Skip to content


  • Research Article
  • Open Access

Embedding theorems in Banach-valued -spaces and maximal -regular differential-operator equations

Journal of Inequalities and Applications20062006:16192

  • Received: 28 September 2004
  • Accepted: 4 May 2006
  • Published:


The embedding theorems in anisotropic Besov-Lions type spaces are studied; here and are two Banach spaces. The most regular spaces are found such that the mixed differential operators are bounded from to , where are interpolation spaces between and depending on and . By using these results the separability of anisotropic differential-operator equations with dependent coefficients in principal part and the maximal -regularity of parabolic Cauchy problem are obtained. In applications, the infinite systems of the quasielliptic partial differential equations and the parabolic Cauchy problems are studied.


  • Differential Equation
  • Banach Space
  • Partial Differential Equation
  • Cauchy Problem
  • Differential Operator


Authors’ Affiliations

Department of Electrical & Electronics Engineering, Engineering Faculty, Istanbul University, Istanbul, Avcilar, 34320, Turkey


  1. Agmon S, Nirenberg L: Properties of solutions of ordinary differential equations in Banach space. Communications on Pure and Applied Mathematics 1963, 16: 121–239. 10.1002/cpa.3160160204MATHMathSciNetView ArticleGoogle Scholar
  2. Agranovič MS, Višik MI: Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Matematicheskikh Nauk 1964,19(3 (117)):53–161.MathSciNetGoogle Scholar
  3. Amann H: Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics. Volume 89. Birkhäuser Boston, Massachusetts; 1995:xxxvi+335.View ArticleGoogle Scholar
  4. Amann H: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Mathematische Nachrichten 1997, 186: 5–56.MATHMathSciNetView ArticleGoogle Scholar
  5. Amann H: Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Matematički. Serija III 2000,35(55)(1):161–177.MathSciNetMATHGoogle Scholar
  6. Ashyralyev A: On well-posedness of the nonlocal boundary value problems for elliptic equations. Numerical Functional Analysis and Optimization 2003,24(1–2):1–15. 10.1081/NFA-120020240MATHMathSciNetView ArticleGoogle Scholar
  7. Aubin J-P: Abstract boundary-value operators and their adjoints. Rendiconti del Seminario Matematico della Università di Padova 1970, 43: 1–33.MATHMathSciNetGoogle Scholar
  8. Besov OV, Il'in VP, Nikol'skiĭ SM: Integral representations of functions, and embedding theorems. Izdat. "Nauka", Moscow; 1975:480.MATHGoogle Scholar
  9. Burkholder DL: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Proceedings of Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser.. Wadsworth, California; 1983:270–286.Google Scholar
  10. Calderón A-P: Intermediate spaces and interpolation, the complex method. Studia Mathematica 1964, 24: 113–190.MATHMathSciNetGoogle Scholar
  11. Clément P, de Pagter B, Sukochev FA, Witvliet H: Schauder decomposition and multiplier theorems. Studia Mathematica 2000,138(2):135–163.MATHMathSciNetGoogle Scholar
  12. Denk R, Hieber M, Prüss J: -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of the American Mathematical Society 2003,166(788):viii+114.View ArticleMathSciNetMATHGoogle Scholar
  13. Dore G, Yakubov S: Semigroup estimates and noncoercive boundary value problems. Semigroup Forum 2000,60(1):93–121. 10.1007/s002330010005MATHMathSciNetView ArticleGoogle Scholar
  14. Girardi M, Weis L: Operator-valued Fourier multiplier theorems on Besov spaces. Mathematische Nachrichten 2003,251(1):34–51. 10.1002/mana.200310029MATHMathSciNetView ArticleGoogle Scholar
  15. Gorbachuk VI, Gorbachuk ML: Boundary value problems for operator-differential equations. "Naukova Dumka", Kiev; 1984:284.MATHGoogle Scholar
  16. Grisvard P: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics. Volume 24. Pitman, Massachusetts; 1985:xiv+410.Google Scholar
  17. Komatsu H: Fractional powers of operators. Pacific Journal of Mathematics 1966,19(2):285–346.MATHMathSciNetView ArticleGoogle Scholar
  18. Kreĭn SG: Linear Differential Equations in Banach Space. American Mathematical Society, Rhode Island; 1971:v+390.Google Scholar
