Skip to main content

Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey–Herz space

Abstract

In this article, we analyze the boundedness for the fractional bilinear Hardy operators on variable exponent weighted Morrey–Herz spaces \({M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot)}(w)}\). Similar estimates are obtained for their commutators when the symbol functions belong to BMO space with variable exponents.

1 Introduction

Back in 1920, Hardy [1] defined an operator for a locally integrable \(g\in \mathbb{R}^{n}\) known as the Hardy operator,

$$ \mathscr{H} g(y)=y^{-1} \int _{0}^{y}g(z)\,dz ,\quad y>0,$$
(1)

and established the following inequality:

$$ \Vert \mathscr{H} g \Vert _{L^{p}(\mathbb{R}^{+})}\leq p^{\prime} \Vert g \Vert _{L^{p}( \mathbb{R}^{+})},\quad \infty >p>1,$$
(2)

where \(p^{\prime}=p/(p-1)\) is shown to be the best possible constant. At a later stage, Faris [2] gave an n-dimensional extension of (1) of which the equivalent form is given by

$$ Hg(y)= \bigl\vert B \bigl(0, \vert y \vert \bigr) \bigr\vert ^{-1} \int _{B(0, \vert y \vert )}g(z)\,dz ,$$
(3)

where \(|B(0,|y|)|\) is the Lebesgue measure of the ball \(B(0,|y|)\) in n-dimensional Euclidean space \(\mathbb{R}^{n}\). Recently [3], it was shown that H satisfies

$$ \Vert Hg \Vert _{L^{p}(\mathbb{R}^{n})}\leq p^{\prime} \Vert g \Vert _{L^{p}(\mathbb{R}^{n})}, \quad 1< p\leq \infty ,$$
(4)

where \(p^{\prime }\) is declared a sharp constant. Inequalities (2) and (4) were recently extended to power weighted Lebesgue spaces in [4] and [5] where sharp constants depend upon the weight indices. Inequalities (2) and (4) are known as strong-type \((p,p)\) Hardy inequalities because in these inequalities the Hardy operator maps \(L^{p}\) to \(L^{p}\). The authors in [6] have established the weak-type \((p,p)\) Hardy inequalities in which the Hardy operator maps \(L^{p}\) to \(L^{p,\infty}\). However, it was shown that the optimal constant for weak-type Hardy inequalities is 1, which is less than \(p/(p-1)\). Subsequently, the sharp constants for weak-type Hardy inequalities on Morrey-type spaces were obtained in [7] and [8]. Likewise the sharp constant for the high-dimensional fractional Hardy operator [9]

$$ H_{\beta}g(y)= \bigl\vert B \bigl(0, \vert y \vert \bigr) \bigr\vert ^{\frac{\beta}{n}-1} \int _{B(0, \vert y \vert )}g(z)\,dz , \quad 0\leq \beta < n, $$
(5)

on Lebesgue spaces was not fixed until 2015. Zhao and Lu [10] solved this problem by extending the Bliss results for the one-dimensional fractional Hardy operator. The boundedness of the Hardy operator \(H_{\beta}\) has been shown in [10], and the following inequality has been established:

$$ \Vert H_{\beta }g \Vert _{L^{q}(\mathbb{R}^{n})}\leq A \Vert g \Vert _{L^{p}(\mathbb{R}^{n})},$$
(6)

where

$$ A= \biggl(\frac{p'}{q} \biggr)^{1/q} \biggl( \frac{n}{q\beta} \cdot B \biggl( \frac{n}{q\beta},\frac{n}{q'\beta} \biggr) \biggr)^{-\beta /n}. $$

For \(g_{1},g_{2},\ldots,g_{m}\in L_{\mathrm{loc}}^{1}(\mathbb{R}^{n})\) and \(m\in \mathbb{N}\), the m-linear Hardy operator was introduced by Z. Fu and L. Grafakos in [4], written as follows:

$$ H(g_{1},\ldots,g_{m})=\frac{1}{ \vert x \vert ^{nm}} \int _{ \vert (y_{1},\ldots,y_{m}) \vert < \vert x \vert } \prod_{i=1}^{m}g_{i}(y_{i})\,dy _{1}, \ldots,dy_{m}. $$

They also developed the sharp bounds for the m-linear Hardy operator. The 2-linear operator is known as the bilinear operator. The authors of [11] used the commutator of the bilinear Hardy operator

$$ \begin{aligned}[b] & \bigl[b_{i},H^{i} \bigr](g_{1},\ldots,g_{m}) (z)=b_{i}(z)H(g_{1}, \ldots,g_{m}) (z)-H(g_{1},\ldots,g_{i-1},g_{i}b_{i},g_{i+1}, \ldots,g_{m}) (z)\end{aligned} $$

and obtained the boundedness of bilinear commutators generated by the bilinear Hardy operator. Later on, in [12] A. Hussain defined the fractional m-linear p-adic Hardy operator. Now, in the present paper, we introduce the definition of the fractional m-linear Hardy operators as

$$\begin{aligned}& H_{\beta}(g_{1},\ldots,g_{m})= \frac{1}{ \vert x \vert ^{nm-\beta}} \int _{ \vert (y_{1},\ldots,y_{m}) \vert < \vert x \vert } \prod_{i=1}^{m}g_{i}(y_{i})\,dy _{1}, \ldots,dy_{m},\\& H^{*}_{\beta}(g_{1},\ldots,g_{m})= \int _{ \vert (y_{1},\ldots,y_{m}) \vert > \vert x \vert } \frac{1}{{ \vert y \vert ^{nm-\beta}}}\prod _{i=1}^{m}{g_{i}(y_{i})}\,dy _{1}, \ldots,dy_{m}, \end{aligned}$$

where \(y=(y_{1},y_{2},\ldots,y_{m})\). We also introduce a definition for the commutator of fractional m-linear Hardy operators

$$\begin{aligned}& [b,H_{\beta}](g_{1},\ldots,g_{m}) (z)=\sum _{i=1}^{m} \bigl[b_{i},H^{i}_{\beta} \bigr](g_{1},\ldots,g_{m}) (z),\\& \bigl[b,H^{*}_{\beta} \bigr](g_{1}, \ldots,g_{m}) (z)=\sum_{i=1}^{m} \bigl[b_{i},H^{*i}_{ \beta} \bigr](g_{1},\ldots,g_{m}) (z),\\& \begin{aligned}[b] & \bigl[b_{i},H^{i}_{\beta} \bigr](g_{1},\ldots,g_{m}) (z)=b_{i}(z)H_{\beta}(g_{1}, \ldots,g_{m}) (z)-H_{ \beta}(g_{1}, \ldots,g_{i-1},g_{i}b_{i},g_{i+1}, \ldots,g_{m}) (z),\end{aligned} \\& \begin{aligned}[b] & \bigl[b_{i},H^{*i}_{\beta} \bigr](g_{1},\ldots,g_{m}) (z)=b_{i}(z)H^{*}_{\beta}(g_{1}, \ldots,g_{m}) (z)-H^{*}_{ \beta}(g_{1}, \ldots,g_{i-1},g_{i}b_{i},g_{i+1}, \ldots,g_{m}) (z).\end{aligned} \end{aligned}$$

Hardy inequalities have been the main focus of interest in various monographs [13, 14]. The optimal bounds for Hardy-type inequalities are established only in a few cases and the research in this area is an active part of modern analysis. Some recent publications in this area include [15, 16]. Besides this, sharp constants for Hardy-type inequalities on the product of some function spaces have also been exposed in [17]. Essential reviews of Hardy operators on various function spaces include [4, 5, 1820].

The work in [21] sparked the idea of generalizing function spaces. The variable Lebesgue space \(L^{p(\cdot )}\) was initially presented by Rákosník and Kováčik in [22]. Following that, the creation of variable exponent Lebesgue spaces began, as did the exploration of the boundedness of numerous operators, notably the maximum operator on the variable exponent Lebesgue space \(L^{p(\cdot )}\) [23, 24]. In recent times, the theory of generalized function spaces has piqued the interest of researchers working in several domains of mathematical analysis, including image processing [25], electrorheological fluid modeling [26], and partial differential equations [27].

