Skip to main content

A new reverse Mulholland’s inequality with one partial sum in the kernel

Abstract

By means of the techniques of real analysis, applying some basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given. We obtain the equivalent conditions of the parameters related to the best value in the new inequality. As applications, we reduce to the equivalent forms and a few inequalities for particular parameters.

1 Introduction

If \(p > 1\), \(\frac{1}{p} + \frac{1}{q} = 1\), \(a_{m},b_{n} \ge 0\) are such that \(0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty\) and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty \), then we have the following Hardy–Hilbert’s inequality with the best value \(\frac{\pi}{\sin (\pi /p)}\) (cf. [1, Theorem 315]):

$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(1)

With regards to a similar assumption, the well-known Mulholland’s inequality was given as follows (cf. [1, Theorem 343]):

$$ \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{a_{m}b_{n}}{mn\ln mn} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m} \Biggr)^{\frac{1}{p}} \Biggl( \sum _{n = 2}^{\infty} \frac{b_{n}^{q}}{n} \Biggr)^{\frac{1}{q}}. $$
(2)

For \(\lambda _{i} \in (0,2]\) (\(i = 1,2\)), \(\lambda _{1} + \lambda _{2} = \lambda \in (0,4]\), a generalization of (1) was obtained (see [2]) in 2016 as follows:

$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{(m + n)^{\lambda}} < B(\lambda _{1},\lambda _{2}) \Biggl[ \sum _{m = 1}^{\infty} m^{p(1 - \lambda _{1}) - 1}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 1}^{\infty} n^{q(1 - \lambda _{2}) - 1}b_{n}^{q} \Biggr]^{\frac{1}{q}}, $$
(3)

where the constant \(B(\lambda _{1},\lambda _{2})\) is the best value and

$$ B(u,v): = \int _{0}^{\infty} \frac{t^{u - 1}}{(1 + t)^{u + v}}\,dt = \frac{\Gamma (u)\Gamma (v)}{\Gamma (u + v)}\quad (u,v > 0) $$

is the Beta function related to the Gamma function. For \(\lambda = 1\), \(\lambda _{1} = \frac{1}{q}\), \(\lambda _{2} = \frac{1}{p}\), (3) reduces to (1); for \(p = q = 2\), \(\lambda _{1} = \lambda _{2} = \frac{\lambda}{2}\), (3) reduces to an inequality published in [3].

In 2019, by means of (3), Adiyasuren et al. [4] gave a generalization of (3) as follows: For \(\lambda _{i} \in (0,1] \cap (0,\lambda )\) (\(\lambda \in (0,2]\); \(i = 1,2\)), \(\lambda _{1} + \lambda _{2} = \lambda \), \(a_{m},b_{n} \ge 0\), we have

$$ \sum_{m = 1}^{\infty} \sum _{n = 1}^{\infty} \frac{a_{m}b_{n}}{(m + n)^{\lambda}} < \lambda _{1}\lambda _{2}B(\lambda _{1},\lambda _{2}) \Biggl( \sum_{m = 1}^{\infty} m^{ - p\lambda _{1} - 1}A_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 1}^{\infty} n^{ - q\lambda _{2} - 1}B_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(4)

where \(\lambda _{1}\lambda _{2}B(\lambda _{1},\lambda _{2})\) is the best value, and two partial sums \(A_{m}: = \sum_{i = 1}^{m} a_{i}\) and \(B_{n}: = \sum_{k = 1}^{n} b_{k}\) (\(m,n \in \{ 1,2, \ldots \} \)) satisfy

$$ 0 < \sum_{m = 1}^{\infty} m^{ - p\lambda _{1} - 1}A_{m}^{p} < \infty \quad \text{and} \quad 0 < \sum_{n = 1}^{\infty} n^{ - q\lambda _{2} - 1}B_{n}^{q} < \infty . $$

Some generalizations of (1) and (2) were obtained in [515]. In 2021, Gu and Yang [16] gave an improvement of (4) with the kernel \(\frac{1}{(m^{\alpha} + n^{\beta} )^{\lambda}} \). But we find that the constant is not the best possible unless \(\alpha = \beta = 1\). In 2016, Hong et al. [17] gave a few equivalent conditions of the parameters related to the best value in the general form of (1). Some further works were provided in [1829].

