- Research Article
- Open access
- Published:
Local Boundedness of Weak Solutions for Nonlinear Parabolic Problem with
-Growth
Journal of Inequalities and Applications volume 2010, Article number: 163269 (2010)
Abstract
We study the nonlinear parabolic problem with -growth conditions in the space
and give a local boundedness theorem of weak solutions for the following equation
, where
and
satisfy
-growth conditions with respect to
and
.
1. Introduction
The study of variational problems with nonstandard growth conditions is an interesting topic in recent years. -growth problems can be regarded as a kind of nonstandard growth problems and they appear in nonlinear elastic, electrorheological fluids and other physics phenomena. Many results have been obtained on this kind of problems, for example [1–9].
Let be
, where
is given. In [8], the authors studied the following equation:

where ,
is dependent on the space variable
and the time variable
,
is the local weak solution in the space
, and the authors proved the local boundedness of the local weak solution in
. In this paper, we will study the following more general problem:



where is a given function in
and
is an elliptic operator of the form
with the coefficients
and
satisfying the classical Leray-Lions conditions. In [10], we have proved the existence of the solutions of (1.2)–(1.4) and have gotten
; in this paper we will give the local boundedness theorem of the weak solutions in the framework space
, which can be considered as a special case of the space
.
Many authors have already studied the boundedness of weak solutions of parabolic equation with -growth conditions, where
is a constant, for example [8, 11–15]. The boundedness of the weak solutions plays a central role in many aspects. Based on the boundedness, we can further study the regularity of the solutions. For example, first in [15] the author studied the equation

and got -estimates of the degenerate parabolic equation with
-growth conditions for
, where
is a constant, then in [16] the authors established the Hölder continuity of the equation for the singular case
, and in [17] the authors discussed Harnack estimates for the bounded solutions of the above parabolic equation for
.
The space provides a suitable framework to discuss some physical problems. In [18], the authors studied a functional with variable exponent,
, which provided a model for image denoising, enhancement, and restoration. Because in [18] the direction and speed of diffusion at each location depended on the local behavior,
only depended on the location
in the image. Consider that the space
was introduced and discussed in [10] and [19], we think that the space
is a reasonable framework to discuss the
-growth problem (1.2)–(1.4), where
only depends on the space variable
similar to [18].
In this paper, let and
be the operators such that for any
and
,
and
are both continuous in
for a.e.
and measurable in
for all
. They also satisfy that for a.e.
, any
and
:




where are constants.
Throughout this paper, unless special statement, we always suppose that is
-continuous on
, that is,
for every
, and satisfy


is the conjugate function of .
Definition 1.1.
A function is called a weak solution of (1.2)–(1.4) if

for all .
We will prove the following local boundedness theorem.
Theorem 1.2.
Let . If
is a nonnegative local weak solution of (1.2)–(1.4), then
is locally bounded in Q. Moreover, there exists a constant
such that for any
and any
,

where for all ,
,
,
, and
.
2. Preliminaries
We first recall some facts on spaces ,
, and
. For the details, see [19–21].
Although we assume (1.10) holds in this paper, in this section we introduce the general spaces ,
, and
.
Denote

where is an open subset.
Let be an element in
. Denote
. For
, we define

The space is

endowed with the norm

We define the conjugate function of
by

Lemma 2.1 (see [21]).
-
(1)
 The dual space of
is
if
.
-
(2)
 The space
is reflexive if and only if (1.10) is satisfied.
Lemma 2.2 (see [21]).
If ,
is dense in the space
and
is separable.
Lemma 2.3 (see [21]).
Let , for every
and
, we have

where C is only dependent on and
, not dependent on
.
Next let be an integer. For each
,
are nonnegative integers and
, and denote by
the distributional derivative of order
with respect to the variable
.
We now introduce the generalized Lebesgue-Sobolev space which is defined as


is a Banach space endowed with the norm

The space is defined as the closure of
in
. The dual space
is denoted by
equipped with the norm

