Skip to main content

Approximation by bivariate Bernstein–Kantorovich–Stancu operators that reproduce exponential functions

Abstract

In this study, we construct a Stancu-type generalization of bivariate Bernstein–Kantorovich operators that reproduce exponential functions. Then, we investigate some approximation results for these operators. We use test functions to prove a Korovkin-type convergence theorem. Then, we show the rate of convergence by the modulus of continuity and give a Voronovskaya-type theorem. We give a covergence comparison about bivariate Bernstein–Kantorovich–Stancu operators and their exponential form.

1 Introduction

The goal of approximation theory is to approximate a target function using straightforward, computable, and more useful functions. In 1912, Bernstein [1] defined the Bernstein operators for every function on the interval \([0, 1]\). Later, the various generalizations of Bernstein polynomials were investigated in [24].

In addition to classical Bernstein polynomials, there are many studies on two-dimensional Bernstein polynomials and generalizations, such as [5]. Different types of Bernstein–Kantorovich operators have been studied in [69]. In [10], for \(n\in \mathbb{N}\), \(f\in L_{1}([0,1]\times [0,1])\) Pop and Farcas constructed two variable Bernstein–Kantorovich-type operators \(K_{n}:L_{1}(S)\to C([0,1]\times [0,1])\). For any \((x,y)\in S\), these operators are defined as:

$$\begin{aligned} K_{n}(f;x,y)=(n+1)^{2} \sum_{k=0}^{n} \sum_{j=0}^{n-k}p_{n,k,j}(x,y) \int _{\frac{j}{n+1}}^{\frac{j+1}{n+1}} \int _{\frac{k}{n+1}}^{ \frac{k+1}{n+1}}f(t,s) \,dt \,ds, \end{aligned}$$

where \(k,j\geq 0\).

In 2020, the Stancu variant of Bernstein–Kantorovich operators based on the shape parameter α was introduced [11]. Also, the Stancu variant of well-known operators such as Bernstein, Baskakov, and Szász was introduced in [1219]. The bivariate form of Bernstein operators has been also studied in the literature (see, for instance, [2027] references therein). One of these extensions is bivariate Bernstein–Kantorovich–Stancu operators. These operators are defined [28] for the functions \(f\in C(A) \), \(A=[0,1]\times [0,1]\) as

$$\begin{aligned} &K_{m,n}^{\alpha ,\beta}(f;x,y) \\ &\quad=(m+\beta _{1}+1) (n+\beta _{2}+1)\sum_{k=0}^{m} \sum _{l=0}^{n}p_{m,n,k}(x,y) \int _{ \frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}f(t,s) \,dt \,ds \end{aligned}$$
(1)

and

$$\begin{aligned} p_{m,n,k}(x,y)=\dbinom{m}{k}\dbinom{n}{l}x^{k} (1-x)^{m-k}y^{l}(1-y)^{n-l} , \end{aligned}$$

where \(s,t\in [0,1] \) and \(m,n\in \mathbb{N}\), \(\alpha =(\alpha _{1},\alpha _{2})\), \(\beta =(\beta _{1},\beta _{2})\), \(0\leq \alpha _{1}\leq \beta _{1}\), \(0\leq \alpha _{2}\leq \beta _{2}\). In [22], Aral et al. gave the modification of exponential forms of Bernstein operators as follows

$$\begin{aligned} G_{n} f(x)= G_{n} (f;x)= \sum _{k=0}^{n} e^{-\alpha{k/n}}e^{- \alpha x}p_{n,k} \bigl(a_{n}(x)\bigr)f \biggl(\frac{k}{n} \biggr),\quad x\in [0,1], n\in \mathbb{N}, \end{aligned}$$

where

$$\begin{aligned} p_{n,k}\bigl(a_{n}(x)\bigr)=\dbinom{n}{k} \bigl(a_{n}(x)\bigr)^{k} \bigl(1-a_{n}(x) \bigr)^{n-k} \end{aligned}$$

and

$$\begin{aligned} a_{n}(x)=\frac{e^{\alpha x/n}-1}{e^{\alpha /n}-1}. \end{aligned}$$
(2)

They defined the relation of their operators between the classical Bernstein operators as

$$\begin{aligned} G_{n} f(x)=\exp{_{\alpha}}(x)B_{n} \biggl( \frac{f}{\exp_{\alpha}};a_{n}(x) \biggr). \end{aligned}$$
(3)

Here, the exponential function is symbolized as \(\exp_{\alpha }(x)=e^{\alpha x}\), for a real parameter \(\alpha > 0\). The generalization of Bernstein operators given by Aral et al. [22] is a particular case of the modification introduced by Morigi and Neamtu in [29].

In 2019, Aral et al. [30] gave the Bernstein–Kantorovich operators that reproduce exponential functions for \(n \in \mathbb{N} \) and \(\alpha ,\beta , \mu > 0\) and \(x \in [0, 1]\). They considered the operator \(\widetilde{K}_{n} :C [0, 1]\to [0, 1] \) for the functions \(f\in C[0,1] \) as

$$\begin{aligned} \widetilde{K}_{n}(f;x)=a_{n+1}^{\prime }(n+1)e^{\mu x} \sum_{k=0}^{n} \dbinom{n}{k} \bigl(a_{n+1}(x)\bigr)^{k} \bigl(1-a_{n+1}(x) \bigr)^{n-k} \int _{ \frac{k}{n+1}}^{\frac{k+1}{n+1}}e^{\mu t} f(t) \,dt . \end{aligned}$$

This paper consists of 6 sections. In Sect. 2, we give the definition of generalized bivariate Bernstein–Kantorovich–Stancu operators and we obtain some auxiliary results. In Sect. 3, we mention the rate of convergence with the help of the modulus of continuity. In Sect. 4, we present Voronovskaya-type results. In Sect. 5, we illustrate numerical examples with graphics. In Sect. 6, we give the conclusions.

2 Preliminaries

In this article, we construct bivariate Bernstein–Kantorovich–Stancu operators that reproduce exponential functions.