Furthermore, Izuki proposed variable exponent Herz spaces \(\dot{K}_{q}^{\alpha ,p(\cdot )}\) in [28]. After this, Drihemn and Almeida [29] proposed a revised definition of Herz spaces that included α as a variable exponent. However, in [30], the Herz space with all exponents as variables was developed and investigated. Variable exponent Morrey–Herz spaces \(M\dot{K}^{\alpha ,\lambda}_{q,p(\cdot )}\) appeared for the first time in [31]. The generalized concept of Morrey–Herz spaces was provided in [31] by substituting the exponent α with \(\alpha (\cdot )\). A few significant thoughts in this regard were given in [32, 33]. Its weighted theory formulation based upon the Muckenhoupt weights [34] is a recent accomplishment in the field of variable exponent function spaces. Cruz-Uribe in [35] introduced the boundedness for the Hardy–Littlewood maximal operator M,

$$ Mg(t)=\sup_{E:\mathrm{ball}, t\in E}\frac{1}{ \vert E \vert } \int _{E} \bigl\vert g(z) \bigr\vert \,dz , $$

on the variable exponent weighted Lebesgue space \(L^{p(\cdot )}(w)\). Hästö and Diening demonstrated in [36] the equivalence between the continuity criteria of M on \(L^{p(\cdot )}(w)\) and the Muckenhoupt condition. However, weighted variable exponent Morrey–Herz spaces are set out and investigated in [11, 37].

In the present paper, we will study the boundedness of the m-linear fractional Hardy operator on variable exponent weighted Herz–Morrey space. Furthermore, we also discuss the boundedness of commutators generated by the m-linear fractional Hardy operator on variable exponent weighted Herz–Morrey space. It is worth mentioning that we study Banach spaces and Muckenhoupt weights. We consequently expand a few results introduced in [18]. To control the continuity criteria of the m-linear fractional Hardy operator, we will utilize the boundedness of the fractional integral defined as

$$ I_{\beta}(g) (t)= \int _{\mathbb{R}^{n}}\frac{g(z)}{ \vert t-z \vert ^{n-\beta}}\,dz . $$

The boundedness of the Riesz potential on variable exponent Lebesgue spaces is reported in [38]. The boundedness of the fractional integral operator on weighted Herz spaces is introduced by Noi and Izuki [39].

This article contains four sections. The next section includes some lemmas and definitions. In the third section, we provide some important lemmas which are used in Sect. 4 to get our main results.

2 Notations and definitions

The letter C is used throughout this paper to represent a constant, and the value of the constant may differ from one line to the next. We consider a set S which is nonempty and measurable in \(\mathbb{R}^{n}\), and \(\chi _{S}\) stands for the characteristic function of S, where \(|S|\) denotes the Lebesgue measure. Let us begin by defining variable exponent Lebesgue spaces using the basic articles and books [22, 24, 40, 41].

Definition 2.1

Suppose we have a measurable function \(q(\cdot ):\mathbb{R}^{n}\rightarrow [1,\infty ]\). Moreover, \(L^{q{(\cdot )}}(\mathbb{R}^{n})\) represents a Lebesgue space where the variable exponent is a set of every measurable function g, i.e.,

$$ F_{q}(g)= \int _{\mathbb{R}^{n}} \bigl( \bigl\vert g(x) \bigr\vert \bigr)^{q(x)}\,dx < \infty . $$

The space \(L^{q{(\cdot )}}(\mathbb{R}^{n})\) becomes a Banach space with the following norm:

$$ \Vert g \Vert _{L^{q(\cdot )}}=\inf \biggl\{ \sigma >0:F_{q} \biggl(\frac{g}{\sigma} \biggr)= \int _{\mathbb{R}^{n}} \biggl(\frac{ \vert g(x) \vert }{\sigma} \biggr)^{q(x)}\,dx \leq 1 \biggr\} . $$

Definition 2.2

We denote by \(P (\mathbb{R}^{n})\) the set of all measurable functions \(q(\cdot ):\mathbb{R}^{n}\rightarrow (1,\infty )\) such that

$$ 1< q_{-}\leq q(x)\leq q_{+}< \infty , $$

where

$$ q_{-}:=\operatorname*{essinf}_{x\in \mathbb{R}^{n}}q(x), \qquad q_{+}:= \operatorname*{esssup}_{x\in \mathbb{R}^{n}}q(x). $$

Definition 2.3

Let \(q(\cdot )\) be a real-valued function on \(\mathbb{R}^{n}\). We state that:

  1. (i)

    \(\mathscr{C}^{\log}_{\mathrm{{loc}}}(\mathbb{R}^{n})\) is a set consisting of all local log Hölder continuous functions \(q(\cdot )\) fulfilling

    $$ \bigl\vert q(x)-q(y) \bigr\vert \lesssim \frac{-C}{\log ( \vert x-y \vert )},\qquad \vert y-x \vert < \frac{1}{2},\quad x,y \in \mathbb{R}^{n}; $$
  2. (ii)

    if \(q(\cdot )\in \mathscr{C}^{\log}_{0}(\mathbb{R}^{n})\), then it satisfies the following condition at the origin:

    $$ \bigl\vert q(x)-q(0) \bigr\vert \lesssim \frac{C}{\log ( \vert \frac{1}{ \vert x \vert }+e \vert )},\quad x\in \mathbb{R}^{n}; $$
  3. (iii)

    if \(q(\cdot )\in \mathscr{C}^{\log}_{\infty}(\mathbb{R}^{n})\), then it fulfills the following inequality at infinity:

    $$ \bigl\vert q(x)-q_{\infty} \bigr\vert \leq \frac{C_{\infty}}{\log ( \vert x \vert +e)}, \quad x\in \mathbb{R}^{n}; $$
  4. (iv)

    \(\mathscr{C}^{\log}=\mathscr{C}^{\log}_{\mathrm{{loc}}}\cap \mathscr{C}^{\log}_{ \infty}\) represents the set of every global log Hölder continuous function \(q(\cdot )\).

It was shown in [42] that if \(q(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), then M is bounded on \(L^{q(\cdot )}(\mathbb{R}^{n})\).

Assume that \(w({x})\) is a weight function on \(\mathbb{R}^{n}\) that is both nonnegative and locally integrable. Let \(L^{q(\cdot )}(w)\) be the space of all complex-valued functions f on \(\mathbb{R}^{n}\) such that \(fw^{\frac{1}{q(\cdot )}}\in L^{q(\cdot )}(\mathbb{R}^{n})\). The space \(L^{q(\cdot )}(w)\) is a Banach function space with respect to the norm

$$ \Vert f \Vert _{L^{q(\cdot )}(w)}= \bigl\Vert fw^{\frac{1}{q(\cdot )}} \bigr\Vert _{L^{q(\cdot )}}. $$

In [34], Benjamin Muckenhoupt proposed \(A_{p}\) weights theory with \(1< p<\infty \) on \(\mathbb{R}^{n}\). Noi and Izuki recently expanded the Muckenhoupt \(A_{p}\) class by using p as a variable in [39, 43].

Definition 2.4

Assume \(q(\cdot )\in P (\mathbb{R}^{n})\). A weight w is said to be an \(A_{q(\cdot )}\) weight if

$$ \sup_{B}{ \vert B \vert ^{-1}} \bigl\Vert w^{-1/q(\cdot )}\chi _{B} \bigr\Vert _{L^{q^{\prime}( \cdot )}} \bigl\Vert w^{1/q(\cdot )}\chi _{B} \bigr\Vert _{L^{q(\cdot )}}< \infty . $$

It was proved in [44] that \(w\in A_{q(\cdot )}\) if and only if M is bounded on \(L^{q(\cdot )}\) space.