In this article, following the methods of [16, 17], by means of the techniques of analysis, several basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given. The equivalent conditions of the parameters related to the best value in the new inequality are obtained. We also deduce the equivalent forms and a few equivalent inequalities for particular parameters.

2 Some lemmas

In what follows, we assume that \(0 < p < 1\) (\(q < 0\)), \(\frac{1}{p} + \frac{1}{q} = 1\), \(\lambda > 0\), \(\lambda _{i} \in (0,2] \cap (0,\lambda )\) (\(i = 1,2\)), \(\hat{\lambda}_{1}: = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} \), \(\hat{\lambda}_{2}: = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}\), \(\mathrm{N} = \{ 1,2, \ldots \}\), \(m,n \in \mathrm{N}\backslash \{ 1\}\), \(a_{m},b_{n} \ge 0\), \(A_{m}: = \sum_{k = 2}^{m} a_{k} = o(e^{t\ln m})\) (\(t > 0\); \(m \to \infty \)), and

$$ 0 < \sum_{m = 2}^{\infty} \frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} < \infty ,\qquad 0 < \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} < \infty . $$

Lemma 1

(cf. [5, (2.2.3)])

(i) If \(( - 1)^{i}\frac{d^{i}}{dt^{i}}h(t) > 0\), \(t \in [m,\infty )\) (\(m \in \mathrm{N}\)), \(h^{(i)}(\infty ) = 0\) (\(i = 0,1,2,3\)), \(P_{i}(t)\), \(B_{i}\) (\(i \in \mathrm{N}\)) are the Bernoulli functions and numbers, then

$$ \int _{m}^{\infty} P_{2q - 1} (t)h(t)\,dt = - \varepsilon _{q}\frac{B_{2q}}{2q}h(m)\quad (0 < \varepsilon _{q} < 1;q = 1,2, \ldots ). $$
(5)

For \(q = 1\), \(B_{2} = \frac{1}{6}\), we have

$$ - \frac{1}{12}h(m) < \int _{m}^{\infty} P_{1} (t)h(t)\,dt < 0. $$
(6)

If \(( - 1)^{i}\frac{d^{i}}{dt^{i}}h(t) > 0\), \(t \in [m,\infty )\), \(h^{(i)}(\infty ) = 0\) (\(i = 0,1\)), then we still have (cf. [5, (2.2.13)])

$$ - \frac{1}{8}h(m) < \int _{m}^{\infty} P_{1} (t)h(t)\,dt < 0. $$
(7)

(ii) (cf. [5, (2.1.14)]) If \(n > m \in \mathrm{N}\), \(f(t)( > 0) \in C^{1}[m,\infty )\), \(f^{(i)}(\infty ) = 0\) (\(i = 0,1\)), then the following Euler–Maclaurin summation formulas are valid:

$$\begin{aligned}& \sum_{i = m}^{n} f(i) = \int _{m}^{n} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(n)\bigr) + \int _{m}^{n} P_{1} (t)f'(t)\,dt, \end{aligned}$$
(8)
$$\begin{aligned}& \sum_{i = m}^{\infty} f(i) = \int _{m}^{\infty} f(t)\,dt + \frac{1}{2} f(m) + \int _{m}^{\infty} P_{1} (t)f'(t)\,dt. \end{aligned}$$
(9)

Lemma 2

If \(s > 0\), \(s_{2} \in (0,2] \cap (0,s)\), \(K_{s}(s_{2}): = B(s_{2},s - s_{2})\), and the weight coefficient is defined as follows:

$$ \varpi _{s}(s_{2},m): = \ln ^{s - s_{2}}m\sum _{n = 2}^{\infty} \frac{\ln ^{s_{2} - 1}n}{n(\ln mn)^{s}} \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), $$
(10)

then we have the following inequalities:

$$ 0 < K_{s}(s_{2}) \biggl(1 - O\biggl( \frac{1}{\ln ^{s_{2}}m}\biggr)\biggr) < \varpi _{s}(s_{2},m) < K_{s}(s_{2}) \quad \bigl(m \in \mathrm{N}\backslash \{ 1\} \bigr), $$
(11)

where \(O(\frac{1}{\ln ^{s_{2}}m}): = \frac{1}{k_{s}(s_{2})}\int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv > 0 \).