Definition 2.1

Let \(S_{\mu ,\nu}=\{(x,y)\in \mathbb{R}^{2};x,y\geq 0,r_{\mu}+r_{\nu} \leq 1\}\subset S \) for each \(m,n\in \mathbb{N}\) and \(\mu ,\nu > 0\). We define Bernstein–Kantorovich–Stancu operators for the functions \(f \in C(S_{\mu ,\nu})\) as

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y) \\ &\quad= r'_{\mu}(x) r'_{ \nu}(y) (m+\beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y} \sum _{k=0}^{m} \sum_{l=0}^{n}p_{m,n,k,l} \bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{-\mu t-\nu s}f(t,s) \,dt \,ds, \\ &p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr)= \dbinom{m}{k}\dbinom{n}{l}r_{ \mu}(x)^{k} \bigl(1-r_{\mu}(x)\bigr)^{m-k} r_{\nu}(y)^{l} \bigl(1-r_{\nu}(y)\bigr)^{n-l}, \end{aligned}$$
(4)

where \(s,t\in [0,1]\) and \(m,n\in \mathbb{N}\), and \(\alpha =(\alpha _{1},\alpha _{2})\), \(\beta =(\beta _{1},\beta _{2})\), \(0\leq \alpha _{1}\leq \beta _{1}\), \(0\leq \alpha _{2}\leq \beta _{2}\). Here,

$$\begin{aligned} r_{\mu}(x)= \frac{e^{\mu x/m+\beta _{1}+1}-1}{e^{\mu /m+\beta _{1}+1}-1},\qquad r_{ \nu}(y)= \frac{e^{\nu y/n+\beta _{2}+1}-1}{e^{\nu /n+\beta _{2}+1}-1} \end{aligned}$$
(5)

and so

$$\begin{aligned} &r'_{\mu}(x)= \frac{\mu e^{\mu x/m+\beta _{1}+1}}{(e^{{\mu}/{m+\beta _{1}+1}}-1)(m+\beta _{1}+1)}, \end{aligned}$$
(6)
$$\begin{aligned} &r'_{\nu}(y)= \frac{\nu e^{\nu y/n+\beta _{2}+1}}{(e^{{\nu}/{n+\beta _{2}+1}}-1)(n+\beta _{2}+1)}, \end{aligned}$$
(7)

\(\mu ,\nu >0\) are real parameters and \(\exp_{i,j}^{\mu ,\nu}\) represents the exponential function defined by \(\exp_{i,j}^{\mu ,\nu}(t,s):=e^{i\mu t+j\nu s}\) for \(0\leq i,j \leq 4\).

Lemma 2.1

Let \(m,n\) \(\mathbb{N}\) and \((x,y)\in S_{\mu ,\nu}\). The following equalities hold:

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(1;x,y)\\ &\quad=e^{ \frac{\mu x-\mu (\alpha _{1} +1)}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2} +1)}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{ \frac{-\mu}{m+\beta _{1}+1}}-e^{\frac{\mu (x-1)}{m+\beta _{1}+1}}+1 \bigr)^{m} \\ &\qquad{} \times \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{\mu t};x,y\bigr)\\ &\quad= \frac{\mu}{(m+\beta _{1}+1)(e^{\frac{\mu}{m+\beta _{1}+1}}-1)}e^{ \frac{\mu x}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2}+1)}{n+\beta _{2}+1}+\mu x+\nu y } \\ &\qquad{} \times \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{\nu s};x,y\bigr)\\ &\quad= \frac{\nu }{(n+\beta _{2}+1)(e^{\frac{\nu}{n+\beta _{2}+1}}-1)}e^{ \frac{\nu y}{n+\beta _{2}+1}+ \frac{\mu x-\mu (\alpha _{1}+1)}{m+\beta _{1}+1}+\mu x+\nu y} \\ &\qquad{} \times \bigl(e^{ \frac{-\mu}{m+\beta _{1}+1}}-e^{\frac{\mu (x-1)}{m+\beta _{1}+1}}+1 \bigr)^{m}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{2\mu t};x,y \bigr)\\ &\quad=e^{ \frac{\mu x+\mu \alpha _{1}+\mu x m}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2}+1)}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta , \mu , \nu}\bigl(e^{2\nu s};x,y \bigr)\\ &\quad=e^{ \frac{\mu x-\mu (\alpha _{1}+1)}{m+\beta _{1}+1}+ \frac{\nu y+\nu \alpha _{2}+\nu y n}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{\frac{-\mu}{m+\beta _{1}+1}}-e^{ \frac{\mu (x-1)}{m+\beta _{1}+1}}+1 \bigr)^{m}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{3\mu t};x,y\bigr)\\ &\quad= \frac{e^{\frac{\mu}{m+\beta _{1}+1}}+1}{2}e^{ \frac{\mu x+2\mu \alpha _{1}}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2} +1)}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n} \\ &\qquad{} \times \bigl(e^{\frac{\mu (x+1)}{m+\beta _{1}+1}}-e^{ \frac{\mu}{m+\beta _{1}+1}}+e^{\frac{\mu x}{m+\beta _{1}+1}} \bigr)^{m}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{4\mu t};x,y\bigr)\\ &\quad= \frac{e^{\frac{2\mu}{m+\beta _{1}+1}}+e^{\frac{\mu}{m+\beta _{1}+1}}+1}{3}e^{ \frac{\mu x+3\mu \alpha _{1}}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2} +1)}{n+\beta _{2}+1}+\mu x +\nu y} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n} \\ &\qquad{}\times \bigl(e^{\frac{\mu (x+2)}{m+\beta _{1}+1}}+e^{ \frac{\mu (x+1)}{m+\beta _{1}+1}}-e^{\frac{\mu}{m+\beta _{1}+1}}+e^{ \frac{\mu x}{m+\beta _{1}+1}}-e^{\frac{2\mu}{m+\beta _{1}+1}} \bigr)^{m}, \\ &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{\mu t+\nu s};x,y\bigr)\\ &\quad= \frac{\mu \nu e^{\frac{\mu x}{m+\beta _{1}+1}+\frac{\nu y}{n+\beta _{2}+1}+\mu x+\nu y}}{(n+\beta _{2}+1)(m+\beta _{1}+1) (e^{\frac{\mu}{m+\beta _{1}+1}}-1 ) (e^{\frac{\nu}{n+\beta _{2}+1}}-1 )}. \end{aligned}$$