Remark 2.5

[39] If \(q(\cdot ),p(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\) and \(q(\cdot )\le p(\cdot )\), then we have

$$ A_{1}\subset A_{q(\cdot )}\subset A_{p(\cdot )}. $$

Definition 2.6

Suppose \(\beta \in (0,n)\) and \(p_{1}(\cdot ),p_{2}(\cdot )\in P (\mathbb{R}^{n})\) in such a way that \(\frac{1}{p_{1}(x)}=\frac{1}{p_{2}(x)}+\frac{\beta}{n}\). A weight w is called \(A(p_{1}(\cdot ),p_{2}(\cdot ))\) weight if

$$ \vert B \vert ^{\frac{\beta}{n}-1} \Vert \chi _{B} \Vert _{(L^{p_{1}(\cdot )}(w^{p_{1}( \cdot )}))^{\prime }} \Vert \chi _{B} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \le C. $$

Definition 2.7

[39] If \(\beta \in (0,n)\), \(p_{1}(\cdot ),p_{2}(\cdot )\in P (\mathbb{R}^{n})\), and \(\frac{1}{p_{1}(x)}=\frac{1}{p_{2}(x)}+\frac{\beta}{n}\), then \(w\in A_{(p_{1}(\cdot ),p_{2}(\cdot ))}\) if and only if \(w^{p_{2}(\cdot )}\in A_{1+p_{2}(\cdot )/p_{1}^{\prime }(\cdot )}\).

The variable exponent weighted Morrey–Herz space \(M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot )}(w)\) is defined now. Let \(\chi _{k}=\chi _{A_{k}}\), \(B_{k}=\{x\in \mathbb{R}^{n}:|x|\leq 2^{k}\}\), and \(A_{k}=B_{k}\setminus B_{k-1}\) for \(k\in \mathbb{Z}\).

Definition 2.8

[19] Let \(0< q<\infty \), \(0\leq \lambda <\infty \), \(\alpha (\cdot ):\mathbb{R}^{n}\rightarrow \mathbb{R}\) with \(\alpha (\cdot )\in L^{\infty}(\mathbb{R}^{n})\), \(p(\cdot )\in P (\mathbb{R}^{n})\), and let w be a weight on \(\mathbb{R}^{n}\). Then \(M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot )}(w)\) is defined by

$$ M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot )}({w})= \bigl\{ f\in L^{p( \cdot )}_{\mathrm{loc}} \bigl(\mathbb{R}^{n}\setminus \{0\},w \bigr): \Vert f \Vert _{M\dot{K}^{ \alpha (\cdot ),\lambda}_{q,p(\cdot )}(w)}< \infty \bigr\} , $$

where

$$ \Vert f \Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,p(\cdot )}({w})}=\sup_{k_{0} \in{Z}}2^{-k_{0}\lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha ( \cdot )q } \Vert f\chi _{k} \Vert ^{q }_{L^{p (\cdot )}(w)} \Biggr)^{1/q}. $$

When \(\lambda =0\), we have a weighted Herz space with variable exponent \(\dot{K}^{\alpha (\cdot )}_{q,p(\cdot )}(w)\).

3 Main lemmas

This section presents several relevant lemmas that will aid in the proof of our main boundedness result.

Lemma 3.1

[45] If Y is a Banach function space, then:

  1. (1)

    The associated space \(Y^{\prime }\) should also be a Banach function space;

  2. (2)

    \(\|\cdot \|_{Y}\) and \(\|\cdot \|_{(Y^{\prime })^{\prime }}\) are parallel;

  3. (3)

    (generalized Hölder inequality) if \(f\in Y^{\prime }\) and \(g\in Y\), then

    $$ \int _{\mathbb{R}^{n}} \bigl\vert g(x)f(x) \bigr\vert \leq \Vert f \Vert _{Y^{\prime }} \Vert g \Vert _{Y}. $$

Lemma 3.2

[46] Consider a Banach function space Y. M is weakly bounded on Y, such that

$$ \Vert \chi _{\{Mf>\rho \}} \Vert _{Y} \lesssim \rho ^{-1} \Vert f \Vert _{Y} $$

is true for \(\rho >0\) and every \(f\in Y\). Then we have

$$ \sup_{B:\mathrm{ball}}\frac{1}{ \vert B \vert } \Vert \chi _{B} \Vert _{Y} \Vert \chi _{B} \Vert _{Y^{\prime }}< \infty . $$

Lemma 3.3

[39] For all balls B and for a Banach function space Y, we have

$$ 1\leq \frac{1}{ \vert B \vert } \Vert \chi _{B} \Vert _{Y} \Vert \chi _{B} \Vert _{Y^{\prime }}. $$

Lemma 3.4

[39] If Y is a Banach function space and M is bounded on \(Y^{\prime }\), then for any \(E\subset \mathbb{R}^{n}\) and \(S\subset E\), there exists a constant \(\delta \in (0,1)\) such that

$$ \frac{ \Vert \chi _{S} \Vert _{Y}}{ \Vert \chi _{E} \Vert _{Y}}\lesssim \biggl( \frac{ \vert S \vert }{ \vert E \vert } \biggr)^{\delta}. $$

Lemma 3.5

[47] We have:

  1. (1)

    \(Y(\mathbb{R}^{n},W)\) is a Banach function space with respect to the norm

    $$ \Vert f \Vert _{Y(\mathbb{R}^{n},W)}= \Vert fw \Vert _{Y}, $$

    where

    $$ Y \bigl(\mathbb{R}^{n},W \bigr)=\{f\in \mathbb{M}:fW\in Y\}; $$
  2. (2)

    \(Y^{\prime }(\mathbb{R}^{n},W^{-1})\) is also a Banach function space.

Remark 3.6

Consider \(p(\cdot )\in P (\mathbb{R}^{n})\). When we compare Lebesgue space \(L^{p(\cdot )}(w^{p(\cdot )})\) and \(L^{p^{\prime }(\cdot )}(w^{-p^{\prime }(\cdot )})\) with \(Y(\mathbb{R}^{n},W)\), we get:

  1. 1:

    if \(w=W\) and \(Y=L^{p(\cdot )}(\mathbb{R}^{n})\), then \(L^{p(\cdot )}(w^{p(\cdot )})=L^{p(\cdot )}(\mathbb{R}^{n},w)\);

  2. 2:

    if \(w^{-1}=W\) and \(Y=L^{p'(\cdot )}(\mathbb{R}^{n})\), then \(L^{p'(\cdot )}(\mathbb{R}^{n},w^{-1})=L^{p'(\cdot )}(w^{-p^{\prime }( \cdot )})\).

By the result of Lemma 3.5, we obtain

$$ L^{p'(\cdot )}\bigl(\mathbb{R}^{n},w^{-1}\bigr)= \bigl(L^{p(\cdot )}\bigl(\mathbb{R}^{n},w\bigr) \bigr)^{ \prime }=L^{p'(\cdot )}\bigl(w^{-p^{\prime }(\cdot )}\bigr)= \bigl(L^{p(\cdot )}\bigl(w^{p( \cdot )}\bigr)\bigr)^{\prime}. $$

Lemma 3.7

[48] Let \(p(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\) and \(w^{p_{2}(\cdot )}\in A_{p_{2}(\cdot )}\) admit \(w^{-p^{\prime }_{2}(\cdot )}\in A_{p^{\prime }_{2}(\cdot )}\). Then there exist \(\delta _{11},\delta _{22}\in (0,1)\) such that

$$ \frac{ \Vert \chi _{S} \Vert _{(L^{P_{2}(\cdot )}w^{p_{2}(\cdot )})^{\prime}} }{ \Vert \chi _{E} \Vert _{(L^{P_{2}(\cdot )}w^{p_{2}(\cdot )})^{\prime}} } \lesssim \biggl(\frac{ \vert S \vert }{ \vert E \vert } \biggr)^{\delta _{22}},\qquad \frac{ \Vert \chi _{S} \Vert _{(L^{P_{1}(\cdot )}w^{p_{1}(\cdot )})^{\prime}} }{ \Vert \chi _{E} \Vert _{(L^{P_{1}(\cdot )}w^{p_{1}(\cdot )})^{\prime}} } \lesssim \biggl( \frac{ \vert S \vert }{ \vert E \vert } \biggr)^{\delta _{11}}$$
(7)

for every ball E and for each measurable set \(S\subset E\).

Lemma 3.8

[39] Let \(p(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), \(0<\beta <\frac{n}{p_{+}}\), and \(\frac{1}{q(\cdot )}=\frac{1}{p(\cdot )}-\frac{\beta}{n}\). Then \(I^{\beta}\) is bounded from \(L^{p(\cdot )}(w^{P(\cdot )})\) to \(L^{q(\cdot )}(w^{q(\cdot )})\) for \(w\in A(p(\cdot ),q(\cdot ))\).

