- Research Article
- Open access
- Published:
On Stochastic Models Describing the Motions of Randomly Forced Linear Viscoelastic Fluids
Journal of Inequalities and Applications volume 2010, Article number: 932053 (2010)
Abstract
This paper is devoted to the analysis of stochastic equations describing the motions of a large class of incompressible linear viscoelastic fluids in two-dimensional subject to periodic boundary condition and driven by random external forces. To do so we distinguish two cases, and for each case a global existence result of probabilistic weak solution is expounded in this paper. We also prove that under suitable hypotheses on the external random forces the solution turns out to be unique. As concrete examples, we consider the stochastic equations for the Maxwell and Oldroyd fluids that are of great importance in the investigation towards the understanding of the elastic turbulence.
1. Introduction
The study of turbulent flows has attracted many prominent researchers from different fields of contemporary sciences for ages. For in-depth coverage of the deep and fascinating investigations undertaken in this field, the abundant wealth of results obtained, and remarkable advances achieved we refer to the monographs [1–3] and references therein. Recent study, see, for instance [4], has showed that the non-Newtonian elastic turbulence can be well understood on basis of known viscoelastic models such as the Oldroyd fluids or the Maxwell fluids. Indeed, by computational investigations of the two-dimensional periodic Oldroyd-B model the authors in [4] found that there is a considerable agreement between their numerical results and the experimental observations of elastic turbulence.
The hypothesis relating the turbulence to the "randomness of the background field" is one of the motivations of the study of stochastic version of equations governing the motion of fluids flows. The introduction of random external forces of noise type reflects (small) irregularities that give birth to a new random phenomenon, making the problem more realistic. Such approach in the mathematical investigation for the understanding of the Newtonian turbulence phenomenon was pioneered by Bensoussan and Temam in [5] where they studied the Stochastic Navier-Stokes Equation (SNSE). Since then stochastic partial differential equations and stochastic models of fluid dynamics have been the object of intense investigations which have generated several important results. We refer to [6–13], just to cite a few. Similar investigations for Non-Newtonian elastic fluids have not almost been undertaken except in very few works; we refer, for instance, to [14–19] for some example of computational studies of stochastic models of polymeric fluids and to [20–23] for their mathematical analysis. It should be noted that the models investigated in these papers occur very naturally from the kinetic theory of polymer dynamics. Indeed they arise from the reformulation of Fokker-Planck or diffusion equations as stochastic differential equations (3.45). We also notice that they model some nonlinear viscoelastic models such as the FENE models which are very different from the models we shall treat in this paper. We refer to volume 2 of [24] for the conventional approach to kinetic theory which consists of deriving the deterministic partial differential equations for the polymer configurational distribution function (diffusion equation) and to volume 1 of [24] for the existing linear and nonlinear viscoelastic models.
In this paper we provide a detailed investigation of the system stochastic partial differential equations:


, . This system describes the motion of a large class of incompressible linear viscoelastic fluids driven by random external forces and filling a periodic square
,
. Here
and
represent, respectively, a random periodic in space random velocity with period
in each direction, a random scalar pressure and an
-valued standard Wiener process,
. The tensor
is the deviator of the stress tensor of the fluid; we assume throughout that it is a traceless tensor (
). In this work we should distinguish the case