Proof

By taking \(f(t,s)=1\) in (4), we obtain

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(1;x,y)\\ &\quad= r'_{\mu}(x) r'_{ \nu}(y) (m+\beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y}\sum_{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l} \bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{-\mu t-\nu s} \,dt \,ds , \\ &\quad =e^{\frac{\mu x-\mu (\alpha _{1} +1)}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2} +1)}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{ \frac{-\mu}{m+\beta _{1}+1}}-e^{\frac{\mu (x-1)}{m+\beta _{1}+1}}+1 \bigr)^{m} \bigl(e^{\frac{-\nu}{n+\beta _{2}+1}}-e^{ \frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n}. \end{aligned}$$

By taking \(f(t,s)=e^{\mu t}\) in (4), we achieve

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{\mu t};x,y\bigr)\\ &\quad= r'_{ \mu}(x) r'_{\nu}(y) (m+\beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y} \sum _{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{-\nu s} \,dt \,ds , \\ &\quad=\frac{\mu}{(m+\beta _{1}+1)(e^{\frac{\mu}{m+\beta _{1}+1}}-1)}e^{ \frac{\mu x}{(m+\beta _{1}+1)}+ \frac{\nu y-\nu (\alpha _{2}+1)}{(n+\beta _{2}+1)}+\mu x+\nu y } \bigl(e^{\frac{-\nu}{(n+\beta _{2}+1)}}-e^{ \frac{\nu (y-1)}{(n+\beta _{2}+1)}}+1 \bigr)^{n}. \end{aligned}$$

By taking \(f(t,s)=e^{2\mu t }\) in (4), we obtain

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{2\mu t};x,y\bigr)\\ &\quad = r'_{ \mu}(x) r'_{\nu}(y) (m+\beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y} \sum _{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{}\times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{\mu t-\nu s} \,dt \,ds , \\ &\quad =e^{\frac{\mu x+\mu \alpha _{1}+\mu x m}{m+\beta _{1}+1}+ \frac{\nu y-\nu (\alpha _{2}+1)}{n+\beta _{2}+1}+\mu x+\nu y} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n}. \end{aligned}$$

By taking \(f(t,s)=e^{3\mu t }\) in (4), we have

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{3\mu t};x,y\bigr)\\ &\quad= r'_{ \mu}(x) r'_{\nu}(y) (m+\beta _{1}+1) (n+ \beta _{2} +1)e^{\mu x+\nu y} \sum _{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+a_{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{2 \mu t-\nu s} \,dt \,ds , \\ &\quad =\frac{e^{\frac{\mu}{m+\beta _{1}+1}}+1}{2}e^{ \frac{\mu x}{m+\beta _{1}+1}+\frac{\nu y}{n+\beta _{2}+1}+ \frac{2\mu \alpha _{1}}{m+\beta _{1}+1}- \frac{\nu (\alpha _{2} +1)}{n+\beta _{2}+1}} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n} \\ &\qquad{} \times \bigl(e^{\frac{\mu (x+1)}{m+\beta _{1}+1}}-e^{ \frac{\mu}{m+\beta _{1}+1}}+e^{\frac{\mu x}{m+\beta _{1}+1}} \bigr)^{m}. \end{aligned}$$

By taking \(f(t,s)=e^{4\mu t }\) in (4), we obtain

$$\begin{aligned} &\widetilde{K}_{n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{4\mu t};x,y \bigr)\\ &\quad=r'_{\mu}(x) r'_{\nu}(y) (m+ \beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y}\sum _{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}}e^{3 \mu t-\nu s} \,dt \,ds , \\ &\quad = \frac{e^{\frac{2\mu}{m+\beta _{1}+1}}+e^{\frac{\mu}{m+\beta _{1}+1}}+1}{3}e^{ \frac{\mu x}{m+\beta _{1}+1}+\frac{\nu y}{n+\beta _{2}+1}+ \frac{3\mu \alpha _{1}}{m+\beta _{1}+1}- \frac{\nu (\alpha _{2} +1)}{n+\beta _{2}+1}} \bigl(e^{ \frac{-\nu}{n+\beta _{2}+1}}-e^{\frac{\nu (y-1)}{n+\beta _{2}+1}}+1 \bigr)^{n} \\ &\qquad{} \times \bigl(e^{\frac{\mu (x+2)}{m+\beta _{1}+1}}+e^{ \frac{\mu (x+1)}{m+\beta _{1}+1}}-e^{\frac{\mu}{m+\beta _{1}+1}}+e^{ \frac{\mu x}{m+\beta _{1}+1}}-e^{\frac{2\mu}{m+\beta _{1}+1}} \bigr)^{m}. \end{aligned}$$

By taking \(f(t,s)=e^{\mu t+\nu s }\) in (4), we obtain

$$\begin{aligned} &\widetilde{K}_{n}^{\alpha ,\beta ,\mu ,\nu}\bigl(e^{\mu t+\nu s};x,y \bigr)\\ &\quad=r'_{ \mu}(x) r'_{\nu}(y) (m+ \beta _{1}+1) (n+\beta _{2}+1)e^{\mu x+\nu y} \sum _{k=0}^{m} \sum_{l=0}^{n} p_{m,n,k,l}\bigl(r_{\mu}(x),r_{\nu}(y)\bigr) \\ &\qquad{} \times \int _{\frac{l+\alpha _{2}}{n+\beta _{2}+1}}^{ \frac{l+\alpha _{2}+1}{n+\beta _{2}+1}} \int _{ \frac{k+\alpha _{1}}{m+\beta _{1}+1}}^{ \frac{k+\alpha _{1}+1}{m+\beta _{1}+1}} \,dt \,ds , \\ &\quad= \frac{\mu \nu e^{\frac{\mu x}{m+\beta _{1}+1}+\frac{\nu y}{n+\beta _{2}+1}+\mu x+\nu y}}{(n+\beta _{2}+1)(m+\beta _{1}+1) (e^{\frac{\mu}{m+\beta _{1}+1}-1} ) (e^{\frac{\nu}{n+\beta _{2}+1}-1} )}. \end{aligned}$$

Other results can be obtained in a similar way. □

Theorem 2.1

Let \(\alpha ,\beta \in (0,\infty )\). Then, we have

$$\begin{aligned} \lim_{n \to \infty}\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} \bigl( \exp_{i,j}^{\mu ,\nu};x,y \bigr)=\exp_{i,j}^{\mu ,\nu}(x,y) \end{aligned}$$

for \((i,j)\in \{ (0,0),(1,0),(0,1),(2,0),(0,2) \} \).

