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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let
F :H →H be an operator such that for some constants k,η > 0, F is k-Lipschitzian and
η-strongly monotone on C; that is, F satisfies the following inequalities: ‖Fx− Fy‖ ≤
k‖x− y‖ and 〈Fx− Fy,x− y〉 ≥ η‖x− y‖2 for all x, y ∈ C, respectively. Recall that T is
nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈H .

We consider the following variational inequality problem: find a point u∗ ∈ C such
that

VI(F,C) :
〈
F(u∗),v− v∗

〉≥ 0, ∀v ∈ C. (1.1)

Variational inequalities were introduced and studied by Stampacchia [1] in 1964. It is now
well known that a wide class of problems arising in various branches of pure and applied
sciences can be studied in the general and unified framework of variational inequalities.
Several numerical methods including the projection and its variant forms, Wiener-Hofp
equations, auxiliary principle, and descent type have been developed for solving the vari-
ational inequalities and related optimization problems. The reader is referred to [1–18]
and the references therein.
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It is well known that when F is strongly monotone on C, the VI(F,C) has a unique
solution and VI(F,C) is equivalent to the fixed point problem

u∗ = PC
(
u∗ −μF(u∗)

)
, (1.2)

where μ > 0 is an arbitrarily fixed constant and PC is the (nearest point) projection fromH
onto C. From (1.2), one can suggest a so-called projection method. Using the projection
method, one establishes the equivalence between the variational inequalities and fixed-
point problem. This alternative equivalence has been used to study the existence theory
of the solution and to develop several iterative-type algorithms for solving variational
inequalities. Under certain conditions, projection methods and their variant forms can
be implemented for solving variational inequalities. However, there are some drawbacks
of this method which rule out its problems in applications, for instance, the projection
method involves the projection PC which may not be easily computed due to the com-
plexity of the convex set C.

In order to reduce the complexity probably caused by the projection PC, Yamada [11]
introduced the following hybrid steepest descent method for solving the VI(F,C).

Algorithm 1.1. For a given u0 ∈H , calculate the approximate solution un by the iterative
scheme

un+1 = Tun− λn+1μF
(
Tun

)
, n≥ 0, (1.3)

where μ∈ (0,2η/k2) and λn ∈ (0,1) satisfy the following conditions:
(1) limn→∞ λn = 0;
(2)

∑∞
n=1 λn =∞;

(3) limn→∞(λn− λn+1)/λ2n+1 = 0.

Yamada [11] proved that the approximate solution {un}, obtained fromAlgorithm 1.1,
converges strongly to the unique solution of the VI(F,C).

Furthermore, Xu and Kim [12] and Zeng et al. [15] considered and studied the con-
vergence of the hybrid steepest descent Algorithm 1.1 and its variant form. For details,
please see [12, 15].

Let F : H → H be a nonlinear operator and let g : H → H be a continuous mapping.
Now, we consider the following general variational inequality problem: find a point u∗ ∈
H such that g(u∗)∈ C and

GVI(F,g,C) :
〈
F(u∗),g(v)− g(u∗)

〉≥ 0, ∀v ∈H , g(v)∈ C. (1.4)

If g is the identity mapping of H , then the GVI(F,g,C) reduces to the VI(F,C).
Although iterative algorithm (1.3) has successfully been applied to finding the unique

solution of the VI(F,C). It is clear that it can not be directly applied to computing solution
of the GVI(F,g,C) due to the presence of g. Therefore, an important problem is how to
apply hybrid steepest descentmethod to solving GVI(F,g,C). For this purpose, Zeng et al.
[13] introduced a hybrid steepest descent method for solving the GVI(F,g,C) as follows.
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Algorithm 1.2. Let {λn} ⊂ (0,1), {θn} ⊂ (0,1], and μ ∈ (0,2η/k2). For a given u0 ∈H ,
calculate the approximate solution un by the iterative scheme

un+1 =
(
1+ θn+1

)
Tun− θn+1g

(
Tun

)− λn+1μF
(
Tun

)
, n≥ 0, (1.5)

where F is η-strongly monotone and k-Lipschitzian and g is σ-Lipschitzian and δ-strongly
monotone on C.