where

and the operator is a continuous mapping satisfying some hypotheses (see (2.22)–(2.24)). The problem (1.1) also can be taken as a turbulent version of linear viscoelastic models for polymeric fluids. For some examples of classical models of turbulence, we refer to [2, 4, 19, 25] and references therein.
The mathematical works on some linear viscoelastic fluids undertaken by the Soviet mathematician Oskolkov in [26–28] and by Ladyzhenskaya in [29] have influenced the emergence of the paper [30] where a global solvability result of the deterministic counterpart of the system (1.1), (1.2) (resp., (1.1), (1.3)) subject to the periodic boundary condition (resp., nonslip boundary condition) was given. To the best of our knowledge similar investigations for the two general stochastic models (1.1), (1.2) and (1.1), (1.3) have not been undertaken yet. The purpose of this paper is to prove that under suitable conditions on ,
and
each of our stochastic model is well posed (see Theorems 3.3, 3.4, 4.2, and 4.3). In view of the technical difficulties involved, we provide full details of the proof of our results. Due to nontrivial difficulties that arise from the nature of the nonlinearities involved in (1.1) other mathematical issues such as existence, uniqueness of the invariant measure, and its ergodicity are beyond of the scope of this work; we leave these questions for future investigation.
The layout of this paper is as follows. In addition to the current introduction this article consists of three other sections. In Section 2 we give some notations, necessary backgrounds of probabilistic or analytic nature. Section 3 is devoted to the detailed analysis of the problem (1.1), (1.2). We prove the existence and pathwise uniqueness of its probabilistic weak solution which yields the existence of a unique probabilistic strong solution. In the very same section we consider the stochastic equations for randomly forced generalized Maxwell fluids as a concrete example. In Section 4 we only state the main theorems related to (1.1), (1.3) and apply the obtained results to the stochastic model for the generalized viscoelastic Oldroyd fluids; we refer to the previous section for the details of the proofs.
2. Preliminaries and Notations
This section is devoted to the presentation of notations and auxiliary results needed in the work. Let be an open bounded subset of
, let
and let
be a nonnegative integer. We consider the well-known Lebesgue and Sobolev spaces
and
, respectively. We refer to [31] for detailed information on Sobolev spaces. Let
be a nonnegative number and let
be a periodic box of side length
. We denote by
the spaces consisting of those functions
that are in
and that are periodic with period
:

where represents the canonical basis of
. Here the space
is the space of functions
such that
is an element of the Sobolev space
for every bounded set
. For functions
of zero space average, that is,

the following Poincaré's inequality holds:

where denotes the
-norm,
is Poincaré's constant, and
denotes the seminorm generated by the scalar product:

in which is the gradient operator. From now we denote by
the space

Thanks to (2.3), we can endow with the norm
. Besides Poincaré's inequality, we also have

which holds for any divergence free fields. For we can define the space
via their expansion in Fourier series so that we also have the space

We refer to [32] (see also [1, 33]) for more details about these spaces. We proceed with the definitions of additional spaces frequently used in this paper.
For any Banach space and any integer
we set

If is the norm on
, then
We introduce the spaces

where denotes the space of infinitely differentiable periodic function with period
.
We denote by (resp.,
) the inner product (resp., the norm) induced by the inner product (resp., the norm) in
on
. Thanks to Poincaré's inequality (2.3), we can endow
with the norm
, which is defined by
From now on, we identify the space
with its dual space
via the Riesz representation and we have the Gelfand triple:

where each space is dense in the next one and the inclusions are continuous. It follows that we can make the identification

for any and
. Here
denotes the duality product
.
Next we define some probabilistic evolution spaces necessary throughout the paper. Let be a given stochastic basis; that is,
is a complete probability space and
is an increasing sub-
-algebras of
such that
contains every
-null subset of
. For any real Banach space
, for any
we denote by
the space of processes
with values in
defined on
such that
(1) is measurable with respect to
and for each
,
is
-measurable;
(2) for almost all
and

where denotes the mathematical expectation with respect to the probability measure
.
When , we write

For , we also consider the space
of
-valued measurable functions
defined on
such that

Let be a standard Wiener process defined on the stochastic basis
and taking its values in
. Given a measurable and
-adapted
-valued process
such that

the process

is well defined and is a continuous martingale. Moreover it satisfies

We refer to [34, 35] (see also [36]) for further reading on probability theory and stochastic calculus.
Let be a separable complete metric space and
its Borel
-field. A family
of probability measures on
is relatively compact if every sequence of elements of
contains a subsequence
which converges weakly to a probability measure
, that is, for any
bounded and continuous function on
,

The family is said to be tight if, for any
, there exists a compact set
such that
, for every
.
We have the well-known result.
Theorem 2.1 (Prokhorov).
Assume that is a Polish space; then the family
is relatively compact if and only if it is tight.
We will use the following useful theorem due to Skorokhod.
Theorem 2.2 (Skorokhod).
For any sequence of probability measures on
which converges to a probability measure
, there exists a probability space
and random variables
,
with values in
such that the probability law of
(resp.,
) is
(resp.,
) and
-a.s.
We refer to [36] for the proofs of these two theorems.
The following result is very important in Section 3.2.2 where we prove a probabilistic compactness result; its proof can be found in [37].
Theorem 2.3.
Let be three Banach spaces such that the following embedding are continuous:

Moreover, assume that the embedding is compact; then the set
consisting of functions
,
such that

for any is compact in
for any
.
Throughout the symbol denotes the summation

We assume that is a symmetric tensor-valued continuous mapping which satisfies the following.
(i) is bounded, that is,

(ii)For any and
we have


Remark 2.4.
The hypothesis (2.23) has a physical meaning since it implies that the dissipation of energy is positive (see [30, Section ] and [38, Chapters 2-3]). The assumption (2.24) is a mathematical assumption which allows us to prove the well posedness of the models. It is fulfilled at least for general viscoelastic flows generated by the linear rheological equations of the type (see [24, Section
])

We also notice that (2.24) and (2.23) are equivalent if is linear.
3. Analysis of the Stochastic Equation of the Type (1.1), (1.2)
In this section we investigate the stochastic equations (1.1), (1.2). The first subsection is devoted to the statement of the main results which is going to be proved in the second subsection.
3.1. Hypotheses and Statement of the Main Results
Throughout this section we suppose the following.
(HYP 1)The mapping induces a nonlinear operator from
into
which is assumed to be measurable (resp., continuous) with respect to its second (resp., first) variable. We require that there exists constant
such that for almost all
and for each

(HYP 2)The -valued function
defined on
is measurable (resp., continuous) with respect to its second (resp., first) argument, and it verifies

for almost everywhere and for any
.
(HYP 3)We assume as well that there exist two positive constants and
such that

for any .
(HYP 4)In addition to (2.22)–(2.24) we assume furthermore that

Remark 3.1.
For a vector , the operator
is defined by

The divergence of a tensor field is defined using the recursive relation

where is an arbitrary constant vector, and
is a vector field.
Karazeeva remarked in [30, Section ] that when
and
,
, commute, then (3.4) is a consequence of (2.23). The condition (3.4) is met when
is given by the equation in Remark 2.4.
We introduce the concept of the solution of the problem (1.1), (1.2).
Definition 3.2.
By a probabilistic weak solution of the problem (1.1), (1.2), one means a system

where
(1) is a complete probability space, and
is a filtration on
;
(2) is an
-dimensional
-standard Wiener process;
(3)
(4)for almost all ,
is
-measurable;
(5) the following integral equation of Itô type holds:

for any and
.
We have the following.
Theorem 3.3.
If and if the hypotheses (HYP 1), (HYP 2), and (HYP 4) hold, then the problem (1.1), (1.2) has a solution in the sense of the above definition. Moreover, almost surely the paths of the solution are
- (resp.,
-), valued weakly (resp., strongly) continuous.
Theorem 3.4.
Assume that (HYP 1)–(HYP 4) hold and let and
be two probabilistic weak solutions of (1.1), (1.2) starting with the same initial condition and defined on the same stochastic basis
with the same Winer process
. If one sets
, then one has
almost surely.
3.2. Proof of Theorems 3.3 and 3.4
This subsection is devoted to the proof of the existence and uniqueness results stated in the previous subsection. We split the proof into four subsections. The proof of the existence theorem is inspired by the works [6, 30] (see also [10]). Throughout this subsection will designate a positive constant which depends only on the data (
).
3.2.1. The Approximate Solution and Some A Priori Estimates
In this subsection we derive crucial a priori estimates from the Galerkin approximation. They will serve as a toolkit for the proof of the Theorem 3.3.
The operator is a self-adjoint and positive definite on
, and its inverse is completely continuous. Therefore
has a complete orthonormal basis consisting of the eigenfunctions
of
. The family
forms an orthogonal basis in
. We now introduce the Galerkin approximation for the problem (1.1)-(1.2). We consider the subset
and we look for a finite-dimensional approximation of a solution of our problem as a vector
that can be written as

We set

Let us consider a complete probabilistic system such that the filtration
satisfies the usual condition and
is an
-dimensional standard Wiener process taking values in
. We denote by
the mathematical expectation with respect to
. We require
to satisfy the following:


Here is the orthogonal projection of
onto the space
:

The sequence of continuous functions exists at least on a short (possibly random) interval
. Indeed the coefficients
satisfy

which is a system of stochastic ordinary differential equations with continuous coefficients. From the existence theorem stated in [39, page 59] (see also [35, Theorem page 323]) we infer the existence of continuous functions
on
. Global existence will follow from a priori estimates for
.
Lemma 3.5.
One has

for any and
.
Proof.
Thanks to Itô's formula we derive from (3.11) that

where we have used the fact that for any
. Thanks to (2.23) we get

More generally we have

for all . For any integer
, we introduce the sequence of increasing stopping-times:

Owing to Schwarz's inequality and the assumptions (3.1)-(3.2) we have that

Since

we derive from (3.19) and (3.2) that

Using Hölder's inequality and taking the mathematical expectation in both sides of this estimate yield

Let us set

By Burkhölder-Davis-Gundy's inequality we obtain

which with the assumption (3.2) implies that

Out of this and (3.22) we infer that

Now by Gronwall's lemma applied to , we obtain that

It remains to prove that ; to do so we must prove that
a.s.; This is classic but we prefer to give the details. From the continuity of
we infer that
. For any
,
. We also have that

We infer from this, (3.27), and the monotonicity of that
a.s. as was required. Since the constant
in (3.27) is independent of
and
, Fatou's theorem completes the proof of the lemma.
The estimate of Lemma 3.5 is not sufficient to pass to the limit in the nonlinear term. We still need to derive some additional crucial but nontrivial inequalities.
Lemma 3.6.
One has

for any and
.
Proof.
Let be the orthogonal projection of
onto the span
that is

Because , we can rewrite (3.11) in the following form which should be understood as the equality between random variables with values in
:

Applying the operator to both sides of this equation implies

where . Thanks to the regularity of the
-s, the function
is periodic at the boundary of the square
. Itô's formula for the function
implies that

where we have used the fact that

in the periodic boundary condition setting. More generally, the following holds:

for . We use the divergence freeness of
, the periodicity of
and the identities

to reach

By utilizing this, (3.4), and Schwarz's inequality in (3.35), we obtain that

Thanks to the estimates (2.6), (3.1), and (3.2) we deduce from the above estimate that

Let us set

By using Burkhölder-Davis-Gundy's inequality and Schwarz's inequality we obtain

We derive from this and the estimates (2.6) (this is allowed since and (3.2) that

From this, (3.39), and Gronwall's lemma we deduce that

Owing to (2.6) the proof of the lemma is finished.
The following result is central in the proof of the forthcoming tightness property of the Galerkin solution.
Lemma 3.7.
For any one has

Proof.
We can rewrite (3.11) in an integral form as the equality between random variables with values in

By using the triangle inequality for the norm , we deduce from (3.45) that

for any . The continuity of
as linear operator along with (2.22), (3.1), and Lemmas 3.5 and 3.6 implies that

By making use of Martingale inequality, (3.2), and Lemma 3.5 we have that

By the well-known inequality

which holds in the 2-dimensional case, we obtain that

To complete the proof we use the same argument for negative values of .
3.2.2. Tightness Property and Application of Prokhorov's and Skorohod's Theorems
We denote by the following subset of
:

for any sequences such that
as
and
. The following result is a particular case of Theorem 2.3 (see also [40, Proposition
, page 45] for a similar result).
Lemma 3.8.
The set is compact in
.
Next we consider the space endowed with its Borel
-algebra
and the family of probability measures
on
, which is the probability measure induced by the following mapping:

That is, for any ,
.
Lemma 3.9.
The family is tight in
.
Proof.
For any and
, we claim that there exists a compact subset
of
such that
. To back our claim we define the sets

where and
are positive constants to be fixed in the course of the proof. The sequences
and
are chosen so that they are independent of
,
as
and
. It is clear by Ascoli-Arzela's theorem that
is a compact subset of
, and by Lemma 3.8   
is a compact subset of
. We have to show that
. Indeed, we have

where is a family of intervals of length
which forms a partition of the interval
. It is well known that for any Wiener process

where is a constant depending only on
. From this and Markov's Inequality

where is a random variable on
and positive numbers
and
, we obtain

Owing to the Lemmas 3.5 and 3.7 and by choosing , we have

A convenient choice of and
completes the proof of the claim, and hence the proof of the lemma.
Now it follows by Prokhorov's theorem that the family is relatively compact in the set of probability measures (equipped with the weak convergence topology) on
. Then, we can extract a subsequence
that weakly converges to a probability measure
. By Skorohod's theorem, there exists a probability space
and random variables
and
on
with values in
such that

