Skip to content


  • Research Article
  • Open Access

Asymptotic Behavior of Solutions to Some Homogeneous Second-Order Evolution Equations of Monotone Type

Journal of Inequalities and Applications20072007:072931

  • Received: 7 November 2006
  • Accepted: 12 April 2007
  • Published:


We study the asymptotic behavior of solutions to the second-order evolution equation a.e. , , where is a maximal monotone operator in a real Hilbert space with nonempty, and and are real-valued functions with appropriate conditions that guarantee the existence of a solution. We prove a weak ergodic theorem when is the subdifferential of a convex, proper, and lower semicontinuous function. We also establish some weak and strong convergence theorems for solutions to the above equation, under additional assumptions on the operator or the function .


  • Hilbert Space
  • Asymptotic Behavior
  • Evolution Equation
  • Convergence Theorem
  • Additional Assumption


Authors’ Affiliations

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
Department of Mathematics, Tarbiat Modares University, P.O. Box, 14115-175 Tehran, Iran


  1. Barbu V: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei Republicii Socialiste România, Bucharest, Romania; Noordhoff International, Leiden, The Netherlands; 1976:352.View ArticleMATHGoogle Scholar
  2. Moroşanu G: Nonlinear Evolution Equations and Applications, Mathematics and Its Applications (East European Series). Volume 26. D. Reidel, Dordrecht, The Netherlands; Editura Academiei, Bucharest, Romania; 1988:xii+340.Google Scholar
  3. Moroşanu G: Asymptotic behaviour of solutions of differential equations associated to monotone operators. Nonlinear Analysis 1979,3(6):873–883. 10.1016/0362-546X(79)90054-3MathSciNetView ArticleMATHGoogle Scholar
  4. Mitidieri E: Asymptotic behaviour of some second order evolution equations. Nonlinear Analysis 1982,6(11):1245–1252. 10.1016/0362-546X(82)90033-5MathSciNetView ArticleMATHGoogle Scholar
  5. Mitidieri E: Some remarks on the asymptotic behaviour of the solutions of second order evolution equations. Journal of Mathematical Analysis and Applications 1985,107(1):211–221. 10.1016/0022-247X(85)90366-XMathSciNetView ArticleMATHGoogle Scholar
  6. Poffald EI, Reich S: An incomplete Cauchy problem. Journal of Mathematical Analysis and Applications 1986,113(2):514–543. 10.1016/0022-247X(86)90323-9MathSciNetView ArticleMATHGoogle Scholar
  7. Véron L: Un exemple concernant le comportement asymptotique de la solution bornée de l'équation. Monatshefte für Mathematik 1980,89(1):57–67. 10.1007/BF01571565View ArticleMATHGoogle Scholar
  8. Véron L: Problèmes d'évolution du second ordre associés à des opérateurs monotones. Comptes Rendus de l'Académie des Sciences de Paris. Série A 1974, 278: 1099–1101.MATHGoogle Scholar
  9. Véron L: Équations d'évolution du second ordre associées à des opérateurs maximaux monotones. Proceedings of the Royal Society of Edinburgh. Section A 1975/1976,75(2):131–147.Google Scholar
  10. Apreutesei NC: Second-order differential equations on half-line associated with monotone operators. Journal of Mathematical Analysis and Applications 1998,223(2):472–493. 10.1006/jmaa.1998.5960MathSciNetView ArticleMATHGoogle Scholar