Proof

Hereby, by choosing the test functions \(\exp_{i,j}^{\mu ,\nu}(t,s):=e^{i\mu t+j\nu s}\) for

\((i,j)\in \{(0,0),(1,0),(0,1)\}\), we obtain that

$$\begin{aligned} &\lim_{m,n \to \infty}\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(1;x,y)=1, \end{aligned}$$
(8)
$$\begin{aligned} &\lim_{m,n \to \infty}\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} \bigl(e^{ \mu t};x,y\bigr)=e^{\mu x}, \end{aligned}$$
(9)
$$\begin{aligned} &\lim_{m,n \to \infty}\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} \bigl(e^{ \nu s};x,y\bigr)=e^{\nu y} . \end{aligned}$$
(10)

By choosing \((i,j)=(2,0)\) and \((i,j)=(0,2)\), in (4), respectively, we obtain

$$\begin{aligned} \lim_{m,n \to \infty} \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} \bigl(e^{2 \mu t}+e^{2\nu s};x,y\bigr)=e^{2\mu x}+e^{2\nu y} . \end{aligned}$$
(11)

 □

Theorem 2.2

Let \(\mu ,\nu \in (0,\infty )\) and \(f \in C(S_{\mu ,\nu})\), then \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\) converges to f uniformly.

Proof

Applying the Korovkin theorem, and from (8), (9), (10), and (11),

$$\begin{aligned} \lim_{m,n\to \infty} \bigl\Vert \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu , \nu}(f;x,y)-f(x,y) \bigr\Vert \ _{C(S_{\mu ,\nu})} =0 , \end{aligned}$$

where \((i,j)\in \{(0,0),(1,0),(0,1),(2,0),(0,2)\}\), we obtain the desired result. □

Lemma 2.2

For any \((x,y)\in S_{\mu ,\nu}\), we obtain the limits of the central moments as follows:

$$\begin{aligned} &\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}(1;x,y)-1 \bigr) \\ &\quad =- \mu ^{2} x(x-1)+\mu (2x+x \beta _{1}-\alpha _{1}-1) \\ &\qquad{} +\nu \bigl(2y+\nu y+\beta _{2} y-\alpha _{2}-1-\nu y^{2}\bigr), \end{aligned}$$
(12)
$$\begin{aligned} &\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(\bigl(e^{ \mu t}-e^{\mu x}\bigr);x,y\bigr)\bigr)= \frac{\mu}{2} e^{\mu x}\bigl(1+2\alpha _{1}-2x(1+ \mu + \beta _{1})+2\mu x^{2}\bigr), \end{aligned}$$
(13)
$$\begin{aligned} &\lim_{m\to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(\bigl(e^{ \mu t}-e^{\mu x}\bigr)^{2};x,y\bigr) \bigr)=-\mu ^{2}e^{2\mu x}x(x-1), \end{aligned}$$
(14)
$$\begin{aligned} &\lim_{m\to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(\bigl(e^{ \mu t}-e^{\mu x}\bigr) \bigl(e^{\nu s}-e^{\nu y} \bigr);x,y\bigr)\bigr)= 0, \end{aligned}$$
(15)
$$\begin{aligned} &\lim_{m\to \infty}m^{2}\bigl( \widetilde{K}_{m,m}^{\alpha ,\beta ,\mu , \nu}\bigl(\bigl(e^{\mu t}-e^{\mu x} \bigr)^{4}\bigr);x,y\bigr))= 0, \end{aligned}$$
(16)
$$\begin{aligned} &\lim_{m\to \infty}m^{2}\bigl( \widetilde{K}_{m,m}^{\alpha ,\beta ,\mu , \nu}\bigl(\bigl(e^{\nu s}-e^{\nu y} \bigr)^{4}\bigr);x,y\bigr))= 0. \end{aligned}$$
(17)

3 Rate of convergence

The modulus of continuity \(\omega (f,\delta )\) for two-dimensional functions is given as follows:

$$\begin{aligned} \omega (f,\delta )=\sup \bigl\{ \bigl\vert f(x,y)-f(t,s) \bigr\vert :(t,s) \in S,\sqrt{(t-x)^{2}+(s-y)^{2}} \leq \delta \bigr\} . \end{aligned}$$

Theorem 3.1

Let \(f\in C(S_{\mu ,\nu})\). The following inequality holds

$$\begin{aligned} \bigl\vert \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr\vert \leq \biggl( 1+\frac{1}{\mu ^{2}}+\frac{1}{\nu ^{2}} \biggr) \omega (f, \delta ), \end{aligned}$$

where

$$\begin{aligned} \delta ^{2}={}& \bigl(e^{\frac{\mu x}{m+\beta _{1}+1}+ \frac{\nu y}{n+\beta _{2}+1}+\mu x+\nu y} \bigr) \biggl[ \biggl(e^{ \frac{\mu (\alpha _{1}+xm)}{m+\beta _{1}+1}- \frac{\nu (\alpha _{2}+1)}{n+\beta _{2}+1}}-2 \frac{e^{\mu x-\frac{\nu (\alpha _{2}+1)}{n+\beta _{2}+1}}\mu}{(m+\beta _{1}+1)(e^{\frac{\mu}{m+\beta _{1}+1}}-1)} \\ &{} +\bigl(e^{\mu x}+e^{\nu y}\bigr)e^{ \frac{-\mu (\alpha _{1}+1)}{m+\beta _{1}+1}- \frac{\nu (\alpha _{2}+1)}{n+\beta _{2}+1}} \bigl(e^{ \frac{-\mu}{(m+\beta _{1}+1)}}-e^{\frac{\mu (x-1)}{(m+\beta _{1}+1)}}+1 \bigr)^{m} \biggr) \bigl(e^{\frac{-\nu}{(n+\beta _{2}+1)}}-e^{ \frac{\nu (y-1)}{(n+\beta _{2}+1)}}+1 \bigr)^{n} \\ &{}+ \biggl(e^{\frac{\nu (\alpha _{2}+yn)}{n+\beta _{2}+1}- \frac{\mu (\alpha _{1}+1)}{m+\beta _{1}+1}}-2 \frac{e^{\nu y-\frac{\mu (\alpha _{1}+1)}{m+\beta _{1}+1}}\nu}{(n+\beta _{2}+1)(e^{\frac{\nu}{n+\beta _{2}+1}}-1)} \biggr) \bigl(e^{\frac{-\mu}{(m+\beta _{1}+1)}}-e^{ \frac{\mu (x-1)}{(m+\beta _{1}+1)}}+1 \bigr)^{m} \biggr] . \end{aligned}$$