Moreover, the probability law of is
and that of
is
.
For the filtration , it is enough to choose
.
By the same argument as in [40, Section ] (see also [41, Section
]) we can prove that the limit process
is a standard
-dimensional Wiener process defined on
.
Theorem 3.10.
The pair satisfies the following equation:

for almost all , for any
and
.
Proof.
The proof follows the same lines as in [6, Section ] (see also [41, Section
]), and so we omit it.
3.2.3. Passage to the Limit
To back our goal we need to pass to the limit in the terms of the estimate (3.60). From the tightness property we have

as . Since
agrees with (3.60), then it verifies the same estimates as
. In particular the estimate

for implies that the norm
is uniformly integrable with respect to the probability measure. Therefore, we can deduce from Vitali's Convergence Theorem that

as . It is readily seen that

Thanks to the convergence (3.63) and the continuity of we see that

as . Let
be an element of
. Thanks to (3.63) we can prove by arguing as in [42] that

as . The dense injection

together with the relation (3.66) shows that

as .
It follows from the continuity of , (3.63), and Vitali's theorem that

as . This implies in particular that

as . We can use the argument in [6, Section
] (see also [41, Section
]) to prove that

for any and as
.
Combining all these results and passing to the limit in (3.60), we see that satisfies (3.8) which holds for almost all
, for all
. This proves the first part of Theorem 3.3. By arguing as in [43] (Chapter 2, Lemma
) we get the continuity result stated in Theorem 3.3.
3.2.4. Proof of the Uniqueness of the Solution
Let and
be two probabilistic weak solutions of (1.1), (1.2) starting with the same initial condition and defined on the same stochastic basis
with the same Wiener process
. Set
and

It can be shown that the process satisfies the following equation:

where is the projector from
onto
. Thanks to Itô's formula for
we have

Setting , for all
, we have that

By the assumptions on ,
, and
and (3.49) we have

which implies

By choosing and by making use of Gronwall's lemma we have

for any . Since
, then this completes the proof of Theorem 3.4.
3.3. Example: The Stochastic Equation for the Maxwell Fluids
The motion of a randomly forced Maxwell fluids is given by the system (1.1)-(1.2). The tensor for the Maxwell fluids is given by

where and
represent the relaxation and retardation times, respectively. Considering the polynomials

It is shown in [30] that the operator for the Maxwell fluids is given by

where

is assumed to be positive. Here the numbers designate the roots of the polynomial
. The result in [30] shows that
satisfies (2.22)–(2.24) and (3.4). Hence the results in Theorems 3.3 and 3.4 can be applied to the stochastic equations (1.1)-(1.2) and (3.81) for the Maxwell fluids provided that the assumptions (HYP 1)–(HYP 4) hold.
4. Stochastic Equation of Type (1.1), (1.3)
This section is devoted to the investigation of (1.1), (1.3). We omit the details of the proofs since they can be derived from similar ideas used in Section 3. We state our main results in the first subsection and we give a concrete example in the second subsection. For this section we suppose following.
(AF)the mapping induces a nonlinear operator from
into
which is assumed to be measurable (resp., continuous) with respect to its second (resp., first) variable. We require that for almost all
and for each

(AG)The -valued function
defined on
is measurable (resp., continuous) with respect to its second (resp., first) argument, and it verifies

for all and for any
.
(ASFG)We assume as well that

for any .
4.1. Statement of the Main Results
We introduce the concept of the solution of the problem (1.1), (1.3).
Definition 4.1.
By a probabilistic weak solution of the problem (1.1), (1.3), we mean a system

where
(1) is a complete probability space,
is a filtration on
;
(2) is an
-dimensional
-standard Wiener process;
(3) for all
(4)for almost all ,
is
-measurable;
(5) the following integral equation of Itô type holds.

for any and
.
We have the following.
Theorem 4.2.
If and if the hypotheses (AF)-(AG) hold, then the problem (1.1), (1.3) has a solution in the sense of the above definition. Moreover
is strongly (resp., weakly) continuous in
(resp.,
) with probability one.
Proof.
The proof follows from the Galerkin method; and the compactness method, the procedure is very similar to the proof of Theorem 3.3, and it is even easier. We just formally derive the crucial estimates.
The application of Itô's formula for yields