Lemma 3.9

[49] Assume that \({q}(\cdot )\in P (\mathbb{R}^{n})\). Then for all \(b\in \mathit{BMO}\) and all \(j,i\in{Z}\) with \(j>i\) we have

$$\begin{aligned}& C^{-1} \Vert b \Vert _{\mathit{BMO}}\leq \sup _{\mathtt{B}:\mathrm{Ball}} \frac{1}{ \Vert \chi _{\mathtt{B}} \Vert _{L^{\mathrm{q}(\cdot )}}} \bigl\Vert (b-b_{ \mathtt{B}})\chi _{\mathtt{B}} \bigr\Vert _{L^{\mathrm{q}(\cdot )}} \leq C \Vert b \Vert _{\mathit{BMO}}, \end{aligned}$$
(8)
$$\begin{aligned}& \bigl\Vert (b-b_{{B}_{i}})\chi _{{B}_{j}} \bigr\Vert _{L^{{q}(\cdot )}}\leq C(j-i) \Vert b \Vert _{\mathit{BMO}} \Vert \chi _{\mathtt{B}_{j}} \Vert _{L^{{q}(\cdot )}}. \end{aligned}$$
(9)

4 Main results

Lemma 4.1

If \(w^{p_{2}(\cdot )},w^{p_{1}(\cdot )}\in A_{1}\), \(q(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), and \(p(\cdot )\) is such that \(\frac{1}{q(\cdot )}=\frac{1}{p(\cdot )}-\frac{\beta}{n}\) with \(\frac{1}{p(\cdot )}=\frac{1}{p_{1}(\cdot )}+\frac{1}{p_{2}(\cdot )}\), then

$$ \begin{aligned}[b] \Vert \chi _{B_{k}} \Vert _{L^{q(\cdot )}(w^{q(\cdot )})}\leq C2^{k(2n-\beta )} \Vert \chi _{B_{k}} \Vert _{(L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}^{-1} \Vert \chi _{B_{k}} \Vert _{(L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}^{-1}.\end{aligned} $$

Proof

We assume that \(f=\chi _{B_{k}}\) and use the definition of \(I_{\beta}\)

$$\begin{aligned}& I_{\beta}(\chi _{B_{k}}) (x) \geq C 2^{k\beta}\chi _{B_{k}}(x),\\& \chi _{B_{k}}(x)\leq C 2^{-k\beta}I_{\beta}(\chi _{B_{k}}) (x). \end{aligned}$$

Applying the norm on both sides and using the results of Lemmas 3.2 and 3.8, we obtain

$$ \begin{aligned}[b] \Vert \chi _{B_{k}} \Vert _{L^{q(\cdot )}(w^{q(\cdot )})}&\leq C 2^{-k\beta} \Vert I_{ \beta} \chi _{B_{k}} \Vert _{L^{q(\cdot )}(w^{q(\cdot )})} \\ & \leq C 2^{-k\beta} \Vert \chi _{B_{k}} \Vert _{L^{p(\cdot )}(w^{p(\cdot )})} \\ & \leq C 2^{-k\beta} \Vert \chi _{B_{k}} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}( \cdot )})} \Vert \chi _{B_{k}} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ & \leq C2^{k(2n-\beta )} \Vert \chi _{B_{k}} \Vert _{(L^{p_{1}(\cdot )}(w^{p_{1}( \cdot )}))^{\prime }}^{-1} \Vert \chi _{B_{k}} \Vert _{(L^{p_{2}(\cdot )}(w^{p_{2}( \cdot )}))^{\prime }}^{-1}.\end{aligned} $$
(10)

 □

Proposition 4.2

[11] Let \(p(\cdot )\in P (\mathbb{R}^{n})\), \(0< q<\infty \), and \(0\leq \lambda <\infty \). If \(\alpha (\cdot )\in L^{\infty}(\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), then

$$ \begin{aligned}& \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q }_{M \dot{K}^{\alpha (\cdot ),\lambda}_{q ,p (\cdot )}(w^{p (\cdot )})} \\ &\quad =\sup_{k_{0}\in{Z}}2^{-k_{0}\lambda q }\sum _{k=-\infty}^{k_{0}}2^{k \alpha (\cdot )q } \bigl\Vert H_{\beta}(f_{1},f_{2})\cdot \chi _{k} \bigr\Vert ^{q }_{L^{p (\cdot )}(w^{p (\cdot )})} \\ &\quad \thickapprox \max \Biggl\{ \underset{k_{0}< 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0} \lambda q }\sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q } \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q }_{L^{p (\cdot )}(w^{p (\cdot )})}, \\ &\quad \quad \underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda q } \Biggl(\sum_{k=-\infty}^{-1}2^{k\alpha (0)q } \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q }_{L^{p (\cdot )}(w^{p (\cdot )})} \\ &\quad \quad{}+\sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q } \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q }_{L^{p (\cdot )}(w^{p (\cdot )})} \Biggr) \Biggr\} . \end{aligned} $$

Theorem 4.3

Let \(0< q,q_{1},q_{2}<\infty \), \(q(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), and \(p(\cdot )\) be such that \(\frac{1}{q(\cdot )}=\frac{1}{p(\cdot )}-\frac{\beta}{n}\) with \(\frac{1}{p(\cdot )}=\frac{1}{p_{1}(\cdot )}+\frac{1}{p_{2}(\cdot )}\). Also, let \(w^{p_{2}(\cdot )},w^{p_{1}(\cdot )}\in A_{1}\), let \(\lambda =\lambda _{1}+\lambda _{2}\), and let \(\alpha (\cdot )\in \mathscr{C}^{\log}(\mathbb{R}^{n})\cap L^{\infty}( \mathbb{R}^{n})\) be a log Hölder continuous function at the origin satisfying \(\alpha (0)=\alpha _{1}(0)+\alpha _{2}(0)\), \(\alpha (\infty )=\alpha _{1}(\infty )+\alpha _{2}(\infty )\) with \(\alpha (0)\leq \alpha (\infty )< n\delta _{11}+\lambda +n\delta _{22}\), where \(\delta _{22},\delta _{11}\in (0,1)\) are the constants arising in (7). Then

$$ \bigl\Vert H_{\beta}(f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})}\leq C \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}( \cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ), \lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}. $$

Proof

For each \(f_{1},f_{2}\in {M\dot{K}^{\alpha (\cdot ),\lambda}_{q_{1},p_{1}( \cdot )}(w^{p_{1}(\cdot )})}\), if we express \(f_{1j}=f_{1}\cdot \chi _{j}=f_{1}\cdot \chi _{A_{j}}\) and \(f_{2j}=f_{2}\cdot \chi _{j}=f_{2}\cdot \chi _{A_{j}}\) for any \(j\in \mathbb{Z}\), then we have

$$\begin{aligned}& f_{1}(x)=\sum_{j=-\infty}^{\infty}f_{1}(x) \cdot \chi _{j}(x)=\sum_{j=- \infty}^{\infty}f_{1j}(x),\\& f_{2}(x)=\sum_{j=-\infty}^{\infty}f_{2}(x) \cdot \chi _{j}(x)=\sum_{j=- \infty}^{\infty}f_{2j}(x). \end{aligned}$$

The generalized Hölder inequality gives

$$ \begin{aligned}[b] \bigl\vert H_{\beta}(f_{1},f_{2}) (x)\cdot \chi _{k}(x) \bigr\vert &\leq \frac{1}{ \vert x \vert ^{2n-\beta}} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{1}(t_{1}) \bigr\vert \bigl\vert f_{2}(t_{2}) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(x) \\ &=\frac{1}{ \vert x \vert ^{2n-\beta}} \int _{B_{k}} \bigl\vert f_{1}(t_{1}) \bigr\vert |\,dt _{1} \int _{B_{k}}f_{2}(t_{2})\,dt _{2} \cdot \chi _{k}(x) \\ &\leq C2^{-2kn}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {} \times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}2^{k \beta} \chi _{k}(x).\end{aligned} $$
(11)

Utilizing Lemmas 3.7 and 3.2, we acquire

$$ \begin{aligned}[b] & \bigl\Vert H_{\beta}(f_{1},f_{2})\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C2^{k\beta}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad\quad {} \times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{ \prime }}}2^{-2kn} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad\quad {} \times \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}2^{-k(2n- \beta )} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} }.\end{aligned} $$
(12)

