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We study the asymptotic behavior of solutions to the second-order evolution equation
p(t)u

′′
(t) + r(t)u

′
(t) ∈ Au(t) a.e. t ∈ (0,+∞), u(0) = u0, sup t≥0|u(t)| < +∞, where A is

a maximal monotone operator in a real Hilbert space H with A−1(0) nonempty, and
p(t) and r(t) are real-valued functions with appropriate conditions that guarantee the
existence of a solution. We prove a weak ergodic theorem when A is the subdifferential
of a convex, proper, and lower semicontinuous function. We also establish some weak
and strong convergence theorems for solutions to the above equation, under additional
assumptions on the operator A or the function r(t).

Copyright © 2007 B. D. Rouhani and H. Khatibzadeh. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
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1. Introduction

Let H be a real Hilbert space with inner product (·,·) and norm | · |. We denote weak
convergence inH by⇀ and strong convergence by→. We will refer to a nonempty subset
A of H ×H as a (nonlinear) possibly multivalued operator in H . A is called monotone
(resp., strongly monotone) if (y2− y1,x2− x1)≥ 0 (resp., (y2− y1,x2− x1)≥ β|x1− x2|2
for some β > 0) for all [xi, yi]∈A, i= 1,2.A is calledmaximalmonotone ifA is monotone
and R(I +A)=H , where I is the identity operator on H .

Existence, as well as asymptotic behavior of solutions to second-order evolution equa-
tions of the form

p(t)u′′(t) + r(t)u′(t)∈ Au(t) a.e. on R+,

u(0)= u0, sup
t≥0

∣
∣u(t)

∣
∣ < +∞, (1.1)
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in the special case p(t)≡ 1 and r(t)≡ 0, were studied by many authors, see, for example,
Barbu [1], Moroşanu [2, 3], and the references therein, Mitidieri [4, 5], Poffald and Reich
[6], and Véron [7].

Véron [8, 9] studied the existence and uniqueness of solutions to (1.1) with the fol-
lowing assumptions on p(t) and r(t):

p ∈W2,∞(0,+∞), r ∈W1,∞(0,+∞),

∃α > 0 such that∀t ≥ 0, p(t)≥ α,
(1.2)

∫ +∞

0
e−
∫ t
0 (r(s)/p(s))dsdt = +∞. (1.3)

The following theorem is proved in [9].

Theorem 1.1. Assume that A is a maximal monotone, 0 ∈ A(0), and (1.2) and (1.3) are
satisfied. Then for each u0 ∈ D(A), there exists a continuously differentiable function u ∈
H2((0,+∞);H), satisfying

p(t)u′′(t) + r(t)u′(t)∈ Au(t) a.e. on R+,

u(0)= u0, u(t)∈D(A) a.e. on R+.
(1.4)

If u (resp., v) are solutions to (1.1) with initial conditions u0 (resp., v0), then for each t ≥ 0,

∣
∣u(t)− v(t)

∣
∣≤ ∣∣u0− v0

∣
∣. (1.5)

In addition, |u(t)| is nonincreasing.
Véron [8, 9] also proved another existence theorem by assuming A to be strongly

monotone, instead of (1.3).
It is easy to show that without loss of generality, the condition 0∈ A(0) in Theorem 1.1

can be replaced by the more general assumption A−1(0) �= φ.
In Section 2, we present our main results on the asymptotic behavior of solutions to

(1.1).

2. Main results

In this section, we study the asymptotic behavior of solutions to the evolution equation
(1.1) under appropriate assumptions on the operator A and the functions p(t) and r(t),
similar to those assumed by Véron [8, 9], implying the existence of solutions to (1.1).
Throughout the paper, we assume that (1.2) holds and A−1(0) �= φ.

First we prove two lemmas.

Lemma 2.1. Assume that u(t) is a solution to (1.1). Then for each p ∈A−1(0), |u(t)− p| is
either nonincreasing, or eventually increasing.

Proof. Let p ∈ A−1(0). By monotonicity of A and (1.1), we have

(

p(t)u′′(t) + r(t)u′(t),u(t)− p
)≥ 0 a.e. on (0,+∞). (2.1)
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It follows that

p(t)
d2

dt2
∣
∣u(t)− p

∣
∣
2
+ r(t)

d

dt

∣
∣u(t)− p

∣
∣
2 ≥ 0. (2.2)

Dividing both sides of the above inequality by p(t) and multiplying by e
∫ t
0 (r(s)/p(s))ds, we

obtain

d

dt

(

e
∫ t
0 (r(s)/p(s))ds

d

dt

∣
∣u(t)− p

∣
∣
2
)

≥ 0. (2.3)

We consider two cases.
If (d/dt)|u(t)− p|2 ≤ 0 for each t > 0, then |u(t)− p|2 is nonincreasing. Otherwise,

there exists t0 > 0 such that (d/dt)|u(t)− p|2|t=t0 > 0. Integrating (2.3), we get for each
t ≥ t0 that

e
∫ t
0 (r(s)/p(s))ds

d

dt

∣
∣u(t)− p

∣
∣
2 ≥ 2e

∫ t0
0 (r(s)/p(s))ds(u′

(

t0
)

,u
(

t0
)− p

)

> 0. (2.4)

Hence, (d/dt)|u(t)− p|2 > 0 for each t > t0. This means that |u(t)− p| is eventually
increasing. �

Note that in the proof of Lemma 2.1, we did not use the boundedness of u.