They also proved that the approximate solution {un} obtained from (1.5) converges
strongly to the solution of the GVI(F,g,C) under some assumptions on parameters. Con-
sequently, Yao and Noor [7] present a modified iterative algorithm for approximating
solution of the GVI(F,g,C). But we note that all of the above work has imposed some
additional assumptions on parameters or the iterative sequence {un}. There is a natural
question that rises: could we relax it?

Our purpose in this paper is to suggest and analyze a hybrid steepest descent method
with variable parameters for solving general variational inequalities. It is shown that the
convergence of the proposed method can be proved under some mild conditions on pa-
rameters. We also give an application of the proposed method for solving constrained
generalized pseudoinverse problem.

2. Preliminaries

In the sequel, we will make use of the following results.

Lemma 2.1 [12]. Let {sn} be a sequence of nonnegative numbers satisfying the condition

sn+1 ≤
(
1−αn

)
sn +αnβn, n≥ 0, (2.1)

where {αn}, {βn} are sequences of real numbers such that
(i) {αn} ⊂ [0,1] and

∑∞
n=0αn =∞,

(ii) limsupn→∞βn ≤ 0 or
∑∞

n=0αnβn is convergent.
Then, limn→∞ sn = 0.

Lemma 2.2 [19]. Let {xn} and {yn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 =
(1− βn)yn + βnxn for all integers n ≥ 0 and limsupn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞‖yn− xn‖ = 0.

Lemma 2.3 [20] (demiclosedness principle). Assume that T is a nonexpansive self-
mapping of a closed convex subset C of a Hilbert spaceH . If T has a fixed point, then I −T is
demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and
the sequence {(I −T)xn} strongly converges to some y, it follows that (I −T)x = y. Here, I
is the identity operator of H .

The following lemma is an immediate consequence of an inner product.

Lemma 2.4. In a real Hilbert space H , there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y,x+ y〉, ∀x, y ∈H. (2.2)
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3. Modified hybrid steepest descent method

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let
F :H →H be k-Lipschitzian and η-strongly monotone mapping on C and let g :H →H
be σ-Lipschitzian and δ-strongly monotone mapping on C for some constants σ > 0 and
δ > 1. Assume also that the unique solution u∗ of the VI(F,C) is a fixed point of g.

Denote by PC the projection of H onto C. Namely, for each x ∈H , PCx is the unique
element in C satisfying

∥
∥x−PCx

∥
∥=min

{‖x− y‖ : y ∈ C
}
. (3.1)

It is known that the projection PC is characterized by inequality

〈
x−PCx, y−PCx

〉≤ 0, ∀y ∈ C. (3.2)

Thus, it follows that the GVI(F,g,C) is equivalent to the fixed point problem g(u∗) =
PC(I −μF)g(u∗), where μ > 0 is an arbitrary constant.

In this section, assume that Ti : H → H is a nonexpansive mapping for each 1 ≤ i ≤
N with

⋂N
i=1 Fix(Ti) = ∅. Let δn1,δn2, . . . ,δnN ∈ (0,1], n ≥ 1. We define, for each n ≥ 1,

mappings Un1,Un2, . . . ,UnN by

Un1 = δn1T1 +
(
1− δn1

)
I ,

Un2 = δn2T2Un1 +
(
1− δn2

)
I ,

...

Un,N−1 = δn,N−1TN−1Un,N−2 +
(
1− δn,N−1

)
I ,

Wn :=UnN = δnNTNUn,N−1 +
(
1− δnN

)
I.

(3.3)

Such a mappingWn is called theW-mapping generated by T1, . . . ,TN and δn1,δn2, . . . ,δnN .
Nonexpansivity of Ti yields the nonexpansivity ofWn. Moreover, [21, Lemma 3.1] shows
that

Fix
(
Wn
)= F. (3.4)

Such property ofWn will be crucial in the proof on our result.
Now we suggest the following iterative algorithm for solving GVI(F,g,C).

Algorithm 3.1. Let {αn} ⊂ [a,b]⊂ (0,1), {λn} ⊂ (0,1), {θn} ⊂ (0,1], and {μn} ⊂ (0,2η/
k2). For a given u0 ∈H , compute the approximate solution {un} by the iterative scheme

un+1 =Wnun− λn+1μn+1F
(
Wnun

)
+αn+1

(
un−Wnun

)

+ θn+1
(
Wnun− g

(
Wnun

))
, n≥ 0.

(3.5)

At this point, we state and prove our main result.