Proof

For a fixed \(m \in \mathrm{N}\backslash \{ 1\} \), we set \(g_{m}(t)\) as follows: \(g_{m}(t): = \frac{\ln ^{s_{2} - 1}t}{(\ln m + \ln t)^{s}t}\) (\(t > 1\)).

  1. (i)

    For \(s_{2} \in (0,1] \cap (0,s)\), in view of the decreasingness property of series, we have

    $$ \int _{2}^{\infty} g_{m}(t)\,dt < \sum _{n = 2}^{\infty} g_{m}(n) < \int _{1}^{\infty} g_{m}(t)\,dt. $$
    (12)
  2. (ii)

    For \(s_{2} \in (1,2] \cap (0,s)\), in view of (9), we have

    $$\begin{aligned}& \begin{aligned} \sum_{n = 2}^{\infty} g_{m}(n)& = \int _{2}^{\infty} g_{m}(t)\,dt + \frac{1}{2} g_{m}(2) + \int _{2}^{\infty} P{}_{1}(t)g'_{m}(t)\,dt= \int _{1}^{\infty} g_{m}(t)\,dt - h(m), \end{aligned} \\& h(m): = \int _{1}^{2} g_{m}(t)\,dt - \frac{1}{2}g_{m}(2) - \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt. \end{aligned}$$

    We obtain \(- \frac{1}{2}g_{m}(2) = \frac{ - \ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}}\). Setting \(v = \ln t\) and using integration by parts, we find

    $$\begin{aligned} \int _{1}^{2} g_{m} (t)\,dt &= \int _{0}^{\ln 2} \frac{v^{s_{2} - 1}}{(\ln m + v)^{s}}\,dv = \int _{0}^{\ln 2} \frac{dv^{s_{2}}}{s_{2}(\ln m + v)^{s}} \\ &= \frac{v^{s_{2}}}{s_{2}(\ln m + v)^{s}}|_{0}^{\ln 2} - \int _{0}^{\ln 2} \frac{v^{s_{2}}}{s_{2}}\,d \frac{1}{(\ln m + v)^{s}} \\ &= \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)} \int _{0}^{\ln 2} \frac{dv^{s_{2} + 1}}{(\ln m + v)^{s + 1}} \\ &> \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)}\frac{\ln ^{s_{2} + 1}2}{(\ln m + \ln 2)^{s + 1}}. \end{aligned}$$

    Since \(\frac{\ln t}{t^{2}} > 0\), \((\frac{\ln t}{t^{2}})' = \frac{1 - 2\ln t}{t^{3}} < 0\) (\(t > 2\)), by (7), we have

    $$\begin{aligned}& g'_{m}(t) = \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}} - \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} - \frac{\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}}\frac{\ln t}{t^{2}}, \\& - \int _{2}^{\infty} P_{1}(t) \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt \\& \quad = (1 - s_{2}) \int _{2}^{\infty} P_{1}(t) \frac{\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt > 0 \quad (s_{2} \in (1,2]), \\& \int _{2}^{\infty} P_{1}(t)\biggl[ \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} + \frac{\ln ^{s_{2}2}t}{(\ln m + \ln t)^{s}} \frac{\ln t}{t^{2}}\biggr]\,dt\\& \quad > - \frac{1}{8}\biggl[ \frac{s\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s + 1}} + \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}}\biggr], \\& - \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt > - \frac{s\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s + 1}} - \frac{\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s}}. \end{aligned}$$

    Hence, for \(s_{2} \in (1,2] \cap (0,s)\), we obtain

    $$\begin{aligned} h(m) >{}& \frac{\ln ^{s_{2}}2}{s_{2}(\ln m + \ln 2)^{s}} + \frac{s}{s_{2}(s_{2} + 1)}\frac{\ln ^{s_{2} + 1}2}{(\ln m + \ln 2)^{s + 1}}\\ &{}- \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}} - \frac{s\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s + 1}} - \frac{\ln ^{s_{2} - 1}2}{32(\ln m + \ln 2)^{s}}\\ ={}& \frac{\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s}}\biggl(\frac{\ln 2}{s_{2}} - \frac{1}{4} - \frac{1}{32}\biggr) + \frac{s\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s + 1}} \biggl[\frac{\ln ^{2}2}{s_{2}(s_{2} + 1)} - \frac{1}{32}\biggr] \\ \ge{}& \frac{\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s}}\biggl(\frac{\ln 2}{2} - \frac{9}{32} \biggr) + \frac{s\ln ^{s_{2} - 1}2}{(\ln m + \ln 2)^{s + 1}}\biggl(\frac{\ln ^{2}2}{6} - \frac{1}{32}\biggr)\\ >{}& 0\quad \bigl(\ln 2 = 0.6931^{ +} \bigr). \end{aligned}$$