To move forward, we use Lemma 4.1 and (12), and we obtain

$$ \begin{aligned}[b] &\bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C\sum _{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \\ &\quad \quad {} \times \Vert \chi _{k} \Vert ^{-1}_{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert \chi _{k} \Vert ^{-1}_{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \\ &\quad \leq C\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \frac{ \Vert \chi _{j} \Vert _{(L^{p_{2}(\cdot )}{(w^{p_{2}(\cdot )})})^{\prime }}}{ \Vert \chi _{k} \Vert _{(L^{p_{2}(\cdot )}{(w^{p_{2}(\cdot )})})^{\prime }}} \frac{ \Vert \chi _{j} \Vert _{(L^{p_{1}(\cdot )}{(w^{p_{1}(\cdot )})})^{\prime }}}{ \Vert \chi _{k} \Vert _{(L^{p_{1}(\cdot )}{(w^{p_{1}(\cdot )})})^{\prime }}} \\ &\quad \leq C\sum_{j=-\infty}^{k}2^{n\delta _{11}(j-k)}2^{n\delta _{22}(j-k)} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad \leq C\sum_{j=-\infty}^{k}2^{(n\delta _{11}+n\delta _{22})(j-k)} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} .\end{aligned} $$
(13)

In the remainder of the proof, in order to calculate \(\|f_{1j}\|_{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}\) and \(\|f_{2j}\|_{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}\), we consider the following two cases.

Case 1: For \(j<0\),

$$ \begin{aligned}[b] \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}&=2^{-j\alpha _{1}(0)} \bigl(2^{j\alpha _{1}(0)q_{1}} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \bigr)^{\frac{1}{q_{1}}} \\ & \leq 2^{-j\alpha _{1}(0)} \Biggl(\sum_{i=-\infty}^{j}2^{i\alpha _{1}(0)q_{1}} \Vert f_{1i} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \Biggr)^{ \frac{1}{q_{1}}} \\ & \leq 2^{j(\lambda _{1}-\alpha _{1}(0))}2^{-j\lambda _{1}} \Biggl( \sum _{i=-\infty}^{j}2^{i\alpha _{1}(\cdot )q_{1}} \Vert f_{1i} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \Biggr)^{\frac{1}{q_{1}}} \\ & \leq C2^{j(\lambda _{1}-\alpha _{1}(0))} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ), \lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})}.\end{aligned} $$

Similarly

$$ \begin{aligned}[b] \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}&\leq C2^{j(\lambda _{2}- \alpha _{2}(0))} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}.\end{aligned} $$

Here we are using \(\alpha (0)=\alpha _{1}(0)+\alpha _{2}(0)\) and \(\lambda =\lambda _{1}+\lambda _{2}\):

$$ \begin{aligned}[b] &\Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad \leq C2^{j(\lambda _{1}-\alpha _{1}(0))}2^{j(\lambda _{2}-\alpha _{2}(0))} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad = C2^{j(\lambda -\alpha (0))} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ), \lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{ \alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}.\end{aligned} $$

Case 2: For \(j\geq 0\),

$$ \begin{aligned}[b] \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}&=2^{-j\alpha _{1}( \infty )} \bigl(2^{j\alpha _{1}(\infty )q_{1}} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \bigr)^{\frac{1}{q_{1}}} \\ & \leq 2^{-j\alpha _{1}(\infty )} \Biggl(\sum_{i=0}^{j}2^{i\alpha _{1}( \infty )q_{1}} \Vert f_{1i} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \Biggr)^{\frac{1}{q_{1}}} \\ & \leq 2^{j(\lambda _{1}-\alpha _{1}(\infty ))}2^{-j\lambda _{1}} \Biggl(\sum _{i=-\infty}^{j}2^{i\alpha _{1}(\cdot )q_{1}} \Vert f_{1i} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}^{q_{1}} \Biggr)^{\frac{1}{q_{1}}} \\ & \leq C2^{j(\lambda _{1}-\alpha _{1}(\infty ))} \Vert f_{1} \Vert _{M\dot{K}^{ \alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})}.\end{aligned} $$
(14)

Similarly

$$ \begin{aligned}[b] \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}&\leq C2^{j(\lambda _{2}- \alpha _{2}(\infty ))} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}.\end{aligned} $$

Here we are using \(\alpha (\infty )=\alpha _{1}(\infty )+\alpha _{2}(\infty )\) and \(\lambda =\lambda _{1}+\lambda _{2}\):

$$ \begin{aligned}[b] &\Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad \leq C2^{j(\lambda _{1}-\alpha _{1}(\infty ))}2^{j(\lambda _{2}- \alpha _{2}(\infty ))} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad = C2^{j(\lambda -\alpha (\infty ))} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ), \lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{ \alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}.\end{aligned} $$

With the use of the definition of variable exponent Herz–Morrey space and Proposition 4.2, we can get the following inequality:

$$\begin{aligned} &\bigl\Vert H_{\beta}(f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})} \\ &\quad =\sup_{k_{0}\in{Z}}2^{-k_{0}\lambda } \Biggl(\sum_{k=- \infty}^{k_{0}}2^{k\alpha (\cdot )q} \bigl\Vert H_{\beta}(f_{1},f_{2})\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad \leq \max \Biggl\{ \underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0} \lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}}, \\ &\quad \quad \underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}} \, 2^{-k_{0}\lambda } \Biggl( \Biggl(\sum_{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad \quad {} + \Biggl(\sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \Biggr) \Biggr\} \\ &\quad =\max \{Y_{1},Y_{2}+Y_{3} \}, \end{aligned}$$
(15)

where

$$\begin{aligned}& Y_{1}=\underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl( \sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}},\\& Y_{2}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}},\\& Y_{3}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert H_{\beta}(f_{1},f_{2}) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}}. \end{aligned}$$

First, we will find the estimate of \(Y_{1}\). Since \(\alpha (0)\leq \alpha ({\infty})< n\delta _{11}+n\delta _{22}+ \lambda \),

$$ \begin{aligned}[b] Y_{1}&\leq C\underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \Biggl(\sum _{j=- \infty}^{k} 2^{(-n\delta _{22}-n\delta _{11})(k-j)} \Vert f_{1} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Biggr)^{q} \Biggr)^{ \frac{1}{q}} \\ & \leq C\underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \Biggl(\sum_{j=- \infty}^{k} 2^{(-n\delta _{11}-n\delta _{22})(k-j)}2^{j(\lambda - \alpha (0))} \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \\ &\quad {}\times \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Biggr)^{q} \Biggr)^{\frac{1}{q}} \\ & \leq C \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {}\times\underset{k_{0}< 0}{ \sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=- \infty}^{k_{0}}2^{k\lambda q} \Biggl(\sum _{j=-\infty}^{k} 2^{(n\delta _{11}+n \delta _{22}+\lambda -\alpha (0))(j-k)} \Biggr)^{q} \Biggr)^{ \frac{1}{q}} \\ &\leq C \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} .\end{aligned} $$

The estimate of \(Y_{2}\) is the same as that of \(Y_{1}\). Finally, we approximate \(Y_{3}\):

$$\begin{aligned} Y_{3}&\leq C\underset{k_{0} \geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0} \lambda } \Biggl(\sum _{k=0}^{k_{0}}2^{k\alpha (\infty )q} \Biggl(\sum _{j=- \infty}^{k} 2^{(-n\delta _{22}-n\delta _{11})(k-j)} \Vert f_{1} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Biggr)^{q} \Biggr)^{ \frac{1}{q}} \\ & \leq C\underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q} \Biggl(\sum_{j=- \infty}^{k} 2^{(-n\delta _{11}-n\delta _{22})(k-j)}2^{j(\lambda - \alpha (\infty ))} \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \\ &\quad {}\times \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Biggr)^{q} \Biggr)^{\frac{1}{q}} \\ & \leq C \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {}\times \underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl( \sum _{k=0}^{k_{0}}2^{k\lambda q} \Biggl(\sum _{j=-\infty}^{k} 2^{(n \delta _{11}+n\delta _{22}+\lambda -\alpha (\infty ))(j-k)} \Biggr)^{q} \Biggr)^{\frac{1}{q}} \\ &\leq C \Vert f_{1} \Vert _{M\dot{k}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{k}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})} . \end{aligned}$$

