- Research Article
- Open Access
- Published:
Asymptotic Behavior of Solutions to Some Homogeneous Second-Order Evolution Equations of Monotone Type
Journal of Inequalities and Applications volume 2007, Article number: 072931 (2007)
Abstract
We study the asymptotic behavior of solutions to the second-order evolution equation a.e.
,
,
where
is a maximal monotone operator in a real Hilbert space
with
nonempty, and
and
are real-valued functions with appropriate conditions that guarantee the existence of a solution. We prove a weak ergodic theorem when
is the subdifferential of a convex, proper, and lower semicontinuous function. We also establish some weak and strong convergence theorems for solutions to the above equation, under additional assumptions on the operator
or the function
.
References
Barbu V: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei Republicii Socialiste România, Bucharest, Romania; Noordhoff International, Leiden, The Netherlands; 1976:352.
MoroÅŸanu G: Nonlinear Evolution Equations and Applications, Mathematics and Its Applications (East European Series). Volume 26. D. Reidel, Dordrecht, The Netherlands; Editura Academiei, Bucharest, Romania; 1988:xii+340.
Moroşanu G: Asymptotic behaviour of solutions of differential equations associated to monotone operators. Nonlinear Analysis 1979,3(6):873–883. 10.1016/0362-546X(79)90054-3
Mitidieri E: Asymptotic behaviour of some second order evolution equations. Nonlinear Analysis 1982,6(11):1245–1252. 10.1016/0362-546X(82)90033-5
Mitidieri E: Some remarks on the asymptotic behaviour of the solutions of second order evolution equations. Journal of Mathematical Analysis and Applications 1985,107(1):211–221. 10.1016/0022-247X(85)90366-X
Poffald EI, Reich S: An incomplete Cauchy problem. Journal of Mathematical Analysis and Applications 1986,113(2):514–543. 10.1016/0022-247X(86)90323-9
Véron L: Un exemple concernant le comportement asymptotique de la solution bornée de l'équation. Monatshefte für Mathematik 1980,89(1):57–67. 10.1007/BF01571565
Véron L: Problèmes d'évolution du second ordre associés à des opérateurs monotones. Comptes Rendus de l'Académie des Sciences de Paris. Série A 1974, 278: 1099–1101.
Véron L: Équations d'évolution du second ordre associées à des opérateurs maximaux monotones. Proceedings of the Royal Society of Edinburgh. Section A 1975/1976,75(2):131–147.
Apreutesei NC: Second-order differential equations on half-line associated with monotone operators. Journal of Mathematical Analysis and Applications 1998,223(2):472–493. 10.1006/jmaa.1998.5960
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Rouhani, B.D., Khatibzadeh, H. Asymptotic Behavior of Solutions to Some Homogeneous Second-Order Evolution Equations of Monotone Type. J Inequal Appl 2007, 072931 (2007). https://doi.org/10.1155/2007/72931
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/72931
Keywords
- Hilbert Space
- Asymptotic Behavior
- Evolution Equation
- Convergence Theorem
- Additional Assumption