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1. Introduction

In this paper, we will consider the following differential equation:

u′ +F(u)= h(t), (1.1)

where the maps h :R→ RN and F :RN → RN are continuous. A special class, of the dis-
sipative equation (1.1), is the case where the field F is derived from a convex potential
Φ:

u′ +�Φ(u)= h(t). (1.2)

For the dissipative equation (1.1), Biroli [1], Dafermos [2], Haraux [3], Huang [4], and
Ishii [5] have given important contributions to the question of almost periodic solu-
tions which are valid even for the abstract evolution equations. In [6], Philippe Cieutat
gives necessary and sufficient conditions for the existence and uniqueness of the bounded
(resp., almost periodic) solution of (1.2) when the forcing term h(t) is bounded (resp.,
almost periodic). In the scalar case N = 1, Slyusarchuk established similar results in [7].
But the conditions which are established in [6] for (1.2) do not hold for (1.1), even in
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the linear case. So in [6] Cieutat also gives a sufficient condition, then a necessary condi-
tion, for the existence and uniqueness of the bounded (resp., almost periodic) solution of
(1.1).

The numerical space RN is endowed with its standard inner product
∑N

k=1 xk yk, | · |
denotes the associated Euclidian norm. We denote by BC(RN ) the Banach space of con-
tinuous bounded functions fromR toRN endowed with the norm ‖u‖∞ := supt∈R |u(t)|.
When k is a positive integer, BCk(RN ) is the space of functions in BC(RN )

⋂
Ck(RN ) such

that all their derivatives, up to order k, are bounded functions.When u∈ BC1(RN ), we set
‖u‖c1 = ‖u‖∞ +‖u′‖∞ and when u∈ BC2(RN ), we set ‖u‖c2 = ‖u‖∞ +‖u′‖∞ +‖u′′‖∞.

In 1984, Sarason in [8] extended almost periodic functions and introduced the defi-
nition of remotely periodic functions. The space of remotely periodic functions, as a C∗-
subalgebra of BC(RN ), is generated by almost periodic functions and slowly oscillating
functions which are defined as following.

Definition 1.1 [8]. A function f ∈ BC(RN ) is said to be slowly oscillating if

lim
|t|→+∞

∣
∣ f (t+ a)− f (t)

∣
∣= 0, for each a∈R, (1.3)

the set of all these functions is denoted by SO(RN ).

Comparing with the space AP(R) of almost periodic functions, the space of slowly
oscillating functions is quite large. In fact, AP(R)= span{eiλt : λ∈R}, where the closure
is taken in BC(R) (e.g., see [9] for details). SO(R) not only contains such space as C0(R)
which consists of all the functions f such that f (t)→ 0 as |t| → ∞, but also properly
contains X = span{eiλtα : λ ∈ R, 0 < α < 1} (see [10–12] for details). The only functions
in AP(R)∩ SO(R) are the constant functions on R. We also point out that the slowly
oscillating functions SO(RN ) studied here form a strict subset of the slowly oscillating
functions studied on [13, page 250, Definition 4.2.1]. Thus, all functions in SO(RN ) are
uniformly continuous.

To our knowledge, nobody has investigated the existence and uniqueness of slowly os-
cillating solutions for the differential equation (1.1). So in this paper, we give a sufficient,
then a necessary condition for the existence and uniqueness of slowly oscillating solutions
for the differential equation (1.1). We will give sufficient and necessary conditions for the
existence and uniqueness of slowly oscillating solutions for differential equation (1.2).

To show the main results of the paper, we need the following definition and lemma.

Definition 1.2. A function F :RN →RN is said to be strictly monotone on RN if (F(x1)−
F(x2),x1− x2) > 0 for all x1,x2 ∈RN such that x1 
= x2.