Theorem 3.2. Assume that 0 < a ≤ αn ≤ b < 1, 0 < μn < 2η/k2, and u∗ ∈ Fix(g). Let δn1,
δn2, . . . ,δnN be real numbers such that limn→∞(δn+1,i− δn,i)= 0 for all i= 1,2, . . . ,N . Assume
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{λn} and {θn} satisfy the follwoing conditions:
(i) limn→∞ λn = 0,

∑∞
n=1 λn =∞;

(ii) θn ∈ (0,2(1− a)(δ− 1)/(σ2− 1)];
(iii) limn→∞ θn = 0, limn→∞ λn/θn = 0.

Then the sequence {un} generated by Algorithm 3.1 converges strongly to u∗ which is a solu-
tion of the GVI(F,g,C).

Proof. Now we divide our proof into the following steps.

Step 1. First, we prove that {un} is bounded. From (3.5), we have

∥
∥un+1−u∗

∥
∥= ∥∥(1−αn+1 + θn+1

)
Wnun +αn+1un− θn+1g

(
Wnun

)

− λn+1μn+1F
(
Wnun

)−u∗
∥
∥

= ∥∥(1−αn+1
)(
Wnun−u∗

)− θn+1
(
g
(
Wnun

)−u∗
)

+αn+1
(
un−u∗

)
+ θn+1

(
Wnun−u∗

)

− λn+1μn+1
(
F
(
Wnun

)−F
(
u∗
))

+ λn+1μn+1F(u∗)
∥
∥

≤ ∥∥(1−αn+1
)(
Wnun−u∗

)− θn+1
(
g
(
Wnun

)−u∗
)∥∥

+
∥
∥θn+1

(
Wnun−u∗

)− λn+1μn+1
(
F
(
Wnun

)−F(u∗)
)∥∥

+αn+1
∥
∥un−u∗

∥
∥+ λn+1μn+1

∥
∥F(u∗)

∥
∥.

(3.6)

Observe that

∥
∥(1−αn+1

)(
Wnun−u∗

)− θn+1
(
g
(
Wnun

)−u∗
)∥∥2

= (1−αn+1
)2∥∥Wnun−u∗

∥
∥2

− 2
(
1−αn+1

)
θn+1

〈
g
(
Wnun

)− g(u∗),Wnun−u∗
〉
+ θ2n+1

∥
∥g
(
Wnun

)−u∗
∥
∥2

≤ [(1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1

]∥∥Wnun−u∗
∥
∥2

≤ [(1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1

]∥∥un−u∗
∥
∥2,

[8pt]
∥
∥θn+1

(
Wnun−u∗

)− λn+1μn+1
(
F
(
Wnun

)−F(u∗)
)∥∥2

= θ2n+1
∥
∥Wnun−u∗

∥
∥2− 2θn+1λn+1μn+1

〈
F
(
Wnun

)−F(u∗),Wnun−u∗
〉

+ λ2n+1μ
2
n+1

∥
∥F
(
Wnun

)−F(u∗)
∥
∥2

≤ (θ2n+1− 2μn+1ηθn+1λn+1 +μ2n+1k
2λn+1

)∥∥Wnun−u∗
∥
∥2

≤ (θ2n+1− 2μn+1ηθn+1λn+1 +μ2n+1k
2λn+1

)∥∥un−u∗
∥
∥2

= θ2n+1

[(
1− λn+1

θn+1
μn+1k

)2
+
2λn+1μn+1(k−η)

θn+1

]∥
∥un−u∗

∥
∥2.

(3.7)



6 Journal of Inequalities and Applications

From (3.7), we have

∥
∥un+1−u∗

∥
∥

≤
(√(

1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1 +αn+1

)∥
∥un−u∗

∥
∥

+ θn+1

√
√
√
√
(
1− λn+1μn+1k

θn+1

)2
+
2λn+1μn+1(k−η)

θn+1

∥
∥un−u∗

∥
∥+ λn+1μn+1

∥
∥F(u∗)

∥
∥

≤
(√(

1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1 +αn+1

)∥
∥un−u∗

∥
∥

+ θn+1

∣
∣
∣
∣1−

λn+1μn+1k

θn+1

∣
∣
∣
∣

√
√
√
√1+

(
2λn+1μn+1(k−η)

θn+1

)/(
1− λn+1μn+1k

θn+1

)2

×∥∥un−u∗
∥
∥+ λn+1μn+1

∥
∥F(u∗)

∥
∥.

