- Research Article
- Open Access
- Published:
-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations
Journal of Inequalities and Applications volume 2010, Article number: 895187 (2010)
Abstract
We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
1. Introduction
Let be an open bounded domain in
,  
with smooth boundary
, and let
be given. In this paper, we consider the problem of approximating
satisfying the following nonlinear Sobolev equations:

where denotes the unit outward normal vector to
and
is a given function defined on
. The initial data
,
,
and
are assumed to be such that (1.1) admits a solution sufficiently smooth to guarantee the convergence results to be presented below. For details about the physical significance and various properties of existence and uniqueness of the Sobolev equations, see [1–6].
Early, in [7–9] the authors constructed the Galerkin approximations to the solution of (1.1) with periodic boundary conditions in one-dimensional space and obtained the optimal convergence in normed space and superconvergence results. Recently, Lin [10] constructed the Galerkin approximation of (1.1) with
using Crank-Nicolson method and proved the optimal convergence of error in
normed space. In [11] the authors constructed the semidiscrete finite element approximations of (1.1) with nonlinear boundary condition and obtained the optimal
-error estimates.
In this work we will approximate the solution of (1.1) using a discontinuous symmetric Galerkin method with interior penalties for the spatial discretization and extrapolated Crank-Nicolson method for the time stepping. By implementing the extrapolated technique, we induce the linear systems which can be solved explicitly, and thus obviate the order reduction phenomenon which occurs when the system involved is nonlinear.
Compared to the classical Galerkin method, the discontinuous Galerkin method is very well suited for adaptive control of error and can deliver high orders of accuracy when the exact solution is sufficiently smooth. In [12] Rivière and Wheeler formulated and analyzed a family of discontinuous methods to approximate the solution of the transport problem with nonlinear reaction. They construct semidiscrete approximations which converge optimally in and suboptimally in
for the energy norm and suboptimally for the
norm. They also constructed fully discrete approximations and proved the optimal convergence in the temporal direction. Furthermore to solve reactive transport problems Sun and Wheeler in [13] analyzed three discontinuous Galerkin methods, namely, symmetric interior penalty Galerkin method, nonsymmetric interior penalty Galerkin method, and incomplete interior penalty Galerkin method. They obtained error estimates in
which are optimal in
and nearly optimal in
and they developed a parabolic lift technique for SIPG which leads to
-optimal and nearly
-optimal error estimates in
and negative norms. Recently in [14, 15] Sun and Yang adapted discontinuous Galerkin methods to nonlinear Sobolev equations and obtained the optimal
error estimates. The main object of this paper is to obtain the optimal
error estimates in both the spatial direction and the temporal direction by adopting an appropriate elliptic-type projection.
This paper is organized as follows. In Section 2, we introduce some notations and preliminaries. In Section 3, we construct appropriate finite element spaces and define an auxiliary projection and prove its convergence. In Section 4, we construct the extrapolated discontinuous Galerkin fully discrete method which yields the second-order convergence in the temporal direction. The corresponding error estimates of the approximate solutions are also discussed.
2. Notations and Preliminaries
Let be a regular quasi-uniform subdivision of
where
is a triangle or a quadrilateral if
and
is a
-simplex or
-rectangle if
. Let
and
. Here, the regular requirement is that there exists a constant
such that each
contains a ball of radius
. The quasi-uniformity requirement is that there is a constant
such that

We denote the edges (resp., faces for ) of
by
where
has positive
dimensional Lebesgue measure,
,
, and
,
. With each edge (or face)
, we associate a unit normal vector
to
if
and
. For
,
is taken to be the unit outward vector normal to
.
For an and a domain
, we denote by
the Sobolev space of order
equipped with the usual Sobolev norm
. We simply write
instead of
if
and
instead of
if
. And also the usual seminorm defined on
is denoted by
.
Now for an and a given subdivision
, we define the following space:

For with
, we define the average function
and the jump function
such that

where with
.
We associated the following broken norms with the space :

where

is an interior penalty term and is a discrete positive function that takes the constant value
on the edge
and is bounded below by
and above by
.
3. Finite Element Spaces and Convergence of Auxiliary Projection
For a positive integer , we construct the following finite element spaces:

where denotes the set of polynomials of degree less than or equal to
on
.
Now we state the following -approximation properties and trace inequalities whose proofs can be found in [16, 17].
Lemma 3.1.
Let and
. Then there exist a positive constant
depending on
,
, and
but independent of
,
and
and a sequence
,
,
,
such that, for any
,

where and
is an edge or a face of
.
Lemma 3.2.
For each , there exists a positive constant
depending only on
and
such that the following trace inequalities hold:

where is an edge or a face of
and
is the unit outward normal vector to
.
Now we introduce the following bilinear mappings and
defined on
as

Using the bilinear mappings and
, we construct the weak formulation of problem (1.1) as follows:

Now for a we define the following bilinear forms
and
on
such that

and
satisfy the following boundedness and coercivity properties, respectively. The proofs can be found in [18, 19].
Lemma 3.3.
For a , there exists a constant
satisfying

Lemma 3.4.
For a , there exists a constant
satisfying

Wheeler [20] introduced an elliptic projection to prove the optimal -error estimates for Galerkin approximation to parabolic differential equations. Adopting this idea we construct a projection
such that

By Lemmas 3.3 and 3.4, is well defined.
4. The Optimal
Error Estimates of Fully Discrete Approximations
In this section we construct fully discrete discontinuous Galerkin approximations using extrapolated Crank-Nicolson method and prove the optimal convergence in normed space.
For a positive integer we let
and for
and we define
and
. For
, we define
,  
and
.
The extrapolated Crank-Nicolson discontinuous Galerkin approximation is defined by

where ,  
.
To apply (4.1), we need two initial stages and
to be defined in the following:

where .
To prove the optimal convergence of in
normed space we denote
and
,
,
,
,
.
Now we state the following approximations for whose proofs can be found in [18, 19].
Theorem 4.1.
If and
then there exists a constant
independent of
and
satisfying
(i)
(ii).
Theorem 4.2.
If ,
,
and
then there exists a constant
independent of
and
satisfying
(i)
(ii)
provided that .
By simple computations and the applications of Theorem 4.2 we obtain the following lemmas.
Lemma 4.3.
If satisfies

then there exists a constant independent of
and
such that

Consequently from Lemma 4.3 there exists a constant independent of
and
such that

if is sufficiently smooth.
Lemma 4.4.
If then there exists a constant
independent of
and
such that

Consequently from Lemma 4.4 there exists a constant independent of
and
such that

if is sufficiently smooth.
Lemma 4.5.
If we let then there exists a constant
independent of
and
such that

Consequently from Lemma 4.5, we induce that there exists a constant independent of
and
such that

if is sufficiently smooth.
Theorem 4.6.
For and
, if
,
then there exists a constant
independent of
and
such that for
,
,
,

hold where and
.
Proof.
From (4.1) and (1.1), we have

By the notations of and
, we get

By the definition of , we obtain

From the definition of , we have

Substituting (4.12)–(4.14) in (4.11) and choosing imply that

By Cauchy-Schwarz'sinequality clearly we have

By the definition of we have

For the definition of we get

Applying (4.17) and (4.18) in (4.15) we conclude that

For sufficiently small by applying Lemma 4.3 there exists a constant
such that

Applying Lemmas 4.3 and 4.4, can be estimated as follows:

We obtain the following estimates of for each

From the definition of , we can separate
as follows:

By applying Lemma 4.5, can be estimated in the following way:

Similarly there exists a constant such that

By applying the trace inequality we have

From the estimation of ,  
, we have

By applying Lemma 4.3 we obviously obtain

Now we can separate as follows:

Since

can be estimated as follows

We apply Lemma 3.2 to estimate as follows:

From the result of approximation of of Theorem 4.1

Therefore we get

Similarly, and
are estimated as follows:

Substituting the estimates of ,
into (4.19), we get

If we sum both sides of (4.36) from to
, then we obtain

which implies

where is sufficiently small. By applying the discrete version of Gronwall's inequality, we have

Therefore by applying the result of Lemma 4.7 we have

which proves the optimal error estimation of the fully discrete solutions.
Lemma 4.7 can be proved by the similar process of Theorem 4.6. as follows
Lemma 4.7.
For and
, if
,
and
for some constant
then there exists a constant
independent of
and

References
Barenblatt GI, Zheltov IP, Kochina IN: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics 1960, 24(5):1286–1303. 10.1016/0021-8928(60)90107-6
Carroll RW, Showalter RE: Singular and Degenerate Cauchy Problems, Mathematics in Science and Engineering. Volume 127. Academic Press, New York, NY, USA; 1976:viii+333.
Chen PJ, Gurtin ME: On a theory of heat conduction involving two temperatures. Zeitschrift für Angewandte Mathematik und Physik 1968, 19(4):614–627. 10.1007/BF01594969
Davis PL: A quasilinear parabolic and a related third order problem. Journal of Mathematical Analysis and Applications 1972, 40(2):327–335. 10.1016/0022-247X(72)90054-6
Ewing RE: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM Journal on Numerical Analysis 1978, 15(6):1125–1150. 10.1137/0715075
Ting TW: A cooling process according to two-temperature theory of heat conduction. Journal of Mathematical Analysis and Applications 1974, 45: 23–31. 10.1016/0022-247X(74)90116-4
Arnold DN, Douglas, J Jr., Thomée V: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Mathematics of Computation 1981, 36(153):53–63. 10.1090/S0025-5718-1981-0595041-4
Arnold DN: An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis 1982, 19(4):742–760. 10.1137/0719052
Nakao MT: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension. Numerische Mathematik 1985, 47(1):139–157. 10.1007/BF01389881
Lin Y: Galerkin methods for nonlinear Sobolev equations. Aequationes Mathematicae 1990, 40(1):54–66. 10.1007/BF02112280
Lin Y, Zhang T: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications 1992, 165(1):180–191. 10.1016/0022-247X(92)90074-N
Rivière B, Wheeler MF: Non conforming methods for transport with nonlinear reaction. In Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, Contemporary Mathematics. Volume 295. American Mathematical Society, Providence, RI, USA; 2002:421–432.
Sun S, Wheeler MF: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM Journal on Numerical Analysis 2005, 43(1):195–219. 10.1137/S003614290241708X
Sun T, Yang D: A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations. Applied Mathematics and Computation 2008, 200(1):147–159. 10.1016/j.amc.2007.10.053
Sun T, Yang D: Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations. Numerical Methods for Partial Differential Equations 2008, 24(3):879–896. 10.1002/num.20294
Babuška I, Suri M: The version of the finite element method with quasi-uniform meshes. RAIRO Modélisation Mathématique et Analyse Numérique 1987, 21(2):199–238.
Babuška I, Suri M: The optimal convergence rate of the -version of the finite element method. SIAM Journal on Numerical Analysis 1987, 24(4):750–776. 10.1137/0724049
Ohm MR, Lee HY, Shin JY: Error estimates for discontinuous Galerkin method for nonlinear parabolic equations. Journal of Mathematical Analysis and Applications 2006, 315(1):132–143. 10.1016/j.jmaa.2005.07.027
Ohm MR, Lee HY, Shin JY: -error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations. submitted
Wheeler MF: A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM Journal on Numerical Analysis 1973, 10: 723–759. 10.1137/0710062
Acknowledgment
This research was supported by Dongseo University Research Grants in 2009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ohm, M., Lee, H. & Shin, J. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations.
J Inequal Appl 2010, 895187 (2010). https://doi.org/10.1155/2010/895187
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/895187
Keywords
- Galerkin Method
- Constant Independent
- Spatial Discretization
- Discrete Method
- Discrete Version