Lemma 1.3 [6]. Let F : RN → RN be a continuous and strictly monotone map. Then for
every compact subset K of RN and for every ε > 0, there exists c > 0 such that

(
F
(
x1
)−F

(
x2
)
,x1− x2

)
> c
∣
∣x1− x2

∣
∣2 (1.4)

for all x1,x2 ∈ K such that

∣
∣x1− x2

∣
∣≥ ε. (1.5)
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2. Main results

For each u ∈ BC1(RN ), the function t → u′(t) + F(u(t)) belongs to BC(RN ), so we can
define the operator �1 : BC1(RN )→ BC0(RN ) with �1(u)(t) := u′(t) +F(u(t)) for all u∈
BC1(RN ) and t ∈ R. Let SO1(RN ) = SO(RN )

⋂
C1(RN ) and ‖u‖c1 = ‖u‖∞ + ‖u′‖∞ for

u∈ SO1(RN ). Set �2 =�1|SO1(RN ).
Consider the following assertions:
(A) F is a strictly monotone map on RN such that

lim
|x|→∞

(
F(x),x

)

|x| = +∞; (2.1)

(B) �2 : (SO1(RN ),‖ · ‖C1 )→ (SO(RN ),‖ · ‖∞) is a homeomorphism;
(C) F : (RN ,| · |)→ (RN ,| · |) is a homeomorphism.

Theorem 2.1. Let F :RN →RN be a continuous map. Then the following implications hold:
(A)⇒(B)⇒(C).

Proof. By [6], (A) implies that �1 : (BC1(RN ),‖ · ‖C1 )→ (BC(RN ),‖ · ‖∞) is a home-
omorphism. That is, (1.1) has for each h from SO(RN ) a unique solution u(t) from
SO1(RN ), which depends continuously on h. To show (A)⇒(B), it remains to show u ∈
SO(RN ) if h∈ SO(RN ).

Suppose, by the way of contradiction, u(t) 
∈ SO(RN ). Then there exist a0,ε0 > 0 and
sequence tn→∞ such that

∣
∣u
(
tn + a0

)−u
(
tn
)∣
∣≥ ε0. (2.2)

Without loss of generality, we can assume tn− tn−1→ +∞.
Since u(t)∈ BC1(RN ), u(t) is uniformly continuous onR. Then there exists δ > 0 such

that

∣
∣u
(
t+ a0

)−u(t)
∣
∣≥ ε0

2
, ∀t ∈ p′n, (2.3)

where P′n = (tn− δ, tn + δ).
Set

Pn =
(
tn− δ, tn

)
, In =

[
tn−1, tn

]
,

Cn =
{

s∈ In :
∣
∣u
(
s+ a0

)−u(s)
∣
∣≥ ε0

2

}

, C′n =
{

s∈ In :
∣
∣u
(
s+ a0

)−u(s)
∣
∣ <

ε0
2

}

(2.4)

and put

Φ(t)= u
(
t+ a0

)−u(t). (2.5)

Obviously Pn ⊂ Cn.
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Let K = u(R). Note that u(t) is bounded on RN and therefore, K is a compact subset
of RN . By Lemma 1.3 there exists co such that

(
F
(
u
(
s+ ao

))−F
(
u(s)

)
,u
(
s+ ao

)−u(s)
)≥ co

∣
∣u
(
s+ ao

)−u(s)
∣
∣2 (2.6)

for each s∈ Cn.
Note
∫ tn

tn−1
d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

ds= 1
2

∣
∣Φ
(
tn
)∣
∣2 · e2c0 tn − 1

2

∣
∣Φ
(
tn−1

)∣
∣2 · e2c0 tn−1 . (2.7)

At the same time, we also have
∫ tn

tn−1
d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

ds=
∫

Cn

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

ds+
∫

C′n

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

ds.

(2.8)

Case 1. s∈ Cn, that is,

∣
∣u
(
s+ a0

)−u(s)
∣
∣≥ ε0

2
. (2.9)

We can get

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2
)

= (Φ(s)′,Φ(s)
)

= (h(s+ a0
)−h(s),Φ(s)

)− (F(u(s+ a0
))−F

(
u(s)

)
,Φ(s)

)
.