(3.8)

Now we can see that (iii) yields

lim
n→∞

(
λn+1μn+1k

θn+1
− η

k

)/(
1− λn+1μn+1k

θn+1

)
=−η

k
. (3.9)

Hence, we infer that there exists an integerN0≥0 such that for all n≥N0, (1/2)λn+1μn+1η <
1, and (λn+1μn+1k/θn+1− η/k)/(1− λn+1μn+1k/θn+1) <−η/2k. Thus we deduce that for all
n≥N0,

θn+1

∣
∣
∣
∣1−

λn+1μn+1k

θn+1

∣
∣
∣
∣

√
√
√
√1+

(
2λn+1μn+1(k−η)

θn+1

)/(
1− λn+1μn+1k

θn+1

)2

≤ θn+1

(
1− λn+1μn+1k

θn+1

)(
1+
(
λn+1μn+1(k−η)

θn+1

)/(
1− λn+1μn+1k

θn+1

)2)

= θn+1− λn+1μn+1k+
λn+1μn+1(k−η)

1− λn+1μn+1k/θn+1

= θn+1 +
−λn+1μn+1k+

(
λn+1μn+1k

)2
/θn+1 + λn+1μn+1k− λn+1μn+1η

1− λn+1μn+1k/θn+1

= θn+1 + λn+1μn+1k
[(

λn+1μn+1k

θn+1
− η

k

)/(
1− λn+1μn+1k

θn+1

)]

≤ θn+1− 1
2
λn+1μn+1η.

(3.10)
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From (ii) and (iii), we can choose sufficient small θn+1 such that

0 < θn+1 ≤ 2
(
1−αn+1

)
(δ− 1)

σ2− 1

=⇒ θn+1
(
σ2− 1

)≤ 2
(
1−αn+1

)
(δ− 1)

=⇒ σ2θn+1− 2
(
1−αn+1

)
δ ≤ θn+1− 2

(
1−αn+1

)

=⇒ σ2θ2n+1− 2
(
1−αn+1

)
δθn+1

≤ θ2n+1− 2θn+1
(
1−αn+1

)

=⇒ (1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1

≤ (1−αn+1
)2− 2θn+1

(
1−αn+1

)
+ θ2n+1

=⇒
√(

1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1

≤ 1−αn+1− θn+1

=⇒
√(

1−αn+1
)2− 2

(
1−αn+1

)
δθn+1 + σ2θ2n+1

+αn+1 + θn+1 ≤ 1.

(3.11)

Consequently it follows from (3.6) and (3.8)–(3.11), for all n≥N0, that

∥
∥un+1−u∗

∥
∥≤

(
1− 1

2
λn+1μn+1η

)∥
∥un−u∗

∥
∥+ λn+1μn+1

∥
∥F(u∗)

∥
∥. (3.12)

By induction, it easy to see that

∥
∥un−u∗

∥
∥≤max

{
max
0≤i≤N0

∥
∥ui−u∗

∥
∥,
2
η

∥
∥F(u∗)

∥
∥
}
, n≥ 0. (3.13)

Hence, {xn} is bounded, so are {Wnun}, {g(un)}, and {F(Wnun)}. We will use M to
denote the possible different constants appearing in the following reasoning.

Define

un+1 = αn+1un +
(
1−αn+1

)
yn. (3.14)
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From the definition of yn, we obtain

yn+1− yn = un+2−αn+2un+1
1−αn+2

− un+1−αn+1un
1−αn+1

=
(
1−αn+2 + θn+2

)
Wn+1un+1− θn+2g

(
Wn+1un+1

)

1−αn+2

− λn+2μn+2F
(
Wn+1un+1

)

1−αn+2
+
λn+1μn+1F

(
Wnun

)

1−αn+1

−
(
1−αn+1 + θn+1

)
Wnun− θn+1g

(
Wnun

)

1−αn+1

=Wn+1un+1−Wnun +
θn+2

1−αn+2
Wn+1un+1− θn+1

1−αn+1
Wnun

+
θn+1

1−αn+1
g
(
Wnun

)− θn+2
1−αn+2

g
(
Wn+1un+1

)

+
λn+1μn+1
1−αn+1

F
(
Wnun

)− λn+2μn+2
1−αn+2

F
(
Wn+1un+1

)

=Wn+1un+1−Wn+1un +Wn+1un−Wnun

+
θn+2

1−αn+2
Wn+1un+1− θn+1

1−αn+1
Wnun

+
θn+1

1−αn+1
g
(
Wnun

)− θn+2
1−αn+2

g
(
Wn+1un+1

)

+
λn+1μn+1
1−αn+1

F
(
Wnun

)− λn+2μn+2
1−αn+2

F
(
Wn+1un+1

)
.