    Therefore, we have \(h(m) > 0\). We still have

    $$\begin{aligned}& \begin{aligned} \sum_{n = 2}^{\infty} g_{m}(n) &= \int _{2}^{\infty} g_{m}(t)\,dt + \frac{1}{2} g_{m}(2) + \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt \\ &= \int _{2}^{\infty} g_{m}(t)\,dt + h_{1}(m), \end{aligned} \\& h_{1}(m): = \frac{1}{2}g_{m}(2) + \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt. \end{aligned}$$

    For \(s_{2} \in (1,2] \cap (0,s)\), in view of (7), we find

    $$\begin{aligned}& \int _{2}^{\infty} P_{1}(t) \frac{(s_{2} - 1)\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}t^{2}}\,dt > - \frac{s_{2} - 1}{32}\frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}},\\& - \int _{2}^{\infty} P_{1}(t)\biggl[ \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s + 1}}\frac{\ln t}{t^{2}} + \frac{s\ln ^{s_{2} - 2}t}{(\ln m + \ln t)^{s}} \frac{\ln t}{t^{2}}\biggr]\,dt > 0,\\& \begin{gathered} \int _{2}^{\infty} P_{1}(t)g'_{m}(t)\,dt > - \frac{s_{2} - 1}{32}\frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}}, \\ h_{1}(m) > \frac{\ln ^{s_{2} - 1}2}{4(\ln m + \ln 2)^{s}} - \frac{s_{2} - 1}{32} \frac{\ln ^{s_{2} - 2}2}{(\ln m + \ln 2)^{s}} \ge \frac{\ln ^{s_{2} - 2}2}{4(\ln m + \ln 2)^{s}}\biggl(\ln 2 - \frac{1}{8}\biggr) > 0. \end{gathered} \end{aligned}$$

    Hence, we have (12).

  3. (iii)

    For \(s_{2} \in (0,2] \cap (0,s)\), by (12), setting \(v = \frac{\ln t}{\ln m}\), it follows that

    $$\begin{aligned}& \begin{aligned} \varpi _{s}(s_{2},m) &= \ln ^{s - s_{2}}m\sum_{n = 2}^{\infty} g_{m}(n) < \ln ^{s - s_{2}}m \int _{1}^{\infty} g_{m}(t)\,dt \\ &= \int _{0}^{\infty} \frac{v^{s_{2} - 1}\,dv}{(1 + v)^{s}} = B(s_{2},s - s_{2}) = k_{s}(s_{2}), \end{aligned}\\& \varpi _{s}(s_{2},m) > \ln ^{s - s_{2}}m \int _{2}^{\infty} g_{m}(t)\,dt = \int _{\frac{\ln 2}{\ln m}}^{\infty} \frac{v^{s_{2} - 1}\,dv}{(1 + v)^{s}} = k_{s}(s_{2}) \biggl(1 - O\biggl(\frac{1}{\ln ^{s_{2}}m} \biggr)\biggr) > 0, \end{aligned}$$

    where we indicate that \(O(\frac{1}{\ln ^{s_{2}}m}) = \frac{1}{k_{s}(s_{2})}\int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv\), satisfying

    $$ 0 < \int _{0}^{\frac{\ln 2}{\ln m}} \frac{v^{s_{2} - 1}}{(1 + v)^{s}}\,dv \le \int _{0}^{\frac{\ln 2}{\ln m}} v^{s_{2} - 1}\,dv = \frac{1}{s_{2}} \biggl(\frac{\ln 2}{\ln m}\biggr)^{s_{2}}. $$

    Therefore, inequalities (11) follow.