(2.10)

By (2.6), we can obtain

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2
)

≤ ∣∣h(s+ ao
)−h(s)

∣
∣ ·∣∣Φ(s)

∣
∣− c0

∣
∣Φ(s)

∣
∣2. (2.11)

Also we can see

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

= (Φ′(s),Φ(s)
) · e2c0 s + c0e

2c0 s ·∣∣Φ(s)
∣
∣2. (2.12)

By (2.11), we deduce

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

≤ ∣∣h(s+ ao
)−h(s)

∣
∣ ·∣∣Φ(s)

∣
∣ · e2c0 s. (2.13)

Case 2. s∈ C′n, that is,

∣
∣u
(
s+ a0

)−u(s)
∣
∣ <

ε0
2
. (2.14)

Moreover, one has

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

= (Φ′(s),Φ(s)
) · e2c0 s + c0e

2c0 s ·∣∣Φ(s)
∣
∣2, (2.15)

(
Φ(s)′,Φ(s)

)= (h(s+ a0
)−h(s),Φ(s)

)− (F(u(s+ a0
))−F

(
u(s)

)
,Φ(s)

)
. (2.16)
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For F is strictly monotone on RN , we can deduce

(
F
(
u
(
s+ a0

))−F
(
u(s)

)
,Φ(s)

)
> 0. (2.17)

Moreover, by (2.17) and (2.16) one has

(
Φ(s)′,Φ(s)

)
<
∣
∣Φ(s)

∣
∣ ·∣∣h(s+ a0

)−h(s)
∣
∣ <

ε0
2

∣
∣h
(
s+ a0

)−h(s)
∣
∣. (2.18)

By (2.15) and (2.18), we can get

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

<
ε0
2

∣
∣h
(
s+ a0

)−h(s)
∣
∣ · e2c0 s + ε20

4
c0e

2c0 s. (2.19)

Considering the above two cases, one has

1
2

∣
∣Φ
(
tn
)∣
∣2 · e2c0 tn − 1

2

∣
∣Φ
(
tn−1

)∣
∣2 · e2c0 tn−1

=
∫ tn

tn−1

d

ds

(
1
2

∣
∣Φ(s)

∣
∣2e2c0 s

)

ds

<
∫

Cn

∣
∣h
(
s+ ao

)−h(s)
∣
∣ ·∣∣Φ(s)

∣
∣ · e2c0 sds

+
∫

C′n

(
ε0
2

∣
∣h
(
s+ a0

)−h(s)
∣
∣+

ε20
4
c0

)

· e2c0 sds

≤ sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣ · sup

t∈In

∣
∣Φ(t)

∣
∣ ·
∫

Cn

e2c0 sds

+
(
ε0
2
sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣+

ε20
4
c0

)

·
∫

C′n
e2c0 sds.

(2.20)

Since

∫

Cn

e2c0 sds≤
∫ tn

tn−1
e2c0 sds,

∫

C′n
e2c0 sds≤

∫ tn

tn−1
e2c0 sds−

∫ tn

tn−δ
e2c0 sds,

(2.21)

one has

1
2

∣
∣Φ
(
tn
)∣
∣2 · e2c0 tn − 1

2

∣
∣Φ
(
tn−1

)∣
∣2 · e2c0 tn−1

≤ sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣ · sup

t∈In

∣
∣Φ(t)

∣
∣ ·
∫ tn

tn−1
e2c0 sds

+
(
ε0
2
sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣+

ε20
4
c0

)

·
(∫ tn

tn−1
e2c0 sds−

∫ tn

tn−δ
e2c0 sds

)

.

(2.22)
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So, we can get

1
2

∣
∣Φ
(
tn
)∣
∣2 · e2c0 tn − 1

2

∣
∣Φ
(
tn−1

)∣
∣2 · e2c0 tn−1

≤ sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣ · sup

t∈In

∣
∣Φ(t)

∣
∣ · 1

2c0

(
e2c0 tn − e2c0 tn−1

)

+
(
ε0
2
sup
t∈In

∣
∣h
(
t+a0

)−h(t)∣∣+ ε20
4
c0

)

·
[
1
2c0

(
e2c0 tn−e2c0 tn−1)−e2c0 (tn−δ)·(e2c0 δ−1)· 1

2c0

]

.

(2.23)

That is,

1
2

∣
∣Φ
(
tn
)∣
∣2 · e2c0 tn − 1

2

∣
∣Φ
(
tn−1

)∣
∣2 · e2c0 tn−1

≤ sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣

·
[
e2c0 tn − e2c0 tn−1

2c0
· sup
t∈In

∣
∣Φ(t)

∣
∣+

ε0
2
·
(
e2c0 tn − e2c0 tn−1

2c0
−
(
e2c0 δ − 1

)

2c0
· e2c0 (tn−δ)

)]

+
(
ε20
(
e2c0 tn − e2c0 tn−1

)

8
− ε20

(
e2c0 δ − 1

)

8
· e2c0 (tn−δ)

)

.