Proof

From the definition of the modulus of continuity, we have

$$\begin{aligned} \bigl\vert \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr\vert \leq \biggl(1+ \frac{ \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} ((t-x)^{2}+(s-y)^{2};x,y )}{\delta ^{2}} \biggr)\omega (f,\delta ). \end{aligned}$$

By using the Mean Value Theorem, we obtain

$$\begin{aligned} &\bigl\vert \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr\vert \\ &\quad\leq \biggl\{ 1+ \biggl(\frac{1}{\mu ^{2}}+\frac{1}{\nu ^{2}} \biggr) \frac{ \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} ((e^{\mu t}-e^{\mu x})^{2}+(e^{\nu s}-e^{\nu y})^{2};x,y )}{\delta ^{2}} \biggr\} \omega (f,\delta ). \end{aligned}$$

Here, if we choose

$$\begin{aligned} \delta ^{2}=\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu} \bigl( \bigl(e^{ \mu t}-e^{\mu x}\bigr)^{2}+\bigl(e^{\nu s}-e^{\nu y} \bigr)^{2};x,y \bigr), \end{aligned}$$

we have

$$\begin{aligned} \bigl\vert \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr\vert \leq \biggl( 1+\frac{1}{\mu ^{2}}+\frac{1}{\nu ^{2}} \biggr) \omega (f, \delta ). \end{aligned}$$

 □

4 Voronovskaya-type theorem

In this section, we mention a Voronovskaya-type theorem for the \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\). Let the inverse of the exponential function for the first variable t be denoted by \(\log _{\mu}^{\nu}\) and the inverse of the exponential function for the second variable s be shown as \(\log _{\nu}^{\mu}\).

Theorem 4.1

Let \(f\in C(S_{\mu ,\nu})\). We have

$$\begin{aligned} &\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr) \\ &\quad= f(x,y) \bigl(-\mu ^{2}(x-1)x+\mu (2x+x\beta _{1}- \alpha _{1}-1) \\ &\qquad{} +2\nu (2y+\nu y+\beta _{2} y)+2\nu \bigl(-\alpha _{2}-1- \nu y^{2}\bigr)\bigr) \\ &\qquad{} +\frac{\partial f(x,y)}{\partial x}\bigl(1+\alpha _{1}-2(1+ \mu +\beta _{1})x+2\mu x^{2}\bigr) \\ &\qquad{} +\frac{\partial f(x,y)}{\partial y}\bigl(1+2\alpha _{2}-2(1+ \nu +\beta _{2})y+2\nu y^{2}\bigr) \\ &\qquad{} +\frac{1}{2} \biggl\{ \biggl(- \frac{\partial ^{2} f(x,y)}{\partial x^{2}}+\mu \frac{\partial f(x,y)}{\partial x} \biggr)2x(x-1)+ \biggl(- \frac{\partial ^{2} f(x,y)}{\partial y^{2}}+\nu \frac{\partial f(x,y)}{\partial y} \biggr)2y(y-1) \biggr\} \end{aligned}$$

uniformly in \((x,y)\in S_{\mu ,\nu}\).

Proof

From Taylor’s expansion for \((x,y)\in S_{\mu ,\nu}\), we have

$$\begin{aligned} f(t,s)={}&f(x,y)+\bigl(e^{\mu t}-e^{\mu x}\bigr) \biggl[ \frac{\partial}{\partial x}f\bigl(\log _{\mu}^{\nu},.\bigr) \biggr]\bigg|_{(e^{ \mu x},e^{\nu y})} \\ &{}+\bigl(e^{\nu s}-e^{\nu y}\bigr) \biggl[\frac{\partial}{\partial y}f \bigl(.,\log _{ \nu}^{\mu}\bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})}+ \frac{1}{2} \biggl\{ \bigl(e^{ \mu t}-e^{\mu x} \bigr)^{2} \biggl[\frac{\partial ^{2}}{\partial x^{2}}f\bigl( \log _{\mu}^{\nu},. \bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \\ &{}+\bigl(e^{\nu s}-e^{\nu y}\bigr)^{2} \biggl[ \frac{\partial ^{2}}{\partial y^{2}}f\bigl(.,\log _{\nu}^{\mu}\bigr) \biggr] \bigg|_{(e^{\mu x},e^{\nu y})} \\ &{}+2\bigl(e^{\mu t}-e^{\mu x}\bigr) \bigl(e^{\nu s}-e^{\nu y} \bigr) \biggl[ \frac{\partial ^{2}}{\partial y\partial x}f\bigl(\log _{\mu}^{\nu},\log _{ \nu}^{\mu}\bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \biggr\} \\ &{}+R(f,t,s;x,y) \bigl(\bigl(e^{\mu t}-e^{\mu x} \bigr)^{2}+\bigl(e^{\nu s}-e^{\nu y}\bigr)^{2} \bigr), \end{aligned}$$
(18)

where \(R(f,t,s;x,y)\to 0\) as \((t,s)\to (x,y) \).