This proves the lemma. □

Lemma 3

If \(a \in ( - 1,1)\), \(m \in \mathrm{N}\backslash \{ 1\}\), then there exists a constant C such that

$$ \sum_{k = 2}^{m} \frac{\ln ^{a}k}{k} = \frac{\ln ^{a + 1}m}{a + 1} + C + O\biggl(\frac{1}{m}\ln ^{a}m \biggr)\quad (m \to \infty ). $$
(13)

Proof

We set \(f(t): = \frac{1}{t}\ln ^{a}t\) (\(t \ge 2\)). Then we find

$$ f'(t) = \frac{a}{t^{2}}\ln ^{a - 1}t - \frac{1}{t^{2}}\ln ^{a}t = ag_{1}(t) - g_{2}(t), $$

where \(g_{1}(t) = \frac{1}{t^{2}}\ln ^{a - 1}t\), \(g_{2}(t) = \frac{1}{t^{2}}\ln ^{a}t\) (\(t \ge 2\)).

We obtain \(( - 1)^{i}g_{1}^{(i)}(t) > 0\) (\(t \ge 2\); \(i = 0,1\)). Since

$$ a < 1 < 2\ln 2 \le 2\ln t,g_{2}'(t) = \frac{a - 2\ln t}{t^{3}}\ln ^{a - 1}t < 0\quad (t \ge 2), $$

it follows that \(( - 1)^{i}g_{2}^{(i)}(t) > 0\) (\(i = 0,1\)). In view of (2.2.12) in [5], we have

$$ \int _{2}^{m} P_{1} (t)g_{j}(t)\,dt = \frac{\varepsilon _{j}}{8}g_{j}(t)|_{2}^{m}\quad (0 < \varepsilon _{j} < 1;j = 0,1). $$

By (8), we have

$$\begin{aligned} \sum_{k = 2}^{m} f(k) &= \int _{2}^{m} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(2)\bigr) + \int _{2}^{m} P_{1}(t)f'(t)\,dt \\ &= \int _{2}^{m} f(t)\,dt + \frac{1}{2} \bigl(f(m) + f(2)\bigr) + a \int _{2}^{m} P_{1}(t)g_{1}(t)\,dt - \int _{2}^{m} P_{1}(t)g_{2}(t)\,dt. \end{aligned}$$

By simplification, we obtain (13), where

$$\begin{aligned}& C: = - \frac{1}{a + 1}\ln ^{a + 1}2 + \biggl( \frac{1}{4} + \frac{\varepsilon _{2}}{32}\biggr)\ln ^{a}2 - \frac{\varepsilon _{1}a}{32}\ln ^{a - 1}2\quad \text{and}\\& O\biggl(\frac{1}{m}\ln ^{a}m\biggr): = \frac{\ln ^{a}m}{2m} + \frac{\varepsilon _{1}a}{8m^{2}}\ln ^{a - 1}m - \frac{\varepsilon _{2}}{8m^{2}}\ln ^{a}m\quad (m \to \infty ). \end{aligned}$$

This proves the lemma. □

Lemma 4

For \(t > 0\), the following inequality is valid:

$$ \sum_{m = 2}^{\infty} e^{ - t\ln m} m^{ - 1}A_{m} \ge \frac{1}{t}\sum _{m = 2}^{\infty} e^{ - t\ln m} a_{m}. $$
(14)

Proof

Since \(A_{m}e^{ - t\ln m} = o(1)\) (\(m \to \infty \)), by Abel’s summation by parts formula, it follows that

$$ \begin{aligned} \sum_{m = 2}^{\infty} e^{ - t\ln m} a_{m} &= \lim_{m \to \infty} A_{m}e^{ - t\ln m} + \sum_{m = 2}^{\infty} A_{m} \bigl[ e^{ - t\ln m} - e^{ - t\ln (m + 1)} \bigr] \\ &= \sum_{m = 2}^{\infty} A_{m} \bigl[ e^{ - t\ln m} - e^{ - t\ln (m + 1)} \bigr]. \end{aligned} $$

For a fixed \(m \in \mathrm{N}\backslash \{ 1\}\), we set \(f(x): = e^{ - t\ln x}\), \(x \in [m,m + 1]\). Since \(f'(x) = - th(x)\), where \(h(x): = x^{ - 1}e^{ - t\ln x}\) is decreasing in \([m,m + 1]\), by the differentiation intermediate value theorem, there exists a constant \(\theta \in (0,1)\) such that

$$ \begin{aligned} \sum_{m = 2}^{\infty} e^{ - t\ln m} a_{m} &= - \sum_{m = 2}^{\infty} A_{m} \bigl( f(m + 1) - f(m) \bigr) \\ &= - \sum_{m = 2}^{\infty} A_{m} f'(m + \theta ) = t\sum_{m = 2}^{\infty} h( m + \theta )A_{m} \\ &\le t\sum_{m = 2}^{\infty} h( m)A_{m} = t\sum_{m = 2}^{\infty} m^{ - 1} e^{ - t\ln m}A_{m}, \end{aligned} $$

namely, inequality (14) follows.

