Skip to main content

Hybrid Steepest Descent Method with Variable Parameters for General Variational Inequalities

Abstract

We study the strong convergence of a hybrid steepest descent method with variable parameters for the general variational inequality (GVI). Consequently, as an application, we obtain some results concerning the constrained generalized pseudoinverse. Our results extend and improve the result of Yao and Noor (2007) and many others.

[12345678910111213141516171819202122]

References

  1. 1.

    Stampacchia G: Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus de l'Académie des Sciences 1964, 258: 4413–4416.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Kinderlehrer D, Stampacchia G: An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics. Volume 88. Academic Press, New York, NY, USA; 1980:xiv+313.

    Google Scholar 

  3. 3.

    Noor MA: General variational inequalities. Applied Mathematics Letters 1988,1(2):119–122. 10.1016/0893-9659(88)90054-7

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Noor MA: Some developments in general variational inequalities. Applied Mathematics and Computation 2004,152(1):199–277. 10.1016/S0096-3003(03)00558-7

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Noor MA, Noor KI: Self-adaptive projection algorithms for general variational inequalities. Applied Mathematics and Computation 2004,151(3):659–670. 10.1016/S0096-3003(03)00368-0

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Noor MA: Wiener-Hopf equations and variational inequalities. Journal of Optimization Theory and Applications 1993,79(1):197–206. 10.1007/BF00941894

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Yao Y, Noor MA: On modified hybrid steepest-descent methods for general variational inequalities. Journal of Mathematical Analysis and Applications 2007,334(2):1276–1289. 10.1016/j.jmaa.2007.01.036

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Glowinski R: Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer, New York, NY, USA; 1984:xv+493.

    Google Scholar 

  9. 9.

    Jaillet P, Lamberton D, Lapeyre B: Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae 1990,21(3):263–289. 10.1007/BF00047211

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Zeidler E: Nonlinear Functional Analysis and Its Applications. III: Variational Methods and Optimization. Springer, New York, NY, USA; 1985:xxii+662.

    Google Scholar 

  11. 11.

    Yamada I: The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings. In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000). Volume 8. Edited by: Butnariu D, Censor Y, Reich S. North-Holland, Amsterdam, The Netherlands; 2001:473–504.

    Google Scholar 

  12. 12.

    Xu HK, Kim TH: Convergence of hybrid steepest-descent methods for variational inequalities. Journal of Optimization Theory and Applications 2003,119(1):185–201.

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Zeng LC, Wong NC, Yao JC: Convergence of hybrid steepest-descent methods for generalized variational inequalities. Acta Mathematica Sinica 2006,22(1):1–12.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Noor MA: Wiener-Hopf equations and variational inequalities. Journal of Optimization Theory and Applications 1993,79(1):197–206. 10.1007/BF00941894

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Zeng LC, Wong NC, Yao JC: Convergence analysis of modified hybrid steepest-descent methods with variable parameters for variational inequalities. Journal of Optimization Theory and Applications 2007,132(1):51–69. 10.1007/s10957-006-9068-x

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Song Y, Chen R: An approximation method for continuous pseudocontractive mappings. Journal of Inequalities and Applications 2006, 2006: 9 pages.

    Article  Google Scholar 

  17. 17.

    Chen R, He H: Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space. Applied Mathematics Letters 2007,20(7):751–757. 10.1016/j.aml.2006.09.003

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Chen R, Zhu Z: Viscosity approximation fixed points for nonexpansive and-accretive operators. Fixed Point Theory and Applications 2006, 2006: 10 pages.

    Google Scholar 

  19. 19.

    Suzuki T: Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals. Journal of Mathematical Analysis and Applications 2005,305(1):227–239. 10.1016/j.jmaa.2004.11.017

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Geobel K, Kirk WA: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge, UK; 1990.

    Google Scholar 

  21. 21.

    Atsushiba S, Takahashi W: Strong convergence theorems for a finite family of nonexpansive mappings and applications. Indian Journal of Mathematics 1999,41(3):435–453.

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Engl HW, Hanke M, Neubauer A: Regularization of Inverse Problems. Volume 13. Kluwer Academic Publishers, Dordrecht, The Netherlands; 2000.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanrong Yu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Yu, Y., Chen, R. Hybrid Steepest Descent Method with Variable Parameters for General Variational Inequalities. J Inequal Appl 2007, 019270 (2007). https://doi.org/10.1155/2007/19270

Download citation

Keywords

  • Variational Inequality
  • Variable Parameter
  • Strong Convergence
  • Steep Descent
  • Descent Method
\