Skip to main content

Volterra-Type Operators on Zygmund Spaces

Abstract

The boundedness and the compactness of the two integral operators;, where is an analytic function on the open unit disk in the complex plane, on the Zygmund space are studied.

[12345678910111213141516171819]

References

  1. 1.

    Duren PL: Theory of Hp Spaces, Pure and Applied Mathematics. Volume 38. Academic Press, New York, NY, USA; 1970:xii+258.

    Google Scholar 

  2. 2.

    Pommerenke Ch: Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Commentarii Mathematici Helvetici 1977,52(4):591–602.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Aleman A, Siskakis AG: An integral operator on. Complex Variables. Theory and Application 1995,28(2):149–158. 10.1080/17476939508814844

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Aleman A, Siskakis AG: Integration operators on Bergman spaces. Indiana University Mathematics Journal 1997,46(2):337–356.

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Aleman A, Cima JA: An integral operator on and Hardy's inequality. Journal d'Analyse Mathématique 2001, 85: 157–176.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Benke G, Chang D-C: A note on weighted Bergman spaces and the Cesàro operator. Nagoya Mathematical Journal 2000, 159: 25–43.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chang D-C, Gilbert R, Tie J: Bergman projection and weighted holomorphic functions. In Reproducing Kernel Spaces and Applications, Oper. Theory Adv. Appl.. Volume 143. Birkhäuser, Basel, Switzerland; 2003:147–169.

    Google Scholar 

  8. 8.

    Chang D-C, Stević S: The generalized Cesàro operator on the unit polydisk. Taiwanese Journal of Mathematics 2003,7(2):293–308.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Hu Z: Extended Cesàro operators on mixed norm spaces. Proceedings of the American Mathematical Society 2003,131(7):2171–2179. 10.1090/S0002-9939-02-06777-1

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hu Z: Extended Cesáro operators on the Bloch space in the unit ball of . Acta Mathematica Scientia. Series B. English Edition 2003,23(4):561–566.

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Li S: Riemann-Stieltjes operators from spaces to-Bloch spaces on the unit ball. Journal of Inequalities and Applications 2006, 2006: 14 pages.

    Article  Google Scholar 

  12. 12.

    Li S, Stević S: Reimann-Stieltjies type integral operators on the unit ball in . Complex Variables Elliptic Functions 2007., 2:

    Google Scholar 

  13. 13.

    Siskakis AG, Zhao R: A Volterra type operator on spaces of analytic functions. In Function Spaces (Edwardsville, IL, 1998), Contemp. Math.. Volume 232. American Mathematical Society, Providence, RI, USA; 1999:299–311.

    Google Scholar 

  14. 14.

    Stević S: Cesàro averaging operators. Mathematische Nachrichten 2003,248/249(1):185–189. 10.1002/mana.200310013

    Article  Google Scholar 

  15. 15.

    Stević S: On an integral operator on the unit ball in . Journal of Inequalities and Applications 2005,2005(1):81–88. 10.1155/JIA.2005.81

    MATH  Google Scholar 

  16. 16.

    Stević S: Boundedness and compactness of an integral operator on a weighted space on the polydisc. Indian Journal of Pure and Applied Mathematics 2006,37(6):343–355.

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Tamrazov PM: Contour and solid structure properties of holomorphic functions of a complex variable. Russian Mathematical Surveys 1973,28(1):141–1731. 10.1070/RM1973v028n01ABEH001398

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Cowen CC, MacCluer BD: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, Fla, USA; 1995:xii+388.

    Google Scholar 

  19. 19.

    Madigan K, Matheson A: Compact composition operators on the Bloch space. Transactions of the American Mathematical Society 1995,347(7):2679–2687. 10.2307/2154848

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Songxiao Li.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Li, S., Stević, S. Volterra-Type Operators on Zygmund Spaces. J Inequal Appl 2007, 032124 (2007). https://doi.org/10.1155/2007/32124

Download citation

Keywords

  • Analytic Function
  • Complex Plane
  • Integral Operator
  • Unit Disk
  • Open Unit
\