By applying the operator \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(.;x,y)\) to both sides of (18), we write

$$\begin{aligned} &\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \\ &\quad=f(x,y) \bigl( \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(1;x,y)-1\bigr) \\ &\qquad{} +\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{\mu t}-e^{ \mu x} \bigr);x,y\bigr) \biggl[\frac{\partial}{\partial x}f\bigl(\log _{\mu}^{\nu},. \bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \\ &\qquad{} +\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{\nu s}-e^{ \nu y} \bigr);x,y\bigr) \biggl[\frac{\partial}{\partial y}f\bigl(.,\log _{\nu}^{\mu} \bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \\ &\qquad{}+\frac{1}{2} \biggl\{ \widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl( \bigl(e^{ \mu t}-e^{\mu x}\bigr)^{2};x,y\bigr) \biggl[ \frac{\partial ^{2}}{\partial x^{2}}f\bigl( \log _{\mu}^{\nu},.\bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \\ &\qquad{} +2\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl( \bigl(e^{ \mu t}-e^{\mu x}\bigr) \bigl(e^{\nu s}-e^{\nu y} \bigr);x,y\bigr) \biggl[ \frac{\partial ^{2}}{\partial y\partial x}f\bigl(\log _{\mu}^{\nu}, \log _{ \nu}^{\mu}\bigr) \biggr]\bigg|_{(e^{\mu x},e^{\nu y})} \\ &\qquad{} +\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl( \bigl(e^{ \nu s}-e^{\nu y}\bigr)^{2};x,y\bigr) \biggl[ \frac{\partial ^{2}}{\partial y^{2}}f\bigl(.,\log _{\nu}^{\mu}\bigr) \biggr] \bigg|_{(e^{\mu x},e^{\nu y})} \biggr\} \\ &\qquad{} +\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}\bigl(R(f,t,s;x,y) \bigl( \bigl(e^{ \mu t}-e^{\mu x}\bigr)^{2}+\bigl(e^{\nu s}-e^{\nu y} \bigr)^{2}\bigr);x,y\bigr). \end{aligned}$$
(19)

Hence, we have the following derivatives:

$$\begin{aligned} &\biggl[ \frac{\partial f(\log _{\mu}^{\nu},.)}{\partial x} \biggr] \bigg|_{(e^{\mu x},e^{\nu y})}= \frac{e^{-\mu x}}{\mu} \frac{\partial f(x,y)}{\partial x}, \\ &\biggl[ \frac{\partial ^{2} f(\log _{\mu}^{\nu},.)}{\partial x^{2}} \biggr]\bigg|_{(e^{\mu x},e^{\nu y})}=e^{-2\mu x} \biggl( \frac{1}{\mu ^{2}} \frac{\partial ^{2} f(x,y)}{\partial x^{2}}- \frac{1}{\mu}\frac{\partial f(x,y)}{\partial x} \biggr), \\ &\biggl[ \frac{\partial ^{2} f(\log _{\mu}^{\nu},\log _{\nu}^{\mu})}{\partial y \partial x} \biggr]\bigg|_{(e^{\mu x},e^{\nu y})}= \frac{e^{-(\mu x+\nu y)}}{\mu \nu} \frac{\partial f(x,y)}{\partial y \partial x} \end{aligned}$$
(20)

and by substituting (20) into (19) and then by taking the limit we obtain

$$\begin{aligned} &\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr)\\ &\quad=f(x,y) \lim_{m\to \infty} m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}(1;x,y) -1\bigr) \\ &\qquad{}+\frac{e^{-\mu x}}{\mu} \frac{\partial f(x,y)}{\partial x}\lim_{m \to \infty}m\bigl( \widetilde{K}_{m,m}^{ \alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{\mu t}-e^{\mu x} \bigr);x,y\bigr)\bigr) \\ &\qquad{} +\frac{e^{-\nu y}}{\nu} \frac{\partial f(x,y)}{\partial y}\lim_{m \to \infty}m\bigl( \widetilde{K}_{m,m}^{ \alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{\nu s}-e^{\nu y} \bigr);x,y\bigr)\bigr) \\ &\qquad{} +\frac{1}{2} \biggl\{ e^{-2\mu x} \biggl( \frac{1}{\mu ^{2}} \frac{\partial ^{2} f(x,y)}{\partial x^{2}}- \frac{1}{\mu}\frac{\partial f(x,y)}{\partial x} \biggr)\lim _{m \to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl( \bigl(e^{\mu t}-e^{ \mu x}\bigr)^{2};x,y\bigr)\bigr) \\ &\qquad{} +\frac{2}{\mu \nu} e^{-(\mu x+ \nu y)}\frac{\partial f(x,y)}{\partial y \partial x}\lim _{m \to \infty}m\bigl(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl( \bigl(e^{\mu t}-e^{ \mu x}\bigr) \bigl(e^{\nu s}-e^{\nu y} \bigr);x,y\bigr)\bigr) \\ &\qquad{} +e^{-2\nu y} \biggl( \frac{1}{\nu ^{2}}\frac{\partial ^{2} f(x,y)}{\partial y^{2}}- \frac{1}{\nu}\frac{\partial f(x,y)}{\partial y} \biggr)\lim_{m \to \infty}m\bigl( \widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{\nu s}-e^{ \nu y} \bigr)^{2};x,y\bigr)\bigr) \biggr\} \\ &\qquad{} +\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,m}^{ \alpha ,\beta ,\mu ,\nu} \bigl(R(f,t,s;x,y) \bigl(\bigl(e^{\mu t}-e^{\mu x} \bigr)^{2}+\bigl(e^{ \nu s}-e^{\nu y}\bigr)^{2} \bigr);x,y\bigr)\bigr) . \end{aligned}$$

By using equalities (12)–(17), we obtain

$$\begin{aligned} &\lim_{m \to \infty}m\bigl(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)-f(x,y) \bigr) \\ &\quad= f(x,y) \bigl(-\mu ^{2}(x-1)x+\mu (2x+x\beta _{1}- \alpha _{1}-1) \\ &\qquad{} +\nu \bigl(2y+\nu y+\beta _{2} y-\alpha _{2}-1-\nu y^{2}\bigr)\bigr)+ \frac{\partial f(x,y)}{\partial x} \biggl(\frac{1}{2}+\alpha _{1}-(1+ \mu +\beta _{1})x+\mu x^{2} \biggr) \\ &\qquad{} +\frac{\partial f(x,y)}{\partial y} \biggl(\frac{1}{2}+\alpha _{2}-(1+ \nu + \beta _{2})y+\nu y^{2} \biggr)+\frac{1}{2} \biggl\{ \biggl(- \frac{\partial ^{2} f(x,y)}{\partial x^{2}}+\mu \frac{\partial f(x,y)}{\partial x} \biggr)x(x-1) \\ &\qquad{} + \biggl(-\frac{\partial ^{2} f(x,y)}{\partial y^{2}}+ \nu \frac{\partial f(x,y)}{\partial y} \biggr)y(y-1) \biggr\} \\ &\qquad{}+\lim_{m \to \infty}m(\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(R(f,t,s;x,y) \bigl(e^{ \mu t}-e^{\mu x}\bigr)^{2};x,y \bigr) \\ &\qquad{} +\lim_{m \to \infty}m(\widetilde{K}_{m,m}^{\alpha ,\beta , \mu ,\nu} \bigl(R(f,t,s;x,y) \bigl(e^{\nu s}-e^{\nu y}\bigr)^{2};x,y \bigr). \end{aligned}$$
(21)