More generally

for any . Thanks to the assumptions on
,
, and
we obtain that

Standard arguments of Martingale inequality and Gronwall's inequality yield

Coming back to (4.6) we can show that

We also have the uniqueness result whose proof follows from similar arguments used in Theorem 3.4.
Theorem 4.3.
Assume that (AF)–(ASFG) hold and let and
be two probabilistic weak solutions of (1.1), (1.3) starting with the same initial condition and defined on the same stochastic basis
. If one sets
, then one has
almost surely.
4.2. Application to the Oldroyd Fluids
The tensor for the Oldroyd fluids is given by

where and
represent the relaxation and retardation times, respectively. Let

The latter quantity is assumed to be positive. It is shown in [30] that the operator for the Oldroyd fluids is given by

and that satisfies the assumption (2.22)–(2.24). Therefore Theorems 4.2 and 4.3 hold for the Oldroyd fluid provided that the assumptions on
and
(see (AF)–(ASFG)) are valid.
Remark 4.4.
Theorem 4.2 (resp., Theorem 3.3) holds true for those viscoelastic fluids which do not satisfy the assumption (ASFG) (resp., (HYP 3)). One example we can consider is the third-order fluids whose tensor is given by

References
Foias C, Manley O, Rosa R, Temam R: Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications. Volume 83. Cambridge University Press, Cambridge, UK; 2001:xiv+347.
McComb WD: The Physics of Fluid Turbulence, Oxford Engineering Science Series. Volume 25. The Clarendon Press, Oxford University Press, New York, NY, USA; 1991:xxiv+572.
Monin AS, Yaglom AM: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. II. Dover Publications, Mineola, NY, USA; 2007:xii+874.
Berti S, Bistagnino A, Boffeta G, Celani A, Musacchio S: Two-dimensional elastic turbulence. Physical Review E 2008, 77: 1–4.
Bensoussan A, Temam R: Equations stochastiques du type Navier-Stokes. Journal of Functional Analysis 1973, 13: 195–222. 10.1016/0022-1236(73)90045-1
Bensoussan A: Stochastic Navier-Stokes equations. Acta Applicandae Mathematicae 1995, 38(3):267–304. 10.1007/BF00996149
Capiński M, Cutland NJ: Navier-Stokes equations with multiplicative noise. Nonlinearity 1993, 6(1):71–78. 10.1088/0951-7715/6/1/005
Capiński M, Cutland NJ: Statistical solutions of stochastic Navier-Stokes equations. Indiana University Mathematics Journal 1994, 43(3):927–940. 10.1512/iumj.1994.43.43040
Da Prato G, Debussche A: 2D stochastic Navier-Stokes equations with a time-periodic forcing term. Journal of Dynamics and Differential Equations 2008, 20(2):301–335. 10.1007/s10884-007-9074-1
Flandoli F, Gatarek D: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probability Theory and Related Fields 1995, 102(3):367–391. 10.1007/BF01192467
Fu X: Existence and stability of solutions for nonautonomous stochastic functional evolution equations. Journal of Inequalities and Applications 2009, 2009:-27.
Mikulevicius R, Rozovskii BL: Stochastic Navier-Stokes equations for turbulent flows. SIAM Journal on Mathematical Analysis 2004, 35(5):1250–1310. 10.1137/S0036141002409167
Viot M: Sur les solutions faibles des Equations aux dérivées partielles stochastiques non linéaires, Thèse de Doctorat d'état. Université Paris-Sud; 1975.
Hulsen MA, van Heel APG, van den Brule BHAA: Simulation of viscoelastic ows using Brownian configuration fields. Journal of Non-Newtonian Fluid Mechanics 1997, 70: 79–101. 10.1016/S0377-0257(96)01503-0
Jourdain B, Lelièvre T, Le Bris C: Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Mathematical Models and Methods in Applied Sciences 2002, 12(9):1205–1243. 10.1142/S0218202502002100
Jourdain B, Le Bris C, Lelievre T: On a variance reduction technique for micromacro simulations of polymeric fluids. Journal of Non-Newtonian Fluid Mechanics 2004, 122: 91–106. 10.1016/j.jnnfm.2003.09.006
Li T, Vanden-Eijnden E, Zhang P, Weinan E: Stochastic models for polymeric fluids at small Deborah number. Journal of Non-Newtonian Fluid Mechanics 2004, 121: 117–125. 10.1016/j.jnnfm.2004.05.003
Öttinger HC: Stochastic Processes in Polymeric Fluids. Springer, Berlin, Germany; 1996:xxiv+362.
Vincenzi D, Jin S, Bodenschatz E, Collins LR: Stretching of polymers in isotropic turbulence: a statistical closure. Physical Review Letters 2007, 98:-4.