(2.24)

Thus,

sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣

≥
1
2

∣
∣Φ
(
tn
)∣
∣2·e2c0 tn− 1

2

∣
∣Φ
(
tn−1

)∣
∣2·e2c0 tn−1− ε20

(
e2c0 tn−e2c0 tn−1)

8
+
ε20
(
e2c0δ − 1

)

8
·e2c0 (tn−δ)

supt∈In
∣
∣Φ(t)

∣
∣· 1

2c0

(
e2c0 tn−e2c0 tn−1)+ ε0

2
·
[
1
2c0

(
e2c0 tn−e2c0 tn−1)−e2c0 (tn−δ)·(e2c0 δ−1)· 1

2c0

]

=
(
4c0
∣
∣Φ
(
tn
)∣
∣2−ε20c0

)·e2c0 tn−(4c0
∣
∣Φ
(
tn−1

)∣
∣2−ε20c0

)·e2c0 tn−1 + ε20c0
(
e2c0δ − 1

) · e2c0 (tn−δ)
(
4supt∈In

∣
∣Φ(t)

∣
∣+2ε0

) · (e2c0 tn − e2c0 tn−1
)− 2ε0

(
e2c0δ − 1

) · e2c0 (tn−δ)

≥
(
4c0
∣
∣Φ
(
tn
)∣
∣2−ε20c0

)·e2c0 tn−(4c0
∣
∣Φ
(
tn−1

)|2−ε20c0
)·e2c0 tn−1 + ε20c0

(
e2c0δ − 1

) · e2c0 (tn−δ)
(
4supt∈In

∣
∣Φ(t)

∣
∣+2ε0

) · (e2c0 tn − e2c0 tn−1
)

=
(
4c0
∣
∣Φ
(
tn
)∣
∣2− ε20c0

)− (4c0
∣
∣Φ
(
tn−1

)∣
∣2− ε20c0

) · e2c0 (tn−1−tn) + ε20c0
(
e2c0 δ − 1

) · e−2c0 δ
(
4supt∈In

∣
∣Φ(t)

∣
∣+2ε0

) · (1− e2c0 (tn−1−tn)
) .

(2.25)

Since Φ(t) = u(t + a0)− u(t) and the solution u(t) is bounded, then we can assume
∃M > 0, such that

∣
∣Φ(t)

∣
∣ <M, for each t ∈R. (2.26)
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Also we have

∣
∣Φ
(
tn
)∣
∣2 ≥ ε20

4
, for tn ∈ Cn. (2.27)

Then

sup
t∈In

∣
∣h
(
t+ a0

)−h(t)
∣
∣≥ −

(
4c0M2− ε20c0

) · e2c0 (tn−1−tn) + ε20c0
(
e2c0 δ − 1

) · e−2c0 δ
(
4M +2ε0

) · (1− e2c0 (tn−1−tn)
) .

(2.28)

When n→ +∞, one has

tn− tn−1 −→ +∞, e2c0 (tn−1−tn) −→ 0. (2.29)

So

lim
t→+∞

∣
∣h
(
t+ a0

)−h(t)
∣
∣ >

1
2
· ε

2
0c0
(
e2c0 δ − 1

) · e−2c0 δ
4M +2ε0

= ε20c0
(
e2c0 δ − 1

)

2e2c0δ
(
4M +2ε0

) > 0. (2.30)

This contradicts the fact h(t)∈ SO(RN ). We must have u(t)∈ SO(RN ).
Finally we show that

(B)=⇒ (C). (2.31)

If we denote by � the set of constant mapping from R to RN , one has � ⊂ SO1(RN )
and for u∈�, the function �3(u)∈ SO(RN )(�3(u)= F(u(0)), for all t ∈R), so we can
define the restriction operator of �3 to � by �4 : �→ � with �4(u) = F(u(0)) for all
u∈� and all t ∈R. For u∈�, one has ‖u‖C1 = |u(0)| and ‖�3(u)‖∞ = |F(u(0))|; then
it is equivalent to prove �4 or F is a homeomorphism. It remains to prove that �4 is
surjective. Let h ∈ �. By hypothesis, there exists u ∈ SO1(RN ) such that �3(u) = h. we
want to prove that u∈�. For that we denote by ua(t)= u(t+ a) for all t and a∈R. Note
that �3(ua) = h for all a ∈ R. By injectivity of �3, we deduce that ua(t) = u(t) for all
a∈R, therefore u∈�.