where infimum is taken on all possible decompositions

Lemma 2.4 (see [21]).
(1)   and
are separable if
.
(2)   and
are reflexive if (1.10) holds.
We define the space as the following:


is a Banach space with the norm , where
is independent of
.
The space is defined as the closure of
in
, and
is continuous embedding. Let
be the number of multiindexes
which satisfies
, then the space
can be considered as a close subspace of the product space
. So if
,
is reflexive and further we can get that the space
is reflexive. The dual space
is denoted by
equipped with the norm

where infimum is taken on all possible decompositions

Next, we will introduce some results in [22].
Lemma 2.5.
Let be a sequence of positive numbers, satisfying the inequalities
, where
and
are given numbers. If
, then
converges to 0 as
.
Lemma 2.6.
There exists a constant depending only on
, such that for every
,

where .
Remark 2.7.
In [10], we have gotten that for the Galerkin solutions ,
strongly in
,
weakly in
,
weakly in
and
weakly in
.
3. Proof of the Theorem
Suppose that is a weak solution of (1.2)–(1.4), then there exists
such that

Indeed, by Young's inequality, we have

where is the Lebesgue measure of
. Since
and
, we can get
. Then by Lemma 2.6, we get

where . Thus the desired result is obtained.
We define . Fix a point
in
. Let
,
, and
. Fix
and consider the sequences

and the corresponding cylinders . It follows from the definitions that

We consider also the boxes , where for

For these boxes, we have the inclusion

We introduce the sequence of increasing levels

Let be the Galerkin solutions in [10]. Similarly, we can get
is bounded in
. Since
converges to 0 in
, by interpolation inequality, we have

where ,
. Furthermore,
strongly in
. Since
,
strongly in
. In the same way, we obtain that
strongly in
; furthermore, we get
for a.e.
.
Let and
be the smooth cutoff function satisfying

Take as the testing function in the following equation:

First, by for a.e.
and
strongly in
, we get

By Fatou's lemma, we get

Because strongly in
and
weakly in
, we get

Since strongly in
and
weakly in
, we have

Then for the remaining parts of (3.11), we get

By (1.6), (1.7), and (1.9),

As , by Young's inequality and Hölder's inequality, we have

In the same way, by and Young's inequality, we have

For a set , meas
is the Lebesgue measure of
. Let
and
. By (3.11)–(3.19), we get

Moreover, we observe that for to be determined later,

thus we get

Then for and
in (3.22), by Hölder inequality, we obtain respectively


For the integral involving , first we write
, then we obtain

By Young's inequality and (3.25), we get

Let , then
. By (3.20)–(3.24) and (3.26), we obtain

By Young's inequality,

Moreover, by (3.27), we can get

Next we define the smooth cutoff function in

For the function , by Lemma 2.6 and (3.29), we get

Finally, we define ,
Let
; by Hölder inequality, we obtain

where . Then by Lemma 2.5, we have
as
, provided
is chosen to satisfy

By , we can get
as
. Since
and
a.e. in
, by Lebesuge's theorem we get
. So we obtain
a.e. in
.
Thus we get

Remark 3.1.
In this paper, we study the boundedness of weak solution in the case . For the singular case
, the conditions in the paper are not enough. In [22], there is a counterexample in
13 of Chapter XII. The author studied the solutions of the homogeneous equation

where

and proved that the solution is unbounded in
.
Remark 3.2.
In general, we consider the equation

where


and is an elliptic operator of the form
.
and
satisfy that for a.e.
, any
and
:

where ,
, and
are constants.
Similarly, we can get the following theorem.
Theorem 3.3.
Let . If
is a nonnegative local weak solution of (3.37), (1.3), and (1.4), then
is locally bounded in Q. Moreover, there exists a constant
such that for any
and any
,