Bonito A, Clément P, Picasso M: Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows. Journal of Evolution Equations 2006, 6(3):381–398. 10.1007/s00028-006-0251-1
Jourdain B, Lelièvre T: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In Probabilistic Methods in Fluids. Edited by: Davies IM, Jacob N, Truman A, Hassan O, Morgan K, Weatherill NP. World Scientific, River Edge, NJ, USA; 2003:205–223.
Jourdain B, Lelièvre T, Le Bris C: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. Journal of Functional Analysis 2004, 209(1):162–193. 10.1016/S0022-1236(03)00183-6
Jourdain B, Le Bris C, Lelièvre T, Otto F: Long-time asymptotics of a multiscale model for polymeric fluid flows. Archive for Rational Mechanics and Analysis 2006, 181(1):97–148. 10.1007/s00205-005-0411-4
Bird RB, Armstrong RC, Hassanger O: Dynamics of Polymeric Fluids, Vol. 1 and Vol. 2. John Wiley & Sons, New York, NY, USA; 1987.
Becker T, Eckhardt B: Turbulence in a Maxwell fluid. Zeitschrift fur Physik B 1996, 101(3):461–468. 10.1007/s002570050234
Oskolkov AP: Certain model nonstationary systems in the theory of non-Newtonian fluids. Akademiya Nauk SSSR. Trudy Matematicheskogo Instituta imeni V. A. Steklova 1975, 127: 32–57.
Oskolkov AP: On the theory of Maxwell fluids. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI) 1981, 101: 119–127.
Oskolkov AP: Initial-boundary value problems for equations of motion of Kelvin-Voight fluids and Oldroyd fluids. Akademiya Nauk SSSR. Trudy Matematicheskogo Instituta imeni V. A. Steklova 1988, 179: 126–164.
Ladyzhenskaya O: On global existence of weak solutions to some 2-dimensional initial-boundary value problems for Maxwell fluids. Applicable Analysis 1997, 65(3–4):251–255. 10.1080/00036819708840561
Karazeeva NA: Solvability of initial boundary value problems for equations describing motions of linear viscoelastic fluids. Journal of Applied Mathematics 2005, (1):59–80.
Adams RA: Sobolev Spaces. Academic Press, New York, NY, USA; 1975:xviii+268.
Temam R: Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics. Volume 66. 2nd edition. SIAM, Philadelphia, Pa, USA; 1995:xiv+141.
Constantin P, Foias C: Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, Ill, USA; 1988:x+190.
Gikhman II, Skorohod AV: Stochastic Differential Equations. Springer, Berlin, Germany; 1972.
Karatzas I, Shreve SE: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics. Volume 113. Springer, New York, NY, USA; 1988:xxiv+470.
Da Prato G, Zabczyk J: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications. Volume 44. Cambridge University Press, Cambridge, UK; 1992:xviii+454.
Simon J: Compact sets in the space . Annali di Matematica Pura ed Applicata. Serie Quarta 1987, 146: 65–96.
Astarita G, Marucci G: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London, UK; 1974.
Skorokhod AV: Studies in the Theory of Random Processes. Addison-Wesley, Reading, Mass, USA; 1965:viii+199.
Bensoussan A: Some existence results for stochastic partial differential equations. In Stochastic Partial Differential Equations and Applications (Trento, 1990), Pitman Res. Notes Math. Ser.. Volume 268. Longman Sci. Tech., Harlow, UK; 1992:37–53.
Razafimandimby PA, Sango M: Weak solutions of a stochastic model for two-dimensional second grade fluids. Boundary Value Problems 2010, 2010:-47.
Lions JL: Quelques Méthodes de Résolution des Problèmes aus Limites non Linéaires. Etudes Mathématiques. Dunod; 1969.
Pardoux E: Equations aux Dérivées Partielles Stochastiques Monotones, Thèse de Doctorat. Université Paris-Sud; 1975.
Acknowledgments
The research of the author is supported by the University of Pretoria and the National Research Foundation South Africa. The author is very grateful to the referees for their insightful comments. He also thanks professor M. Sango for his invaluable comments and M. Ramaroson for her encouragement.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Razafimandimby, P. On Stochastic Models Describing the Motions of Randomly Forced Linear Viscoelastic Fluids. J Inequal Appl 2010, 932053 (2010). https://doi.org/10.1155/2010/932053
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/932053