This proves lemma. □

Lemma 5

For \(0 < p < 1\) (\(q < 0\)), the following reverse inequality is valid:

$$\begin{aligned} I_{\lambda}: ={}& \sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{a_{m}b_{n}}{(\ln mn)^{\lambda}} > \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}} \bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}} \\ &{}\times \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(15)

Proof

In view of the symmetry, for \(s_{1} \in (0,2] \cap (0,s)\), \(s > 0\), we set and obtain the next weight coefficient as follows:

$$\begin{aligned} 0 &< k_{s}(s_{1}) \biggl(1 - O\biggl( \frac{1}{\ln ^{s_{1}}n}\biggr)\biggr) < \omega _{s}(s_{1},n): = \ln ^{s - s_{1}}n\sum_{m = 2}^{\infty} \frac{\ln ^{s_{1} - 1}m}{m(\ln mn)^{s}} \\ &< k_{s}(s_{1}) = B(s_{1},s - s_{1}) \quad \bigl(n \in \mathrm{N}\backslash \{ 1\} \bigr), \end{aligned}$$
(16)

where \(O(\frac{1}{\ln ^{s_{1}}n}): = \frac{1}{k_{s}(s_{1})}\int _{0}^{\frac{\ln 2}{\ln n}} \frac{v^{s_{1} - 1}}{(1 + v)^{s}}\,dv > 0\).

In view of the reverse Hölder’s inequality (cf. [30]), we find

$$\begin{aligned} I_{\lambda} &= \sum _{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \biggl[ \frac{m^{1/q}\ln ^{(\lambda _{2} - 1)/p}n}{n^{1/p}\ln ^{(\lambda _{1} - 1)/q}m}a_{m} \biggr] \biggl[ \frac{n^{1/p}\ln ^{(\lambda _{1} - 1)/q}m}{m^{1/q}\ln ^{(\lambda _{2} - 1)/p}n}b_{n} \biggr] \\ &\ge \Biggl[ \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \frac{m^{p - 1}\ln ^{\lambda _{2} - 1}n}{n\ln ^{(\lambda _{1} - 1)(p - 1)}m}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} \frac{n^{(q - 1)}\ln ^{\lambda _{1} - 1}m}{m\ln ^{(\lambda _{2} - 1)(q - 1)}n}b_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &= \Biggl( \sum_{m = 2}^{\infty} \varpi _{\lambda} (\lambda _{2},m) \frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \omega _{\lambda} (\lambda {}_{1},n) \frac{n^{q(1 - \hat{\lambda}_{2}) - 11}n}{n^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$

By (11) and (16) (for \(s = \lambda \), \(s_{i} = \lambda _{i} \in (0,2] \cap (0,\lambda )\) (\(i = 1,2\))), we obtain (15).

This proves the lemma. □

3 Main results

Theorem 1

The following reverse Mulholland’s inequality with \(A_{m}\) in the kernel is valid:

$$\begin{aligned} I: = {}&\sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \\ &{}\times \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(17)

In particular, for \(\lambda _{1} + \lambda _{2} = \lambda \), we have

$$ 0 < \sum_{m = 2}^{\infty} \frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} < \infty ,\qquad 0 < \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} b_{n}^{q} < \infty , $$

and the following reverse inequality:

$$\begin{aligned} \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m}>{}& \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(18)