When we apply the Cauchy–Schwarz inequality to (21), we obtain

$$\begin{aligned} &m\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl(R(t,s;x,y) \bigl( \bigl(e^{\mu t}-e^{ \mu x}\bigr)^{2}:x,y\bigr)+m \widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl(R(t,s;x,y) \bigl(e^{ \nu s}-e^{\nu y} \bigr)^{2}\bigr);x,y\bigr) \\ &\quad\leq \sqrt{\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(R^{2}(t,s;x,y)\bigr)} \Bigl( \sqrt{m^{2} \widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu}\bigl(\bigl(e^{ \mu t}-e^{\mu x} \bigr)^{4};x,y\bigr)}\\ &\qquad{}+\sqrt{m^{2} \widetilde{K}_{m,m}^{\alpha , \beta ,\mu ,\nu}\bigl(\bigl(e^{\nu s}-e^{\nu y} \bigr)^{4};x,y\bigr)} \Bigr). \end{aligned}$$

Since \(R(t,s;x,y)\to 0\) as \((t,s)\to (x,y)\),

$$\begin{aligned} \lim_{m \to \infty}\widetilde{K}_{m,m}^{\alpha ,\beta ,\mu ,\nu} \bigl(R(t,s;x,y);x,y\bigr)=0 \end{aligned}$$

is verified uniformly in \(C(S_{\mu ,\nu})\). By using (16) and (17), we achieve the desired result. □

5 Graphical and numerical analysis

In this section, we give a graphical and numerical analysis of \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\) operators that illustrate the modeling of the approximation for the function f.

Example 5.1

Let \(f(x,y)=\frac{\cos(x+1)\cos(y+1)}{e^{x+y+5}}\) for \(x,y\in [0.1,0.9]\). In Fig. 1, we show the graphs of \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\) operators for fixed \(\alpha _{1} = \alpha _{2}=\beta _{1} = \beta _{2} =1\), the various values of \(\mu =\nu \in \{1,2,3\}\) and \(m=n \in \{70,80,90\}\).

Figure 1
figure 1

Graphs of \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\) operators for \(\alpha _{1} = \alpha _{2} = \beta _{1} = \beta _{2} =1 \) and for the various values of μ and ν

We calculate the maximum errors of \(\|\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f)-f \|\) for the function \(f(x,y)= \frac{\cos(x+1)\cos(y+1)}{e^{x+y+5}}\) by choosing \(x=y \in [0.1,0.9]\) and step size \(h=0.1\) in Table 1 for \(m=n\in \{70,80,90\}\).

Table 1 Error table for fixed \(\mu =\nu \in \{1,2,3\}\) with different values of α and β

Example 5.2

Let \(f(x,y)=e^{x+y}\). We give in Fig. 2 the graphs for \(\widetilde{K}_{70,70}^{5,10,0.9,0.9}(f;x,y)\), \(\widetilde{K}_{70,70}^{10,20,0.9,0.9}(f;x,y)\), and \(\widetilde{K}_{70,70}^{25,50,0.9,0.9}(f;x,y)\) for \(x=y \in [0.1,0.9]\).

Figure 2
figure 2

Graphs of \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\) operators for \(m=n=70\) and different values of α, β, μ, and ν

We calculate the maximum errors of \(\|\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f)-f \|\) for the function \(f(x,y)=e^{x+y}\) by choosing \(x=y \in [0.1,0.9]\), \(\mu =\nu =1\) and step size \(h=0.1\) in Table 2 for \(m=n\in \{70,80,90\}\).

Table 2 Error table for fixed \(\mu =\nu =1\) with different values of α and β

In Table 3, by choosing \(f(x,y)=e^{x+y}\), we give the comparison of \(\widetilde{K}_{m,n}^{\alpha ,\beta}(f;x,y)\) and our new bivariate Bernstein–Kantorovich–Stancu operators \(\widetilde{K}_{m,n}^{\alpha ,\beta ,\mu ,\nu}(f;x,y)\).

Table 3 Comparison of \(\widetilde{K}_{90,90}^{\alpha ,\beta ,1,1}(f;x,y)\) and \(\widetilde{K}_{90,90}^{\alpha ,\beta}(f;x,y)\) for different values of α and β

6 Conclusion

In this work, we construct the exponential bivariate Bernstein–Kantorovich–Stancu operators. Then, we calculate the rate of convergence with the modulus of continuity of the functions defined on \(C(S_{\mu ,\nu})\). Also, we give the Voronovskaya-type theorem. Finally, the error tables of the exponential bivariate Berntein–Kantorovich operators are given for different values of \(m,n,\mu ,\nu ,\alpha \), and β.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bernstein, S.N.: Demonstration du theoreme de weierstrass fondee sur le calcul de probabilities. Commun. Soc. Math. Kharkow 2, 1–2 (1912–1913)

  2. Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 450, 244–261 (2017)

    Article  MathSciNet  Google Scholar 

  3. Mursaleen, M., Ansari, J.K., Khan, A.: On \((p, q)\)-analogue of Bernstein operators. Appl. Math. Comput. 278, 70–71 (2016)

    MathSciNet  Google Scholar 

  4. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017)

    Article  MathSciNet  Google Scholar 

  5. Baxhaku, B., Kajla, A.: Blending type approximation by bivariate generalized Bernstein type operators. Quaest. Math. 43(10), 1449–1465 (2020). https://doi.org/10.2989/16073606.2019.1639843

    Article  MathSciNet  Google Scholar 

  6. Deshwal, S., Ispir, N., Agrawal, P.N.: Blending type approximation by bivariate Bernstein–Kantorovich operators. Appl. Math. Inf. Sci. 11(2), 423–432 (2017)