(3.15)

It follows that
∥
∥yn+1− yn

∥
∥−∥∥un+1−un

∥
∥

≤ ∥∥Wn+1un−Wnun
∥
∥+

θn+2
1−αn+2

∥
∥Wn+1un+1

∥
∥

+
θn+1

1−αn+1

∥
∥Wnun

∥
∥+

θn+1
1−αn+1

∥
∥g
(
Wnun

)∥∥+
θn+2

1−αn+2

∥
∥g
(
Wn+1un+1

)∥∥

+
λn+1μn+1
1−αn+1

∥
∥F
(
Wnun

)∥∥+
λn+2μn+2
1−αn+2

∥
∥F
(
Wn+1un+1

)∥∥.

(3.16)

From (3.3), since Ti and Un,i for all i= 1,2, . . . ,N are nonexpansive,

∥
∥Wn+1un−Wnun

∥
∥

= ∥∥δn+1,NTNUn+1,N−1un +
(
1− δn+1,N

)
un− δn,NTNUn,N−1un−

(
1− δn,N

)
un
∥
∥

≤ ∣∣δn+1,N − δn,N
∣
∣
∥
∥un

∥
∥+

∥
∥δn+1,NTNUn+1,N−1un− δn,NTNUn,N−1un

∥
∥

≤ ∣∣δn+1,N − δn,N
∣
∣
∥
∥un

∥
∥+

∥
∥δn+1,N

(
TNUn+1,N−1un−TNUn,N−1un

)∥∥

+
∣
∣δn+1,N − δn,N

∣
∣
∥
∥TNUn,N−1un

∥
∥

≤ 2M
∣
∣δn+1,N − δn,N

∣
∣+ δn+1,N

∥
∥Un+1,N−1un−Un,N−1un

∥
∥.

(3.17)
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Again, from (3.3),

∥
∥Un+1,N−1un−Un,N−1un

∥
∥

= ∥∥δn+1,N−1TN−1Un+1,N−2un +
(
1− δn+1,N−1

)
un

− δn,N−1TN−1Un,N−2un−
(
1− δn,N−1

)
un
∥
∥

≤ ∣∣δn+1,N−1− δn,N−1
∣
∣
∥
∥un

∥
∥

+
∥
∥δn+1,N−1TN−1Un+1,N−2un− δn,N−1TN−1Un,N−2un

∥
∥

≤ ∣∣δn+1,N−1− δn,N−1
∣
∣
∥
∥un

∥
∥

+ δn+1,N−1
∥
∥TN−1Un+1,N−2un−TN−1Un,N−2un

∥
∥

+
∣
∣δn+1,N−1− δn,N−1

∣
∣M

≤ 2M
∣
∣δn+1,N−1− δn,N−1

∣
∣+ δn+1,N−1

∥
∥Un+1,N−2un−Un,N−2un

∥
∥

≤ 2M
∣
∣δn+1,N−1− δn,N−1

∣
∣+

∥
∥Un+1,N−2un−Un,N−2un

∥
∥.

(3.18)

Therefore, we have

∥
∥Un+1,N−1un−Un,N−1un

∥
∥

≤ 2M
∣
∣δn+1,N−1− δn,N−1

∣
∣+2M

∣
∣δn+1,N−2− δn,N−2

∣
∣

+
∥
∥Un+1,N−3un−Un,N−3un

∥
∥

≤ 2M
N−1∑

i=2

∣
∣δn+1,i− δn,i

∣
∣+

∥
∥Un+1,1un−Un,1un

∥
∥

= ∥∥δn+1,1T1un +
(
1− δn+1,1

)
un− δn,1T1un−

(
1− δn,1

)
un
∥
∥

+2M
N−1∑

i=2

∣
∣δn+1,i− δn,i

∣
∣,

(3.19)

then

∥
∥Un+1,N−1un−Un,N−1un

∥
∥

≤ ∣∣δn+1,1− δn,1
∣
∣
∥
∥un

∥
∥+

∥
∥δn+1,1T1un− δn,1T1un

∥
∥

+2M
N−1∑

i=2

∣
∣δn+1,i− δn,i

∣
∣≤ 2M

N−1∑

i=1

∣
∣δn+1,i− δn,i

∣
∣.