Lemma 2.2. Suppose that u(t) is a solution to (1.1). Then for each p ∈ A−1(0),
limt→+∞ |u(t)− p|2 exists and liminf t→+∞(d/dt)|u(t)− p|2 ≤ 0. In addition, if either (1.3)
is satisfied or A is strongly monotone, then |u(t)− p|2 is nonincreasing.
Proof. The existence of limt→+∞ |u(t)− p|2 follows from Lemma 2.1.

By contradiction, assume that liminf t→+∞(d/dt)|u(t)− p|2 > 0. Then there exist t0 > 0
and λ > 0, such that for each t ≥ t0,

d

dt

∣
∣u(t)− p

∣
∣
2 ≥ λ. (2.5)

Integrating from t = t0 to t = T , we get

∣
∣u(T)− p

∣
∣
2−∣∣u(t0

)− p
∣
∣
2 ≥ λT − λt0. (2.6)

Letting T → +∞, we deduce that u is not bounded, a contradiction. If in addition (1.3) is
satisfied, assume that |u(t)− p| is eventually increasing. Then there exists t0 > 0 such that

(u′(t0),u(t0)− p) > 0. Dividing both sides of (2.4) by e
∫ t
0 (r(s)/p(s))ds and integrating from

t = t0 to t = T , we get

∣
∣u(T)− p

∣
∣
2−∣∣u(t0

)− p
∣
∣
2 ≥ 2e

∫ t0
0 (r(s)/p(s))ds(u′

(

t0
)

,u
(

t0
)− p

)
∫ T

t0
e−
∫ t
0 (r(s)/p(s))dsdt.

(2.7)

LettingT→+∞, we obtain a contradiction to assumption (1.3). This implies that |u(t)−p|
is nonincreasing.
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Finally, assume that A is strongly monotone, and let p ∈A−1(0). Then we have

(

p(t)u′′(t) + r(t)u′(t),u(t)− p
)≥ β

∣
∣u(t)− p

∣
∣
2
. (2.8)

This implies that

p(t)
d2

dt2
∣
∣u(t)− p

∣
∣
2
+ r(t)

d

dt

∣
∣u(t)− p

∣
∣
2 ≥ 2β

∣
∣u(t)− p

∣
∣
2
. (2.9)

Suppose to the contrary that |u(t)− p| is increasing for t ≥ T0 > 0. Let K (resp.,M) be an
upper bound for p(t) (resp., |r(t)|). Integrating both sides of this inequality from t = T0

to t = T , we get

2β
∫ T

T0

∣
∣u(t)− p

∣
∣
2
dt

≤ K
(

d

dT

∣
∣u(T)− p

∣
∣
2− 2

(

u′
(

T0
)

,u
(

T0
)− p

)

+
∫ T

T0

r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt
)

≤ K
(

d

dT

∣
∣u(T)− p

∣
∣
2− 2

(

u′
(

T0
)

,u
(

T0
)− p

)

+
M

α

∣
∣u(T)− p

∣
∣
2− M

α

∣
∣u
(

T0
)− p

∣
∣
2
)

.

(2.10)

Since |u(t)− p| is increasing for t ≥ T0 > 0, we have

2β
∣
∣u
(

T0
)− p

∣
∣
2(
T −T0

)

≤ K
(

d

dT

∣
∣u(T)− p

∣
∣
2− 2

(

u′
(

T0
)

,u
(

T0
)− p

)

+
M

α

∣
∣u(T)− p

∣
∣
2− M

α

∣
∣u
(

T0
)− p

∣
∣
2
)

.

(2.11)

Taking liminf as T → +∞ of both sides in the above inequality, by the first part of this
lemma we deduce that u(t) is unbounded, a contradiction. �

In the following, we prove a mean ergodic theorem when A is the subdifferential of a
proper, convex, and lower semicontinuous function.

Theorem 2.3. Suppose that u(t) is a solution to (1.1) andA=∂ϕ, where ϕ :H →]−∞,+∞]
is a proper, convex, and lower semicontinuous function. If (1.3) is satisfied, then σT :=
(1/T)

∫ T
0 u(t)dt⇀ p ∈ A−1(0), as T → +∞.