Proof

In view of the following expression related to the Gamma function:

$$ \frac{1}{(\ln m + \ln n)^{\lambda + 1}} = \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} e^{ - (\ln m + \ln n)t}\,dt, $$

by (14), it follows that

$$\begin{aligned} I& = \frac{1}{\Gamma (\lambda + 1)}\sum_{m = 2}^{\infty} \sum_{n = 2}^{\infty} \frac{1}{m}A_{m}b_{n} \int _{0}^{\infty} t^{\lambda} e^{ - (\ln m + \ln n)t}\,dt\\ & = \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} \Biggl( \sum _{m = 2}^{\infty} e^{ - t\ln m} \frac{1}{m}A_{m} \Biggr)\sum_{n = 2}^{\infty} e^{ - t\ln n}b_{n}\,dt \\ &\ge \frac{1}{\Gamma (\lambda + 1)} \int _{0}^{\infty} t^{\lambda} \Biggl( \frac{1}{t}\sum_{m = 2}^{\infty} e^{ - t\ln m}a_{m} \Biggr)\sum_{n = 2}^{\infty} e^{ - t\ln n}b_{n}\,dt \\ & = \frac{1}{\Gamma (\lambda + 1)}\sum _{m = 2}^{\infty} \sum_{n = 2}^{\infty} a_{m}b_{n} \int _{0}^{\infty} t^{\lambda - 1} e^{ - (\ln m + \ln n)t}\,dt \\ &= \frac{\Gamma (\lambda )}{\Gamma (\lambda + 1)}\sum_{m = 2}^{\infty} \sum_{n = 2}^{\infty} \frac{1}{(\ln mn)^{\lambda}} a_{m}b_{n}. \end{aligned}$$

Then by (15), in view of \(\Gamma (\lambda + 1) = \lambda \Gamma (\lambda )\), we have (17). For \(\lambda _{1} + \lambda _{2} = \lambda \) in (17), we have (18).

This proves the theorem. □

Theorem 2

Assume that \(\lambda _{1} \in (0,2) \cap (0,\lambda )\), \(\lambda _{2} \in (0,2) \cap (0,\lambda )\). If \(\lambda _{1} + \lambda _{2} = \lambda \), then the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible.

Proof

We now show that \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) in (18) is the best value under the assumptions of this theorem.

For any \(0 < \varepsilon < \min \{ p\lambda _{1},|q|(2 - \lambda _{2})\}\), we set

$$ \tilde{a}_{m}: = \frac{1}{m}\ln ^{(\lambda _{1} - \frac{\varepsilon}{p}) - 1}m,\qquad \tilde{b}_{n}: = \frac{1}{n}\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n\quad \bigl(m,n \in \mathrm{N}\backslash \{ 1\} \bigr). $$

For \(a = \lambda _{1} - \frac{\varepsilon}{p} - 1 \in ( - 1,1)\), by (13), we have

$$ \tilde{A}_{m}: = \sum_{k = 2}^{m} \tilde{a}_{k} = \sum_{k = 2}^{m} \frac{\ln ^{\lambda _{1} - \frac{\varepsilon}{p} - 1}k}{k} = \frac{\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m}{\lambda _{1} - \frac{\varepsilon}{p}} + C + O\biggl(\frac{1}{m} \ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \quad (m \to \infty ), $$

satisfying \(\tilde{A}_{m} = o(e^{t\ln m})\) (\(t > 0\); \(m \to \infty \)).

If there exists a constant \(M( \ge \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}))\) such that (18) is valid when we replace \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) by M, then for \(a_{m} = \tilde{a}_{m}\), \(b_{n} = \tilde{b}_{n}\), and \(A_{m} = \tilde{A}_{m}\), we have

$$\begin{aligned} \tilde{I}&: = \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\tilde{A}_{m}\tilde{b}_{n}}{(\ln mn)^{\lambda + 1}m} \\ &> M \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} \tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \lambda _{2}) - 1}n}{n^{1 - q}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$

We obtain

$$\begin{aligned} \tilde{I} &> M \Biggl[ \sum _{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}n}{n} \Biggr)^{\frac{1}{q}} \\ &= M \Biggl( \sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} - \sum_{m = 2}^{\infty} \frac{1}{m} O\biggl(\frac{1}{\ln ^{\lambda _{2} + \varepsilon + 1}m}\biggr) \Biggr)^{\frac{1}{p}} \Biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \sum_{m = 3}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr)^{\frac{1}{q}} \\ &> M \biggl( \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx - O(1) \biggr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx \biggr)^{\frac{1}{q}} \\ &> \frac{M}{\varepsilon} \bigl( \ln ^{ - \varepsilon} 2 - \varepsilon O(1) \bigr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2}\varepsilon + \ln ^{ - \varepsilon} 2 \biggr)^{\frac{1}{q}}. \end{aligned}$$