(3.20)

Substituting (3.20) into (3.17), we have

∥
∥Wn+1un−Wnun

∥
∥≤ 2M

∣
∣δn+1,N − δn,N

∣
∣+2δn+1,NM

N−1∑

i=1

∣
∣δn+1,i− δn,i

∣
∣

≤ 2M
N∑

i=1

∣
∣δn+1,i− δn,i

∣
∣.

(3.21)
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Since {un}, {F(Wnun)}, {g(Wnun)} are all bounded, it follows from (3.16), (3.21), (i),
and (iii) that

limsup
n→∞

(∥∥yn+1− yn
∥
∥−∥∥un+1−un

∥
∥)≤ 0. (3.22)

Hence, by Lemma 2.2, we know

lim
n→∞

∥
∥yn−un

∥
∥= 0. (3.23)

Consequently,

lim
n→∞

∥
∥un+1−un

∥
∥= lim

n→∞
(
1−αn+1

)∥∥yn−un
∥
∥= 0. (3.24)

On the other hand,
∥
∥un−Wnun

∥
∥≤ ∥∥un+1−Wnun

∥
∥+

∥
∥un+1−un

∥
∥

≤ αn+1
∥
∥un−Wnun

∥
∥+ θn+1

∥
∥Wnun

∥
∥

+ θn+1
∥
∥g
(
Wnun

)∥∥+ λn+1μn+1
∥
∥F
(
Wnun

)∥∥

+
∥
∥un+1−un

∥
∥,

(3.25)

this together with conditions (i), (iii), and (3.24) implies

lim
n→∞

∥
∥un−Wnun

∥
∥= 0. (3.26)

We next show that

limsup
n→∞

〈−F(x∗),un− x∗
〉≤ 0. (3.27)

To prove this, we pick a subsequence {uni} of {un} such that

limsup
n→∞

〈−F(x∗),un− x∗
〉= lim

i→∞
〈−F(x∗),uni − x∗

〉
. (3.28)

Without loss of generality, we may further assume that uni → z weakly for some z ∈H .
By Lemma 2.3 and (3.26), we have

z ∈ Fix
(
Wn
)
, (3.29)

this imply that

z ∈
N⋂

i=1
Fix
(
Ti
)
. (3.30)

Since x∗ solves VI(F,C). Then we obtain

limsup
n→∞

〈−F(x∗),un− x∗
〉= 〈−F(x∗),z− x∗

〉≤ 0. (3.31)
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Finally, we show that un→ u∗ in norm. From (3.7)–(3.10) and Lemma 2.4, we have

∥
∥un+1−u∗

∥
∥2 = ∥∥(1−αn+1

)(
Wnun−u∗

)− θn+1
(
g
(
Wnun

)−u∗
)

+αn+1
(
un−u∗

)
+ θn+1

(
Wnun−u∗

)

− λn+1μn+1
(
F
(
Wnun

)−F(u∗)
)
+ λn+1μn+1F(u∗)

∥
∥

≤ ∥∥(1−αn+1
)(
Wnun−u∗

)− θn+1
(
g
(
Wnun

)−u∗
)

+αn+1
(
un−u∗

)
+ θn+1

(
Wnun−u∗

)

− λn+1μn+1
(
F
(
Wnun

)−F(u∗)
)∥∥2

+ 2λn+1μn+1
〈−F(u∗),un+1−u∗

〉

≤
(
1− 1

2
λn+1μn+1η

)∥
∥un−u∗

∥
∥2

+ 2λn+1μn+1
〈−F(u∗),un+1−u∗

〉
.