Putting the approximations of \(Y_{1}\), \(Y_{2}\), and \(Y_{3}\) into (15) yields the required outcome. □

Theorem 4.4

Let \(q_{1}\), \(q_{2}\), q, \(p_{1}(\cdot )\), \(p_{2}(\cdot )\), \(p(\cdot )\), w, \(\alpha (\cdot )\), and β be as in Theorem 4.3. Additionally, if \(\alpha (\infty )\geq \alpha (0)>\lambda -n\delta \), where \(\delta \in (0,1)\) is a constant arising in (3.4), then

$$ \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})}\leq C \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}( \cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M\dot{K}^{\alpha _{2}(\cdot ), \lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}(\cdot )})}. $$

Proof

By utilizing Hölder’s inequality, we obtain

$$\begin{aligned}& \begin{aligned}[b] \bigl\vert H^{*}_{\beta}(f_{1},f_{2}) (x)\cdot \chi _{k}(x) \bigr\vert &\leq \int _{R^{n} \setminus B_{k}} \int _{R^{n}\setminus B_{k}}\frac{1}{ \vert t \vert ^{2n-\beta}} \bigl\vert f_{1}(t_{1}) \bigr\vert \bigl\vert f_{2}(t_{2}) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(x) \\ &\leq C\sum_{j=k+1}^{\infty}2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ & \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}\chi _{k}(x),\end{aligned} \\& \begin{aligned}[b] \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) (x)\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}& \leq C\sum _{j=k+1}^{\infty}2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \Vert \chi _{k} \Vert _{L^{q(\cdot )}(w^{q}(\cdot ))}.\end{aligned} \end{aligned}$$
(16)

In the light of inequality (10), we acquire

$$ \begin{aligned}[b] \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) (x)\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}& \leq C\sum _{j=k+1}^{\infty} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {}\times \Vert \chi _{j} \Vert ^{-1}_{L^{q(\cdot )}(w^{q}(\cdot ))} \Vert \chi _{k} \Vert _{L^{q( \cdot )}(w^{q}(\cdot ))} \\ &\leq C\sum_{j=k+1}^{\infty}2^{n\delta (k-j)} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})},\end{aligned} $$
(17)

where we used the result of Lemma 3.7.

We will use the same procedure as in Theorem 4.3 to obtain

$$ \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) \bigr\Vert ^{q}_{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})}=\max \{Z_{1},{Z_{2}+Z_{3}} \}, $$
(18)

where

$$\begin{aligned}& Z_{1}=\underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda q} \sum_{k=- \infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) (x)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})}, \\& Z_{2}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda q} \sum_{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) (x) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})},\\& Z_{3}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda q} \sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert H^{*}_{\beta}(f_{1},f_{2}) (x) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})}. \end{aligned}$$

The boundedness of \(Z_{l} \ (l=1,2,3)\) is alike to that of \(Y_{l} \ (l=1,2,3)\) of Theorem 4.3. Here we are close to our result. □

Theorem 4.5

Let \(0< q,q_{1},q_{2}<\infty \), \(q(\cdot )\in P (\mathbb{R}^{n})\cap \mathscr{C}^{\log}( \mathbb{R}^{n})\), and \(p(\cdot )\) be such that \(\frac{1}{q(\cdot )}=\frac{1}{p(\cdot )}-\frac{\beta}{n}\) with \(\frac{1}{p(\cdot )}=\frac{1}{p_{1}(\cdot )}+\frac{1}{p_{2}(\cdot )}\). Also, let \(w^{p_{2}(\cdot )},w^{p_{1}(\cdot )}\in A_{1}\), let \(\lambda =\lambda _{1}+\lambda _{2}\), and let \(\alpha (\cdot )\in \mathscr{C}^{\log}(\mathbb{R}^{n})\cap L^{\infty}( \mathbb{R}^{n})\) be a log Hölder continuous function at the origin satisfying \(\alpha (0)=\alpha _{1}(0)+\alpha _{2}(0)\), \(\alpha (\infty )=\alpha _{1}(\infty )+\alpha _{2}(\infty )\) with \(\alpha (0)\leq \alpha (\infty )< n\delta _{11}+\lambda +n\delta _{22}\), where \(\delta _{22},\delta _{11}\in (0,1)\) are the constants arising in (7). Then \([b,H_{\beta}]\) is bounded from \({M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}( \cdot )})}\times {M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}( \cdot )}(w^{p_{2}(\cdot )})}\) to \({M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q(\cdot )})}\), where \({b}=(b_{1},b_{2})\) and \(b_{1},b_{2}\in \mathit{BMO}\).

Proof

We have

$$\begin{aligned}& \begin{aligned}[b] & \bigl\vert [b_{1},H_{\beta}](f_{1},f_{2}) (z)\cdot \chi _{k}(z) \bigr\vert \\ &\quad \leq \frac{1}{ \vert z \vert ^{2n-\beta}} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{1}(t_{1})f_{1}(t_{2}) \bigl(b_{1}(z)-b(t_{1}) \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad \leq C 2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{1}(t)f_{2}(t) \bigl(b_{1}(z)-(b_{1})_{B_{j}}+(b_{1})_{B_{j}}-b_{1}(t_{1}) \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad \leq C 2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad \quad {}+C 2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad =I+II,\end{aligned} \\& \begin{aligned}[b] I= C 2^{-k(2n-\beta )}\sum _{j=-\infty}^{k} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z). \end{aligned} \end{aligned}$$

By utilizing the Hölder inequality, we obtain

$$ \begin{aligned}[b] I&\leq C2^{-k(2n-\beta )}\sum _{j=-\infty}^{k} \bigl\vert \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \cdot \chi _{k}(z) \bigr\vert \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \\ &\quad {}\times \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}.\end{aligned} $$

Utilizing Lemmas 3.7, 3.2, and 3.9, we acquire

$$\begin{aligned}& \begin{aligned}[b] & \Vert I \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C2^{k\beta}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})}\Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{ \prime }}}2^{-2kn} \bigl\Vert \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr)\chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}(k-j) \Vert b_{1} \Vert _{\mathit{BMO}} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} },\end{aligned} \end{aligned}$$
(19)
$$\begin{aligned}& \begin{aligned} II&= 2^{-k(2n-\beta )}\sum _{j=-\infty}^{k} \int _{B_{k}} \int _{B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &=2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \int _{B_{k}} \biggl\vert f_{2}(t_{2})\,dt _{2} \int _{B_{k}}f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \biggr\vert \,dt _{1}\cdot \chi _{k}(z) \\ &\leq C2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \bigl\Vert \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr)\chi _{j} \bigr\Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}\cdot \chi _{k}(z),\end{aligned} \\& \begin{aligned}[b] \Vert II \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}&\leq C2^{-k(2n-\beta )}\sum_{j=- \infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \bigl\Vert \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \chi _{j} \bigr\Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \\ &\quad {}\times \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \bigl\Vert \chi _{k}(x) \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ & \leq C2^{-k(2n-\beta )}\sum_{j=-\infty}^{k} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert b_{1} \Vert _{\mathit{BMO}} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \\ &\quad {}\times \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}\Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \bigl\Vert \chi _{k}(x) \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}. \end{aligned} \end{aligned}$$
(20)

From inequalities (19) and (20), we have

$$ \begin{aligned}[b] & \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} } \\ &\quad \leq C2^{-k(2n-\beta )}\sum_{j=-\infty}^{k}(k-j) \Vert b_{1} \Vert _{\mathit{BMO}} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} }. \end{aligned} $$

To move forward, we use Theorem 4.3:

$$ \begin{aligned}[b] & \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} } \\ &\quad \leq C\sum_{j=-\infty}^{k}2^{(n\delta _{11}+n\delta _{22})(j-k)}(k-j) \Vert b_{1} \Vert _{\mathit{BMO}} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} .\end{aligned} $$
(21)