    Article  Google Scholar 

  7. Kajla, A.: Generalized Bernstein–Kantorovich-type operators on a triangle. Math. Methods Appl. Sci. 42, 4365–4377 (2019)

    Article  MathSciNet  Google Scholar 

  8. Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p, q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol. Trans. A, Sci. 42, 655–662 (2018)

    Article  MathSciNet  Google Scholar 

  9. Barbosu, D.: Kantorovich–Stancu type operators. J. Inequal. Pure Appl. Math. 53(3), 1443–5756 (2004)

    MathSciNet  Google Scholar 

  10. Pop, O.T., Farcas, M.D.: About the bivariate operators of Kantorovich type. Acta Math. Univ. Comen. 1, 43–52 (2009)

    MathSciNet  Google Scholar 

  11. Mohiuddine, S.A., Ozger, F.: Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter α. RACSAM 70, 114 (2020)

    Google Scholar 

  12. Goyal, M., Kajla, A., Agrawal, P.N., Araci, S.: Approximation by bivariate Bernstein–Durrmeyer operators on a triangle. Appl. Math. Inf. Sci. 11(3), 693–702 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kilicman, A., Mursaleen, M.A., Al-Abied, A.A.H.: Stancu type Baskakov–Durrmeyer operators and approximation properties. Mathematics 8, 1164 (2020)

    Article  Google Scholar 

  14. Cai, Q., Kilicman, A., Mursaleen, M.A.: Approximation properties and q-statistical convergence of stancu-type generalized Baskakov–Szász operators. J. Funct. Spaces (2022)

  15. Heshamuddin, M., Rao, N., Lamichhane, B.P., Kiliçman, A., Mursaleen, M.A.: On one and two-dimensional α-Stancu–Schurer–Kantorovich operators and their approximation properties. Mathematics 10(18), 3227 (2022)

    Article  Google Scholar 

  16. Mursaleen, M.A., Kilicman, A., Nasiruzzaman, M.: Approximation by q-Bernstein–Stancu-Kantorovich operators with shifted knots of real parameters. Filomat 4, 1179–1194 (2022)

    Article  MathSciNet  Google Scholar 

  17. Raiz, M., Kumar, A., Mishra, V.N., Dunkl, R.N.: Analogue of Szasz Schurer beta operators and their approximation behavior. Found. Comput. Math. 5(4), 315–330 (2022)

    Article  Google Scholar 

  18. Rao, N., Raiz, M., Ayman-Mursaleen, M., Mishra, V.N.: Approximation properties of extended beta-type Szász–Mirakjan operators. Iran. J. Sci. 47, 1771–1781 (2023). https://doi.org/10.1007/s40995-023-01550-3

    Article  MathSciNet  Google Scholar 

  19. Raiz, M., Mishra, V.N., Rao, N.: Szász-Type Operators Involving q-Appell Polynomials, pp. 187–202. Springer, Singapore (2022)

    Google Scholar 

  20. Bozkurt, K., Özsaraç, F., Bivariate, A.A.: Bernstein polynomials that reproduce exponential functions. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 1, 541–554 (2021)

    Article  MathSciNet  Google Scholar 

  21. Atakut, Ç., Ispir, N.: On Bernstein type rational functions of two variables. Math. Slovaca 3, 291–301 (2004)

    MathSciNet  Google Scholar 

  22. Aral, A., Cardenas-Morales, D., Garrancho, P.: Bernstein-type operators that reproduce exponential functions. J. Math. Inequal. 3, 861–872 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yüksel, I., Kantar Ü, D., Altın, B.: On approximation of Baskakov–Durrmeyer type operators of two variables. U.P.B. Sci. Bull. 1, 1223–7027 (2016)

    Google Scholar 

  24. Yüksel, I., Kantar Ü, D., Altın, B.: Approximation by q-Baskakov–Durrmeyer type operators of two variables. In: Anastassiou, G.A., Duman, O. (eds.) Computational Analysis, vol. 155, pp. 204–218. AMAT, Ankara (2015)

    Google Scholar 

  25. Mishra, V.N., Raiz, M., Rao, N.: Dunkl analouge of Szasz Schurer beta bivariate operators. Found. Comput. Math. 6(4), 651–669 (2023). https://doi.org/10.3934/mfc.2022037

    Article  Google Scholar 

  26. Yadava, J., Mohiuddine, S.A., Kajla, A., Bivariate, A.A.: Lupaş-Durrmeyer type operators involving Polya distribution. Filomat 37(21), 7041–7056 (2023). https://doi.org/10.2298/FIL2321041Y

    Article  MathSciNet  Google Scholar 

  27. Kajla, A., Ispir, N., Agrawal, P.N., Goyal, M.: q-Bernstein–Schurer–Durrmeyer type operators for functions of one and two variables. Appl. Math. Comput. 275, 372–385 (2016)

    MathSciNet  Google Scholar 

  28. Karakaş, E.E.: İki Değişkenli Kantorovich–Stancu Operatorleri, Yüksek Lisans Tezi Kırıkkale Universitesi (2018)

  29. Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Adv. Comput. Math., 133–149 (2000)

  30. Aral, A., Otrocol, D., Raşa, I.: On approximation by some Bernstein–Kantorovich exponential-type polynomials. Period. Math. Hung. 79, 236–254 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

L.T. Su is supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2020J01783) and the Project for High-level Talent Innovation and Entrepreneurship of Quanzhou (Grant No. 2022C001R). This work is supported by Science and Technology Program of Quanzhou No. 2021N180S.

Author information

Authors and Affiliations

Authors

Contributions

Lian-Ta Su: Construction of main problem and funding. Kadir Kanat: Construction of main problem, computer data analysis. Melek Sofyalioglu: computer data analysis, illustrations of figures. Merve Kisakol: made calculations, wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kadir Kanat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, LT., Kanat, K., Sofyalioğlu Aksoy, M. et al. Approximation by bivariate Bernstein–Kantorovich–Stancu operators that reproduce exponential functions. J Inequal Appl 2024, 6 (2024). https://doi.org/10.1186/s13660-024-03083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03083-8

Mathematics Subject Classification

Keywords