(3.32)

An application of Lemma 2.1 combined with (3.31) yields that ‖un−u∗‖→ 0. This com-
pletes the proof. �

4. Application to constrained generalized pseudoinverse

Let K be a nonempty closed convex subset of a real Hilbert space H . Let A be a bounded
linear operator on H . Given an element b ∈H , consider the minimization problem

min
x∈K

‖Ax− b‖2. (4.1)

Let Sb denote the solution set. Then, Sb is closed and convex. It is known that Sb is
nonempty if and only if PA(K)(b) ∈ A(K). In this case, Sb has a unique element with
minimum norm; that is, there exists a unique point x̂ ∈ Sb satisfying

‖x̂‖2 =min
{‖x‖2 : x ∈ Sb

}
. (4.2)

Definition 4.1 [22]. The K-constrained pseudoinverse of A (symbol ÂK ) is defined as

D
(
ÂK
)= {b ∈H : PA(K)(b)∈A(K)

}
, ÂK (b)= x̂, b ∈D

(
Âk
)
, (4.3)

where x̂ ∈ Sb is the unique solution of (4.2).

Now we recall the K-constrained generalized pseudoinverse of A.
Let θ :H → R be a differentiable convex function such that θ′ is a k-Lipschitzian and

η-strongly monotone operator for some k > 0 and η > 0. Under these assumptions, there
exists a unique point x̂0 ∈ Sb for b ∈D(ÂK ) such that

θ
(
x̂0
)=min

{
θ(x) : x ∈ Sb

}
. (4.4)

Definition 4.2. The K-constrained generalized pseudoinverse of A associated with
θ (symbol ÂK ,θ) is defined as D(ÂK ,θ) = D(ÂK ), ÂK ,θ(b) = x̂0, and b ∈ D(ÂK ,θ), where
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x̂0 ∈ Sb is the unique solution to (4.4). Note that if θ(x)= ‖x‖2/2, then the K-constrained
generalized pseudoinverse ÂK ,θ ofA associated with θ reduces to the K-constrained pseu-
doinverse ÂK of A in Definition 4.1.

We now apply the result in Section 3 to construct the K-constrained generalized
pseudoinverse ÂK ,θ ofA. First observe that x̃ ∈ K satisfies theminimization problem (4.1)
if and only if there holds the following optimality condition: 〈A∗(Ax̃ − b),x − x̃〉 ≥ 0,
x ∈ K , where A∗ is the adjoint of A. This for each λ > 0, is equivalent to,

〈[
λA∗b+ (I − λA∗A)x̃

]− x̃, x̃− x
〉≥ 0, x ∈ K ,

PK
(
λA∗b+ (I − λA∗A)x̃

)= x̃.
(4.5)

Define a mapping T :H →H by

Tx = PK
(
A∗b+ (I − λA∗A)x

)
, x ∈H. (4.6)

Lemma 4.3 [12]. If λ ∈ (0,2‖A‖−2) and if b ∈ D(ÂK ), then T is attracting nonexpansive
and Fix(T)= Sb.

The proofs of the following Theorems 4.4 and 4.5 are obtained easily; we omit them.

Theorem 4.4. Assume that 0 < μn < 2η/k2. Assume {λn} and {θn} satisfy the following
conditions:

(i) limn→∞ λn = 0,
∑∞

n=1 λn =∞;
(ii) θn ∈ (0,2(1− a)(δ− 1)/(σ2− 1)];
(iii) limn→∞ θn = 0, limn→∞ λn/θn = 0.

Given an initial guess u0 ∈H , let {un} be the sequence generated by the algorithm

un+1 = Tun− λn+1μn+1θ
′(
Tun

)
+αn+1

(
un−Tun

)

− θn+1
(
g
(
Tun

)−Tun
)
, n≥ 0,

(4.7)

where T is given in (4.6). Suppose that the unique solution û0 of (4.4) is also a fixed point of
g. Then {un} strongly converges to ÂK ,θ(b).

Theorem 4.5. Assume that 0 < μn < 2η/k2. Assume that the restrictions (ii) and (iii) hold
for {θn} and also that the control condition (i) holds for {λn}. Given an initial guess u0 ∈H ,
suppose that the unique solution û0 of (4.4) is also a fixed point of g. Then the sequence {un}
generated by the algorithm

un+1 =Wnun− λn+1μn+1θ
′(Wnun

)
+αn+1

(
un−Wnun

)

− θn+1
(
g
(
Wnun

)−Wnun
)
, n≥ 0,

(4.8)

converges to ÂK ,θ(b).
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