With the use of the definition of variable exponent Herz–Morrey space and Proposition 4.2 we get the following inequality:

$$ \begin{aligned}[b] &\bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ), \lambda}_{q,q(\cdot )}(w^{q(\cdot )})} \\ &\quad =\sup_{k_{0}\in{Z}}2^{-k_{0} \lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (\cdot )q} \bigl\Vert [b_{1},H_{ \beta}](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad \leq \max \Biggl\{ \underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0} \lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert [b_{1},H_{ \beta}](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}}, \\ &\quad \quad \underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl( \Biggl(\sum_{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad\quad {} + \Biggl(\sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \Biggr) \Biggr\} \\ &\quad =\max \{A_{1},A_{2}+A_{3} \},\end{aligned} $$
(22)

where

$$\begin{aligned}& A_{1}=\underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl( \sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}},\\& A_{2}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}},\\& A_{3}=\underset{k_{0}\geq 0}{\sup _{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl(\sum _{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) (z) \cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}}. \end{aligned}$$

In the remainder of the proof, we use the same calculation as in Theorem 4.3. We obtain the following result:

$$ \begin{aligned}[b] & \bigl\Vert [b_{1},H_{\beta}](f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})}\leq C \Vert b_{1} \Vert _{\mathit{BMO}} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ), \lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M \dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}( \cdot )})}.\end{aligned} $$

Similarly, we can easily estimate the following result:

$$ \begin{aligned}[b] & \bigl\Vert [b_{2},H_{\beta}](f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q( \cdot )})}\leq C \Vert b_{2} \Vert _{\mathit{BMO}} \Vert f_{1} \Vert _{M\dot{K}^{\alpha _{1}(\cdot ), \lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2} \Vert _{M \dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}(\cdot )}(w^{p_{2}( \cdot )})}. \end{aligned} $$

 □

Theorem 4.6

Let \(q_{1}\), \(q_{2}\), q, \(p_{1}(\cdot )\), \(p_{2}(\cdot )\), \(p(\cdot )\), w, \(\alpha (\cdot )\), and β be as in Theorem 4.3. Additionally, if \(\alpha (\infty )\geq \alpha (0)>\lambda -n\delta \), where \(\delta \in (0,1)\) is a constant arising in (3.4), then \([b,H^{*}_{\beta}]\) is bounded from \({M\dot{K}^{\alpha _{1}(\cdot ),\lambda _{1}}_{q_{1},p_{1}(\cdot )}(w^{p_{1}( \cdot )})}\times {M\dot{K}^{\alpha _{2}(\cdot ),\lambda _{2}}_{q_{2},p_{2}( \cdot )}(w^{p_{2}(\cdot )})}\) to \({M\dot{K}^{\alpha (\cdot ),\lambda}_{q,q(\cdot )}(w^{q(\cdot )})}\), where \({b}=(b_{1},b_{2})\) and \(b_{1},b_{2}\in \mathit{BMO}\).

Proof

We have

$$\begin{aligned}& \begin{aligned}[b] & \bigl\vert \bigl[b_{1},H^{*}_{\beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k}(z) \bigr\vert \\ &\quad \leq \int _{ \mathbb{R}^{n}\setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \frac{1}{ \vert t \vert ^{2n-\beta}} \bigl\vert f_{1}(t_{1})f_{1}(t_{2}) \bigl(b_{1}(z)-b(t_{1}) \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad \leq C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{1}(t_{1})f_{2}(t_{2}) \bigl(b_{1}(z)-(b_{1})_{B_{j}}+(b_{1})_{B_{j}}-b_{1}(t_{1}) \bigr) \bigr\vert \,dt _{1}\,dt _{2} \\ &\quad \quad {} \cdot \chi _{k}(z) \\ &\quad \leq C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad\quad {} +C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &\quad =III+IV,\end{aligned} \\& \begin{aligned}[b] III= C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z). \end{aligned} \end{aligned}$$

By utilizing the Hölder inequality, we obtain

$$ \begin{aligned}[b] III&\leq C\sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr) \cdot \chi _{k}(z) \bigr\vert \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \\ & \quad{} \times \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}\Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}.\end{aligned} $$

Utilizing Lemmas 3.7, 3.2, and 3.9, we acquire

$$\begin{aligned}& \begin{aligned}[b] & \Vert III \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{ \prime }}} \bigl\Vert \bigl(b_{1}(z)-(b_{1})_{B_{j}} \bigr)\chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ &\quad \leq C \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}(k-j) \Vert b_{1} \Vert _{\mathit{BMO}} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} },\end{aligned} \end{aligned}$$
(23)
$$\begin{aligned}& \begin{aligned} IV&= \sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{1}\,dt _{2} \cdot \chi _{k}(z) \\ &=\sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \int _{\mathbb{R}^{n} \setminus B_{k}} \int _{\mathbb{R}^{n}\setminus B_{k}} \bigl\vert f_{2}(t_{2})f_{1}(t_{1}) \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \bigr\vert \,dt _{2}\,dt _{1} \cdot \chi _{k}(z) \\ &\leq C\sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \bigl\Vert \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr)\chi _{j} \bigr\Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \\ & \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}}\cdot \chi _{k}(x),\end{aligned} \\& \begin{aligned}[b] \Vert IV \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}&\leq C\sum_{j=k+1}^{\infty} 2^{-j(2n- \beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \bigl\Vert \bigl(b_{1}(t_{1})-(b_{1})_{B_{j}} \bigr) \chi _{j} \bigr\Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \\ &\quad {}\times \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \bigl\Vert \chi _{k}(x) \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}} \\ & \leq C\sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert b_{1} \Vert _{\mathit{BMO}} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{ \prime }}} \\ &\quad {}\times \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})}\Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \bigl\Vert \chi _{k}(x) \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})}}. \end{aligned} \end{aligned}$$
(24)

From inequalities (23) and (24), we have

$$ \begin{aligned}[b] & \bigl\Vert \bigl[b_{1},H^{*}_{\beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} } \\ &\quad \leq C\sum_{j=k+1}^{\infty} 2^{-j(2n-\beta )}(k-j) \Vert b_{1} \Vert _{\mathit{BMO}} \Vert f_{1j} \Vert _{L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )})} \Vert f_{2j} \Vert _{L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )})} \Vert \chi _{j} \Vert _{({L^{p_{1}(\cdot )}(w^{p_{1}(\cdot )}))^{\prime }}} \\ &\quad \quad {}\times \Vert \chi _{j} \Vert _{({L^{p_{2}(\cdot )}(w^{p_{2}(\cdot )}))^{\prime }}} \Vert \chi _{k} \Vert _{L^{q(\cdot )}{(w^{q(\cdot )})} } .\end{aligned} $$

With the use of Proposition 4.2 we get the following inequality:

$$ \begin{aligned}[b] &\bigl\Vert \bigl[b_{1},H^{*}_{\beta} \bigr](f_{1},f_{2}) \bigr\Vert _{M\dot{K}^{\alpha (\cdot ), \lambda}_{q,q(\cdot )}(w^{q(\cdot )})} \\ &\quad =\sup_{k_{0}\in{Z}}2^{-k_{0} \lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (\cdot )q} \bigl\Vert \bigl[b_{1},H^{*}_{ \beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad \leq \max \Biggl\{ \underset{k_{0}< 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0} \lambda } \Biggl(\sum_{k=-\infty}^{k_{0}}2^{k\alpha (0)q} \bigl\Vert \bigl[b_{1},H^{*}_{ \beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}}, \\ &\quad \quad \underset{k_{0}\geq 0}{\sup_{k_{0}\in{Z}}}\, 2^{-k_{0}\lambda } \Biggl( \Biggl(\sum_{k=-\infty}^{-1}2^{k\alpha (0)q} \bigl\Vert \bigl[b_{1},H^{*}_{ \beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \\ &\quad \quad {} + \Biggl(\sum_{k=0}^{k_{0}}2^{k\alpha (\infty )q} \bigl\Vert \bigl[b_{1},H^{*}_{ \beta} \bigr](f_{1},f_{2}) (z)\cdot \chi _{k} \bigr\Vert ^{q}_{L^{q(\cdot )}(w^{q(\cdot )})} \Biggr)^{\frac{1}{q}} \Biggr) \Biggr\} \\ &\quad =\max \{B_{1},B_{2}+B_{3} \}.\end{aligned} $$
(25)

We can easily find the estimates of \(B_{i}\ (i = 1, 2, 3)\) by similar methods to the ones in Theorem 4.5. □

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)