Proof. By the subdifferential inequality and (1.1), we get for each p ∈A−1(0) that

ϕ
(

u(t)
)−ϕ(p)≤ (p(t)u′′(t) + r(t)u′(t),u(t)− p

)

≤ p(t)
2

d2

dt2
∣
∣u(t)− p

∣
∣
2
+
r(t)
2

d

dt

∣
∣u(t)− p

∣
∣
2

= p(t)
2

e−
∫ t
0 (r(s)/p(s))ds

d

dt

(

e
∫ t
0 (r(s)/p(s))ds

d

dt

∣
∣u(t)− p

∣
∣
2
)

.

(2.12)
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Let K be an upper bound for p(t)/2. Integrating the above inequality from t = 0 to t = T ,
and using integration by parts, we get

∫ T

0

(

ϕ
(

u(t)
)−ϕ(p)

)

dt

≤ K
(

d

dT

∣
∣u(T)− p

∣
∣
2− 2

(

u′(0),u(0)− p
)

+
∫ T

0

r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt
)

≤ K
(

− 2
(

u′(0),u(0)− p
)

+
∫ T

0

r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt
)

(2.13)

(the second inequality holds by Lemma 2.2). Let R be an upper bound for |r(t)|, which
exists by assumption (1.2). Since |u(t)− p| is nonincreasing (by Lemma 2.2), we get from
(2.13) that

limsup
T→+∞

1
T

∫ T

0

(

ϕ
(

u(t)
)−ϕ(p)

)

dt

≤ limsup
T→+∞

K

T

∫ T

0

r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt

≤ −KR
α

limsup
T→+∞

1
T

[∣
∣u(T)− p

∣
∣
2−∣∣u(0)− p

∣
∣
2
]

= 0.

(2.14)

Since p ∈A−1(0) and A= ∂ϕ, p is a minimum point of ϕ. Convexity of ϕ implies that

0≤ ϕ
(

σT
)−ϕ(p)≤ 1

T

∫ T

0
ϕ
(

u(t)
)

dt−ϕ(p). (2.15)

Taking the limsup as T → +∞ in the above inequality, we get by (2.14)

limsup
T→+∞

ϕ
(

σT
)≤ ϕ(p). (2.16)

Assume that σTn ⇀ q for some sequence {Tn} converging to +∞ as n→ +∞. Since ϕ is
lower semicontinuous, we have

liminf
n→+∞ ϕ

(

σTn

)≥ ϕ(q). (2.17)

Therefore,

ϕ(p)≥ limsup
T→+∞

ϕ
(

σT
)≥ liminf

n→+∞
ϕ
(

σTn

)≥ ϕ(q). (2.18)

Hence, q ∈ A−1(0) and by Lemma 2.2 limt→+∞ |u(t)− q|2 exists. Now if p is another
weak cluster point of σT , then limt→+∞(|u(t)− p|2 − |u(t)− q|2) exists. It follows that
limt→+∞(u(t), p− q) exists, hence limT→+∞(σT , p− q) exists. This implies that p = q, and
therefore σT ⇀ p ∈A−1(0), as T → +∞. �



6 Journal of Inequalities and Applications

Theorem 2.4. Let u be a solution to (1.1). If (1.3) is satisfied and there exist t0 > 0 and a
positive constantM, such that r(t)≥−Mt−2 for t ≥ t0, then

lim
T→+∞

∣
∣
∣
∣u(T)−

1
T

∫ T

0
u(t)dt

∣
∣
∣
∣= 0. (2.19)

Proof. From (2.1), we have

∣
∣u′(t)

∣
∣
2 ≤ 1

2
d2

dt2
∣
∣u(t)− p

∣
∣
2
+
1
2
r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
. (2.20)

Multiplying both sides of the above inequality by t2, integrating from t = 0 to t = T , and
dividing by T , since |u(t)− p|2 is nonincreasing, we get after integration by parts that

1
T

∫ T

0
t2
∣
∣u′(t)

∣
∣
2
dt ≤−∣∣u(T)−p

∣
∣
2
+
1
T

∫ T

0

∣
∣u(t)−p

∣
∣
2
dt+

1
2T

∫ T

0

t2r(t)
p(t)

d

dt

∣
∣u(t)−p

∣
∣
2
dt.

(2.21)

Since |u(t)− p|2 is nonincreasing (by Lemma 2.2), r(t) ≥ −Mt−2 for t ≥ t0, and p(t) is
bounded from below and by α, we get

limsup
T→+∞

1
T

∫ T

0
t2
∣
∣u′(t)

∣
∣
2
dt ≤ limsup

T→+∞

1
2T

∫ T

0

t2r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt

≤ −M
2α

limsup
T→+∞

1
T

[∣
∣u(T)− p

∣
∣
2−∣∣u(t0

)− p
∣
∣
2
]

= 0.

