. 10.1016/j.jmaa.2003.12.032

    MATH  MathSciNet  Article  Google Scholar 

  31. 31.

    Shakhmurov VB: Embedding operators and maximal regular differential-operator equations in Banach-valued function spaces. Journal of Inequalities and Applications 2005,2005(4):329–345. 10.1155/JIA.2005.329

    MATH  MathSciNet  Article  Google Scholar 

  32. 32.

    Shakhmurov VB, Dzhabrailov MS: On the compactness of the embedding of-spaces. Akademiya Nauk Azerbaĭ dzhanskoĭ SSR. Doklady, TXLVI 1990,46(3):7–10 (1992).

    MATH  MathSciNet  Google Scholar 

  33. 33.

    Shklyar AYa: Complete Second Order Linear Differential Equations in Hilbert Spaces, Operator Theory: Advances and Applications. Volume 92. Birkhäuser, Basel; 1997:xii+219.

    Google Scholar 

  34. 34.

    Sobolev SL: Imbedding theorems for abstract functions of sets. Doklady Akademii Nauk SSSR 1957, 115: 57–59.

    MATH  MathSciNet  Google Scholar 

  35. 35.

    Sobolev SL: Certain Applications of Functional Analysis to Mathematical Physics. Nauka, Moscow; 1968.

    Google Scholar 

  36. 36.

    Sobolevskiĭ PE: Coerciveness inequalities for abstract parabolic equations. Doklady Akademii Nauk SSSR 1964, 157: 52–55.

    MathSciNet  Google Scholar 

  37. 37.

    Triebel H: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library. Volume 18. North-Holland, Amsterdam; 1978:528.

    Google Scholar 

  38. 38.

    Triebel H: Fractals and Spectra, Monographs in Mathematics. Volume 91. Birkhäuser, Basel; 1997:viii+271.

    Google Scholar 

  39. 39.

    Yakubov S: A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integral Equations and Operator Theory 1999,35(4):485–506. 10.1007/BF01228044

    MATH  MathSciNet  Article  Google Scholar 

  40. 40.

    Yakubov S, Yakubov Ya: Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Volume 103. Chapman & Hall/CRC, Florida; 2000:xxvi+541.

    Google Scholar 

  41. 41.

    Zimmermann F: On vector-valued Fourier multiplier theorems. Studia Mathematica 1989,93(3):201–222.

    MATH  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Veli B. Shakhmurov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shakhmurov, V.B. Embedding theorems in Banach-valued-spaces and maximal-regular differential-operator equations. J Inequal Appl 2006, 16192 (2006).

Download citation


  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Cauchy Problem
  • Differential Operator