Skip to main content

Slowly Oscillating Solutions for Differential Equations with Strictly Monotone Operator

Abstract

The authors discuss necessary and sufficient conditions for the existence and uniqueness of slowly oscillating solutions for the differential equation with strictly monotone operator. Particularly, the authors give necessary and sufficient conditions for the existence and uniqueness of slowly oscillating solutions for the differential equation, where denotes the gradient of the convex function on.

[12345678910111213]

References

  1. 1.

    Biroli M: Sur les solutions bornées ou presque périodiques des équations d'évolution multivoques sur un espace de Hilbert. Ricerche di Matematica 1972, 21: 17–47.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Dafermos CM: Almost periodic processes and almost periodic solutions of evolution equations. In Dynamical Systems (Proc. Internat. Sympos., Univ. Florida, Gainesville, Fla., 1976). Academic Press, New York, NY, USA; 1977:43–57.

    Google Scholar 

  3. 3.

    Haraux A: Nonlinear Evolution Equations—Global Behavior of Solutions, Lecture Notes in Mathematics. Volume 841. Springer, Berlin, Germany; 1981:xii+313.

    Google Scholar 

  4. 4.

    Huang FL: Existence of almost periodic solutions for dissipative differential equations. Annals of Differential Equations 1990,6(3):271–279.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Ishii H: On the existence of almost periodic complete trajectories for contractive almost periodic processes. Journal of Differential Equations 1982,43(1):66–72. 10.1016/0022-0396(82)90074-2

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cieutat P: Necessary and sufficient conditions for existence and uniqueness of bounded or almost-periodic solutions for differential systems with convex potential. Differential and Integral Equations 2005,18(4):361–378.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Slyusarchuk VE: Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations. Acta Applicandae Mathematicae 2001,65(1–3):333–341.

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Sarason D: Remotely almost periodic functions. In Proceedings of the Conference on Banach Algebras and Several Complex Variables (New Haven, Conn., 1983), 1984, Providence, RI, USA, Contemporary Mathematics. Volume 32. American Mathematical Society; 237–242.

  9. 9.

    Zhang C: Almost Periodic Type Functions and Ergodicity. Science Press, Beijing, China; 2003:xii+355.

    Google Scholar 

  10. 10.

    Zhang C: New limit power function spaces. IEEE Transactions on Automatic Control 2004,49(5):763–766. 10.1109/TAC.2004.825970

    Article  Google Scholar 

  11. 11.

    Zhang C: Strong limit power functions. The Journal of Fourier Analysis and Applications 2006,12(3):291–307. 10.1007/s00041-006-6004-2

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Zhang C, Meng C: -algebra of strong limit power functions. IEEE Transactions on Automatic Control 2006,51(5):828–831. 10.1109/TAC.2006.875016

    MathSciNet  Article  Google Scholar 

  13. 13.

    Arendt W, Batty CJK, Hieber M, Neubrander F: Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics. Volume 96. Birkhäuser, Basel, Switzerland; 2001:xii+523.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuanyi Zhang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhang, C., Guo, Y. Slowly Oscillating Solutions for Differential Equations with Strictly Monotone Operator. J Inequal Appl 2007, 060239 (2007). https://doi.org/10.1155/2007/60239

Download citation

Keywords

  • Differential Equation
  • Convex Function
  • Monotone Operator
  • Strictly Monotone
\