(2.22)

Integrating by parts and using the Cauchy-Schwartz inequality, we have

∣
∣
∣
∣u(t)−

1
t

∫ t

0
u(s)ds

∣
∣
∣
∣

2

=
∣
∣
∣
∣

1
t

∫ t

0
su′(s)ds

∣
∣
∣
∣

2

≤
(
1
t

∫ t

0
s
∣
∣u′(s)

∣
∣ds
)2

≤ 1
t2

(∫ t

0
ds
)(∫ t

0
s2
∣
∣u′(s)

∣
∣
2
ds
)

= 1
t

∫ t

0
s2
∣
∣u′(s)

∣
∣
2
ds.

(2.23)

Thus by (2.22),

limsup
t→+∞

∣
∣
∣
∣u(t)−

1
t

∫ t

0
u(s)ds

∣
∣
∣
∣

2

≤ limsup
t→+∞

1
t

∫ t

0
s2
∣
∣u′(s)

∣
∣
2
ds= 0. (2.24)

�

As a corollary to Theorem 2.4, we have the following weak convergence theorem.

Theorem 2.5. Suppose that the assumptions in Theorems 2.3 and 2.4 are satisfied. Then
u(t)⇀ p ∈ A−1(0) as t→ +∞.

In our next theorem, we prove the strong convergence of u by assuming A to be
strongly monotone.

Theorem 2.6. Assume that the operator A is strongly monotone, and let u be a solution to
(1.1). Then u(t) converges strongly to p ∈A−1(0) as t→ +∞.
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Proof. By the strong monotonicity of A, and for p ∈ A−1(0) (in this case A−1(0) is a
singleton), we have

(

p(t)u′′(t) + r(t)u′(t),u(t)− p
)≥ β

∣
∣u(t)− p

∣
∣
2
. (2.25)

Let K be an upper bound for p(t). Integrating this inequality from t = 0 to t = T and
using Lemma 2.2, we obtain

2β
∫ T

0

∣
∣u(t)−p

∣
∣
2
dt≤K

(
d

dT

∣
∣u(T)−p

∣
∣
2−2(u′(0),u(0)−p

)

+
∫ T

0

r(t)
p(t)

d

dt

∣
∣u(t)−p

∣
∣
2
dt
)

.

(2.26)

Let R be an upper bound for |r(t)|, which exists by assumption (1.2). Dividing both sides
of this inequality by T and using Lemma 2.2, we get

2β lim
T→+∞

∣
∣u(T)− p

∣
∣
2 = limsup

T→+∞

β

T

∫ T

0

∣
∣u(t)− p

∣
∣
2
dt

≤ limsup
T→+∞

K

T

∫ T

0

r(t)
p(t)

d

dt

∣
∣u(t)− p

∣
∣
2
dt

≤ −KR
α

limsup
T→+∞

1
T

[∣
∣u(T)− p

∣
∣
2−∣∣u(0)− p

∣
∣
2
]

= 0.

(2.27)

This completes the proof of the theorem. �

Now, we apply our results to an example presented by Véron [8] and Apreutesei [10].

Example 2.7. LetH = L2(Ω) whereΩ⊆Rn is a bounded domain with smooth boundary
Γ. Let j : R→ (−∞,+∞] be proper, convex, and lower semicontinuous and β = ∂ j. We
assume for simplicity that 0∈ β(0). Define

Au=−Δu=−
n
∑

i=1

∂2u

∂x2i
(2.28)

with

D(A)=
{

u∈H2(Ω),
−∂u
∂η

(x)∈ β
(

u(x)
)

a.e. on Γ
}

, (2.29)

where ((∂u/∂η)(x)) is the outward normal derivative to Γ at x ∈ Γ. We know that A= ∂φ,
where φ : L2(Ω)→ (−∞,+∞] is the Brézis functional:

φ(u)=
⎧

⎪⎨

⎪⎩

1
2

∫

Ω
|∇u|2dx+

∫

Γ
β
(

u(x)
)

dσ if u∈H1(Ω), β(u)∈ L1(Γ),

+∞ otherwise.
(2.30)
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Consider the following equation:

p(t)
∂2u

∂t2
(t,x) + r(t)

∂u

∂t
(t,x) +

∑

i

∂2u

∂x2i
(t,x)= 0 a.e. on R+×Ω,

−∂u

∂η
(t,x)∈ βu(t,x) a.e. on R+×Γ,

u(0,x)= u0(x) a.e. on Ω.

(2.31)

Assume that p(t) and r(t) are real functions satisfying (1.2) and (1.3). Then Theorem 2.3
implies the weak mean ergodic convergence of u(t,·). In addition, if r(t) ≥ −Mt−2

eventually, Corollary 2.5 implies the weak convergence of the solution to the above equa-
tion.
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