where for all ,
,
,
, and
,
.
References
Acerbi E, Mingione G: Regularity results for stationary electro-rheological fluids. Archive for Rational Mechanics and Analysis 2002, 164(3):213–259. 10.1007/s00205-002-0208-7
Acerbi E, Mingione G: Gradient estimates for the -Laplacean system. Journal für die Reine und Angewandte Mathematik 2005, 584: 117–148.
Acerbi E, Mingione G: Gradient estimates for a class of parabolic systems. Duke Mathematical Journal 2007, 136(2):285–320. 10.1215/S0012-7094-07-13623-8
Mihăilescu M, Rădulescu V: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 2007, 135(9):2929–2937. 10.1090/S0002-9939-07-08815-6
Mihăilescu M, Rădulescu V: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proceedings of the Royal Society of London A 2006, 462(2073):2625–2641. 10.1098/rspa.2005.1633
Rădulescu V: Exponential growth of a solution. The American Mathematical Monthly 2007, 114: 165–166.
Ruzicka M: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. Volume 1748. Springer, Berlin, Germany; 2000:xvi+176.
Xu M, Chen YZ: Hölder continuity of weak solutions for parabolic equations with nonstandard growth conditions. Acta Mathematica Sinica. English Series 2006, 22(3):793–806. 10.1007/s10114-005-0582-9
Zhikov VV: Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 1986, 50(4):675–710.
Fu Y, Pan N: Existence of solutions for nonlinear parabolic problem with -growth. Journal of Mathematical Analysis and Applications 2010, 362(2):313–326. 10.1016/j.jmaa.2009.08.038
Chen C: Global existence and estimates of solution for doubly nonlinear parabolic equation. Journal of Mathematical Analysis and Applications 2000, 244(1):133–146. 10.1006/jmaa.1999.6695
Chen YZ, DiBenedetto E: Boundary estimates for solutions of nonlinear degenerate parabolic systems. Journal für die Reine und Angewandte Mathematik 1989, 395: 102–131.
Cirmi GR, Porzio MM: -solutions for some nonlinear degenerate elliptic and parabolic equations. Annali di Matematica Pura ed Applicata. Serie Quarta 1995, 169: 67–86. 10.1007/BF01759349
Liu J, N'Guérékata G, Minh NV, Phong VQ: Bounded solutions of parabolic equations in continuous function spaces. Funkcialaj Ekvacioj 2006, 49(3):337–355. 10.1619/fesi.49.337
Porzio MM: -estimates for degenerate and singular parabolic equations. Nonlinear Analysis: Theory, Methods & Applications 1991, 17(11):1093–1107. 10.1016/0362-546X(91)90194-6
Chen YZ, DiBenedetto E: On the local behavior of solutions of singular parabolic equations. Archive for Rational Mechanics and Analysis 1988, 103(4):319–345.
DiBenedetto E, Gianazza U, Vespri V: Harnack estimates for quasi-linear degenerate parabolic differential equations. Acta Mathematica 2008, 200(2):181–209. 10.1007/s11511-008-0026-3
Chen Y, Levine S, Rao M: Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics 2006, 66(4):1383–1406. 10.1137/050624522
Shi SJ, Chen ST, Wang YW: Some convergence theorems in the spaces and their conjugate spaces. Acta Mathematica Sinica. Chinese Series 2007, 50(5):1081–1086.
Fan X, Zhao D: On the spaces and . Journal of Mathematical Analysis and Applications 2001, 263(2):424–446. 10.1006/jmaa.2000.7617
Kovácik O, Rákosnik J: On spaces and . Czechoslovak Mathematical Journal 1991, 41: 592–618.
DiBenedetto E: Degenerate Parabolic Equations, Universitext. Springer, New York, NY, USA; 1993:xvi+387.
Acknowledgments
This work is supported by Science Research Foundation in Harbin Institute of Technology (HITC200702), and The Natural Science Foundation of Heilongjiang Province (A2007-04) and the Program of Excellent Team in Harbin Institute of Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Fu, Y., Pan, N. Local Boundedness of Weak Solutions for Nonlinear Parabolic Problem with -Growth.
J Inequal Appl 2010, 163269 (2010). https://doi.org/10.1155/2010/163269
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/163269