    Article  MathSciNet  Google Scholar 

  2. Faris, W.G.: Weak Lebesgue spaces and quantum mechanical binding. Duke Math. J. 43, 365–373 (1976)

    Article  MathSciNet  Google Scholar 

  3. Chris, M., Grafakos, L.: Best constant for two nonconvolution inequalities. Math. Z. 123, 1687–1693 (1995)

    MathSciNet  Google Scholar 

  4. Fu, Z.W., Grafakos, L., Lu, S.Z., Zhao, F.Y.: Sharp bounds for m-linear Hardy and Hilbert operators. Houst. J. Math. 38(1), 225–244 (2012)

    MathSciNet  Google Scholar 

  5. Persson, L.E., Samko, S.G.: A note on the best constants in some Hardy inequalities. J. Math. Inequal. 9(2), 437–447 (2015)

    Article  MathSciNet  Google Scholar 

  6. Zhao, F.Y., Fu, Z.W., Lu, S.Z.: Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci. China Math. 55(10), 1977–1990 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gao, G., Hu, X., Zhong, C.: Sharp weak estimates for Hardy-type operators. Ann. Funct. Anal. 7(3), 421–433 (2016)

    Article  MathSciNet  Google Scholar 

  8. Hussain, A., Sarfraz, N., Gürbüz, F.: Sharp weak bounds for p-adic Hardy operators on p-adic linear spaces. arXiv:2002.08045 [math.CA]

  9. Fu, Z.W., Liu, Z.G., Lu, S.Z., Wong, H.: Characterization for commutators of n-dimensional fractional Hardy operators. Sci. China Ser. A 50(10), 1418–1426 (2007)

    Article  MathSciNet  Google Scholar 

  10. Zhao, F.Y., Lu, S.Z.: The best bound for n-dimensional fractional Hardy operator. Math. Inequal. Appl. 18(1), 233–240 (2015)

    MathSciNet  Google Scholar 

  11. Wang, S.R., Xu, J.S.: Commutators of the bilinear Hardy operator on Herz space type spaces with varaible exponent. J. Funct. Spaces 2019, Article ID 7607893 (2019). https://doi.org/10.1155/2019/7607893

    Article  Google Scholar 

  12. Hussain, A., Sarfraz, N., Khan, I., Alqahtani, A.M.: Estimates for commutators of bilinear fractional p-adic Hardy operator on Herz-type spaces. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/6615604

    Article  MathSciNet  Google Scholar 

  13. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, London (1952)

    Google Scholar 

  14. Edmunds, D.E., Evans, W.D., Operators, H.: Function Spaces and Embedding. Springer, Berlin (2004)

    Google Scholar 

  15. Fu, Z.W., Wu, Q.Y., Lu, S.Z.: Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya operators. Acta Math. Sin. 29, 137–150 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gao, G., Zhao, F.Y.: Sharp weak bounds for Hausdorff operators. Anal. Math. 41(3), 163–173 (2015)

    Article  MathSciNet  Google Scholar 

  17. Lu, S.Z., Yang, D.C., Zhao, F.Y.: Sharp bounds for Hardy type operators on higher dimensional product spaces. J. Inequal. Appl. 2013, 148 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hussain, A., Asim, M.: Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/9705250

    Article  MathSciNet  Google Scholar 

  19. Asim, M., Hussain, A.: Weighted variable Morrey-Herz estimates for fractional Hardy operators. J. Inequal. Appl. (2022). https://doi.org/10.1186/s13660-021-02739-z

    Article  MathSciNet  Google Scholar 

  20. Yee, T.L., Ho, K.P.: Hardy’s inequalities and integral operators on Herz-Morrey spaces. Open Math. 18, 106–121 (2020)

    Article  MathSciNet  Google Scholar 

  21. Orlicz, W.: Uber konjugierete exponentenfolgen. Stud. Math. 3, 200–212 (1931)

    Article  Google Scholar 

  22. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991)

    Article  Google Scholar 

  23. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn., Math. 31(1), 239–264 (2006)

    MathSciNet  Google Scholar 

  24. Cruz-Uribe, D., Fiorenza, D.V.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Appl. and Numerical Harmonic Anal. Springer, Heidelberg (2013)

    Google Scholar 

  25. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. Appl. Math. 6, 1383–1406 (2006)

    MathSciNet  Google Scholar 

  26. Ruzicka, M.: Electrorheological Fluids, Modeling and Mathematical Theory. Lectures Notes in Math., vol. 1748. Springer, Berlin (2000)

    Google Scholar 

  27. Harjulehto, P., Hasto, P., Le, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72(12), 4551–4574 (2010)

    Article  MathSciNet  Google Scholar 

  28. Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 13, 33–50 (2010)

    Article  MathSciNet  Google Scholar 

  29. Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394, 781–795 (2012)

    Article  MathSciNet  Google Scholar 

  30. Samko, S.: Variable exponent Herz spaces. Mediterr. J. Math. 10, 2007–2025 (2013)

    Article  MathSciNet  Google Scholar 

  31. Izuki, M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 13, 243–253 (2009)

    MathSciNet  Google Scholar 

  32. Hussain, A., Gao, G.: Multilinear singular integrals and commutators on Herz space with variable exponent. ISRN Math. Anal. 2014, Article ID 626327 (2014)

    MathSciNet  Google Scholar 

  33. Ho, K.-P.: Extrapolation to Herz spaces with variable exponents and applications. Rev. Mat. Complut. 33, 437–463 (2020)

    Article  MathSciNet  Google Scholar 

  34. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  35. Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14, 361–374 (2011)

    Article  MathSciNet  Google Scholar 

  36. Diening, L., Hästö, P.: Muckenhoupt weights in variable exponent spaces. Preprint. https://www.problemsolving.fi/pp/p75_submit.pdf

  37. Wang, L., Shu, L.: Boundedness of some sublinear operators on weighted variable Herz-Morrey spaces. J. Math. Inequal. 12, 31–42 (2018)

    Article  MathSciNet  Google Scholar 

  38. Capone, C., Cruz-Uribe, D., SFO, Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^{p}\) spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

    Article  MathSciNet  Google Scholar 

  39. Izuki, M., Noi, T.: Boundedness of fractional integrals on weighted Herz spaces with variable exponent. J. Inequal. Appl. 2016, 199 (2016)

    Article  MathSciNet  Google Scholar 

  40. Dong, B.H., Xu, J.S.: Herz-Morrey type Besov and Triebel-Lizorkin spaces with variable exponents. Banach J. Math. Anal. 9, 75–101 (2015)

    Article  MathSciNet  Google Scholar 

  41. Hussain, A., Asim, M., Jarad, F.: Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators. J. Math. (2022). https://doi.org/10.1155/2022/5855068

    Article  MathSciNet  Google Scholar 

  42. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn., Math. 28, 223–238 (2003)

    MathSciNet  Google Scholar 

  43. Izuki, M., Noi, T.: An intrinsic square function on weighted Herz spaces with variable exponent. J. Math. Inequal. 11, 799–816 (2017)

    Article  MathSciNet  Google Scholar 

  44. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394, 744–760 (2012)

    Article  MathSciNet  Google Scholar 

  45. Sharpley, B.C.: Interpolation of Operators. Academic Press, Boston (1988)

    Google Scholar 

  46. Izuki, M.: Remarks on Muckenhoupt weights with variable exponent. Sci. Math. Jpn. 2(11), 27–41 (2013)

    MathSciNet  Google Scholar 

  47. Karlovich, A.Y., Spitkovsky, I.M.: The Cauchy singular integral operator on weighted variable Lebesgue spaces. In: Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Oper. Theory Adv. Appl., vol. 236, pp. 275–291 (2014)

    Chapter  Google Scholar 

  48. Izuki, M., Noi, T.: Two weight Herz space variable exponent. Bull. Malays. Math. Soc. 43, 169–200 (2020)

    Article  MathSciNet  Google Scholar 

  49. Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 199–213 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors I. Ayoob and N. Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

Funding

No external funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

M.A: conceptualization, supervision, writing—original draft; I.A.: writing—original draft, methodology; A.H.: investigation, writing—review and editing; N.M.: conceptualization, supervision, writing—original draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nabil Mlaiki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, M., Ayoob, I., Hussain, A. et al. Weighted estimates for fractional bilinear Hardy operators on variable exponent Morrey–Herz space. J Inequal Appl 2024, 11 (2024). https://doi.org/10.1186/s13660-024-03092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03092-7

Mathematics Subject Classification

Keywords