Remark 2.2. The following example constructed in [6] can be used to show that Asser-
tion (A) is not a necessary condition for the existence or the uniqueness of a bounded or
slowly oscillating solution of (1.1). Consider the map F :R2 →R2 defined by F(x1,x2)=
Bx = (−x2,x1 + x2). The map F is monotone and does not satisfy (A). However, the
eigenvalues of B are conjugate and their real parts are equal to 1/2, therefore the lin-
ear system u′ +Bu= 0 has an exponential dichotomy: namely, there exists k > 0 such that
‖exp(−Bt)‖L(R) ≤ k exp(−t/2) for all t ≥ 0. As a consequence, the system u′ +Bu= 0 has
precisely one bounded solution on R: u= 0; this implies the injectivity of �1. Moreover,
the following function u(t) := ∫ t−∞ exp(−B(t− s))h(s)ds is a solution of u′ + Bu = h for
h ∈ BC(RN ) and satisfies |u(t)| ≤ 2k‖h‖∞ for all t ∈ R; this implies the surjectivity of
�1. Since �1 is a bounded linear map between Banach spaces, which is bijective, then �1

is an isomorphism between BC1(R2) and BC(RN ). To show that (B) holds in this case, it
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remains to show that u∈ SO(R2) if h∈ SO(R2). In fact, for a∈R

∣
∣u(t+ a)−u(t)

∣
∣=

∣
∣
∣
∣

∫ t+a

−∞
exp

(−B(t+ a− s)
)
h(s)ds−

∫ t

−∞
exp

(−B(t− s)
)
h(s)ds

∣
∣
∣
∣

≤
∫ t

−∞
exp

(−B(t− s)
)∣
∣h(s+ a)−h(s)

∣
∣ds.

(2.32)

It follows that |u(t + a)− u(t)| → 0 as t →−∞. Since h ∈ SO(R2), for ε > 0 there exists
t0 > 0 such that |h(t+ a)−h(t)| < ε for all t > t0. Now

∣
∣u(t+ a)−u(t)

∣
∣≤

(∫ t0

−∞
+
∫ t

t0

)

exp
(−B(t− s)

)∣
∣h(s+ a)−h(s)

∣
∣ds

≤ 2‖h‖∞
∫ t0

−∞
exp

(−B(t− s)
)
ds+ ε

∫ t

t0
exp

(−B(t− s)
)
ds

(2.33)

and therefore, u(t+ a)−u(t)→ 0 as t→ +∞. This shows that u∈ SO(R2).

Remark 2.3. The following example constructed also in [6] can be used to show that (C)
is not a sufficient condition for the existence of slowly oscillating solution of (1.1) even
when F is a linear monotone map. Consider the map F :R2→R2 defined by F(x1,x2) :=
Ax = (−x2,x1). F is a homeomorphism and a monotone map. Let v = (sin t, cos t). Then
v′ +Av = 0. Let f be any continuously differentiable function on R such that f (t)= t1/3

for |t| > 1 and let h(t)= f ′(t)v(t). Since h(t)→ 0 as |t| →∞, h∈ SO(R2). The equation
u′ +Au= h has no bounded solution, because u(t)= f (t)v(t) is an unbounded solution,
therefore �2 is not surjective.

Nevertheless, for (1.2) we have the following result.

Theorem 2.4. Let Φ be a convex and continuously differentiable function on RN . Assume
that F =�Φ. Then (A), (B), and (C) are equivalent.

We have already shown that (A)⇒(B)⇒(C) in Theorem 2.1. The equivalence of (A)
and (C) is [6, Theorem 1.1]. �
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