  19. Lindenstrauss J, Tzafriri L: Classical Banach Spaces. II. Function Spaces, Results in Mathematics and Related Areas. Volume 97. Springer, New York; 1979:x+243.View ArticleGoogle Scholar
  20. Lions J-L, Magenes E: Problèmes aux limites non homogénes. VI [Problems and limites non homogenes]. Journal d'Analyse Mathématique 1963, 11: 165–188.MATHMathSciNetView ArticleGoogle Scholar
  21. Lions J-L, Peetre J: Sur une classe d'espaces d'interpolation. Institut des Hautes Études Scientifiques. Publications Mathématiques 1964, 19: 5–68. 10.1007/BF02684796MATHMathSciNetView ArticleGoogle Scholar
  22. Lizorkin PI: -multipliers of Fourier integrals. Doklady Akademii Nauk SSSR 1963,152(4):808–811.MathSciNetMATHGoogle Scholar
  23. Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. I. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (1):70–79.MathSciNetMATHGoogle Scholar
  24. Lizorkin PI, Shakhmurov VB: Embedding theorems for vector-valued functions. II. Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1989, (2):47–54.MathSciNetMATHGoogle Scholar
  25. McConnell TR: On Fourier multiplier transformations of Banach-valued functions. Transactions of the American Mathematical Society 1984,285(2):739–757. 10.1090/S0002-9947-1984-0752501-XMATHMathSciNetView ArticleGoogle Scholar
  26. Nazarov SA, Plamenevsky BA: Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics. Volume 13. Walter de Gruyter, Berlin; 1994:viii+525.View ArticleMATHGoogle Scholar
  27. Schmeisser H-J: Vector-valued Sobolev and Besov spaces. In Seminar Analysis of the Karl-Weierstraß-Institute of Mathematics 1985/1986 (Berlin, 1985/1986), Teubner-Texte Math.. Volume 96. Teubner, Leipzig; 1987:4–44.Google Scholar
  28. Shakhmurov VB: Imbedding theorems for abstract function- spaces and their applications. Mathematics of the USSR-Sbornik 1987,134(1–2):261–276.MathSciNetMATHGoogle Scholar
  29. Shakhmurov VB: Embedding theorems and their applications to degenerate equations. Differential Equations 1988,24(4):475–482.MATHMathSciNetGoogle Scholar
  30. Shakhmurov VB: Coercive boundary value problems for regular degenerate differential-operator equations. Journal of Mathematical Analysis and Applications 2004,292(2):605–620. 10.1016/j.jmaa.2003.12.032MATHMathSciNetView ArticleGoogle Scholar
  31. Shakhmurov VB: Embedding operators and maximal regular differential-operator equations in Banach-valued function spaces. Journal of Inequalities and Applications 2005,2005(4):329–345. 10.1155/JIA.2005.329MATHMathSciNetView ArticleGoogle Scholar
  32. Shakhmurov VB, Dzhabrailov MS: On the compactness of the embedding of-spaces. Akademiya Nauk Azerbaĭ dzhanskoĭ SSR. Doklady, TXLVI 1990,46(3):7–10 (1992).MATHMathSciNetGoogle Scholar
  33. Shklyar AYa: Complete Second Order Linear Differential Equations in Hilbert Spaces, Operator Theory: Advances and Applications. Volume 92. Birkhäuser, Basel; 1997:xii+219.MATHGoogle Scholar
  34. Sobolev SL: Imbedding theorems for abstract functions of sets. Doklady Akademii Nauk SSSR 1957, 115: 57–59.MATHMathSciNetGoogle Scholar
  35. Sobolev SL: Certain Applications of Functional Analysis to Mathematical Physics. Nauka, Moscow; 1968.Google Scholar
  36. Sobolevskiĭ PE: Coerciveness inequalities for abstract parabolic equations. Doklady Akademii Nauk SSSR 1964, 157: 52–55.MathSciNetGoogle Scholar
  37. Triebel H: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library. Volume 18. North-Holland, Amsterdam; 1978:528.Google Scholar
  38. Triebel H: Fractals and Spectra, Monographs in Mathematics. Volume 91. Birkhäuser, Basel; 1997:viii+271.View ArticleMATHGoogle Scholar
  39. Yakubov S: A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integral Equations and Operator Theory 1999,35(4):485–506. 10.1007/BF01228044MATHMathSciNetView ArticleGoogle Scholar
  40. Yakubov S, Yakubov Ya: Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Volume 103. Chapman & Hall/CRC, Florida; 2000:xxvi+541.MATHGoogle Scholar
  41. Zimmermann F: On vector-valued Fourier multiplier theorems. Studia Mathematica 1989,93(3):201–222.MATHMathSciNetGoogle Scholar