In view of (11) (for \(s = \lambda + 1 > 0\), \(s_{2} = \lambda _{2} - \frac{\varepsilon}{q} \in (0,2) \cap (0,\lambda )\)), we obtain

$$\begin{aligned} \tilde{I} = {}&\sum_{n = 2}^{\infty} \sum_{m = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda = 1}mn} \biggl[\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m + C + O\biggl( \frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr)\biggr] \\ ={}& \frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}\sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggl[ \ln ^{(\lambda _{1} + 1 + \frac{\varepsilon}{q})}m\sum _{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}m}{(\ln mn)^{\lambda + 1}n} \Biggr] + \sum _{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{C\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda + 1}mn} \\ &{}+ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln mn)^{\lambda + 1}mn} O\biggl( \frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \\ < {}&\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr)\sum_{m = 2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} + \sum_{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln n)^{\lambda _{2} + 1}n}\sum_{m = 2}^{\infty} \frac{C}{(\ln m)^{\lambda _{1}}m} \\ &{}+ \sum_{n = 2}^{\infty} \frac{\ln ^{(\lambda _{2} - \frac{\varepsilon}{q}) - 1}n}{(\ln n)^{\lambda _{2} + \frac{\varepsilon}{p} + 1}n} \sum_{m = 2}^{\infty} \frac{1}{(\ln m)^{\lambda _{1} - \frac{\varepsilon}{p}}m} O \biggl(\frac{1}{m}\ln ^{\lambda _{1} - \frac{\varepsilon}{p}}m\biggr) \\ ={}& \frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \Biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \sum _{m = 3}^{\infty} \frac{\ln ^{ - \varepsilon - 1}m}{m} \Biggr) + \sum _{n = 2}^{\infty} \frac{1}{(\ln n)^{\frac{\varepsilon}{q} + 2}n} \cdot \sum_{m = 2}^{\infty} \frac{C}{(\ln m)^{\lambda _{1}}m} \\ &{}+ \sum_{n = 2}^{\infty} \frac{1}{(\ln n)^{\varepsilon + 2}n} \cdot \sum_{m = 2}^{\infty} O \biggl( \frac{1}{m^{2}}\biggr) \\ < {}&\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2} + \int _{2}^{\infty} \frac{\ln ^{ - \varepsilon - 1}x}{x}\,dx \biggr) + O_{1}(1) + O_{2}(1) \\ ={}& \frac{1}{\varepsilon (\lambda _{1} - \frac{\varepsilon}{p})}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \varepsilon \frac{\ln ^{ - \varepsilon - 1}2}{2} + \ln ^{ - \varepsilon} 2 \biggr) + O_{1}(1) + O_{2}(1). \end{aligned}$$

Then we have

$$\begin{aligned} &\frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}k_{\lambda + 1}\biggl(\lambda _{2} - \frac{\varepsilon}{q}\biggr) \biggl( \varepsilon \frac{\ln ^{ - \varepsilon - 1}2}{2} + \ln ^{ - \varepsilon} 2 \biggr) + \varepsilon O_{1}(1) + \varepsilon O_{2}(1)\\ &\quad > \varepsilon \tilde{I} > M \bigl( \ln ^{ - \varepsilon} 2 - \varepsilon O(1) \bigr)^{\frac{1}{p}} \biggl( \frac{\ln ^{ - \varepsilon - 1}2}{2}\varepsilon + \ln ^{ - \varepsilon} 2 \biggr)^{\frac{1}{q}}. \end{aligned}$$

Setting \(\varepsilon \to 0^{ +} \), in view of the continuity of the Beta function, we obtain

$$ \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) = \frac{1}{\lambda _{1}}B(\lambda _{1} + 1,\lambda _{2}) \ge M. $$

Therefore, \(M = \frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) is the best value in (18).

This proves the theorem. □

Theorem 3

Assume that \(\lambda > 0\), \(\lambda _{1} \in (0,2] \cap (0,\lambda )\), \(\lambda _{2} \in (0,2) \cap (0,\lambda )\). If the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible, then for

$$ \lambda - \lambda _{1} - \lambda _{2} \in \bigl( - p \lambda _{1},p(\lambda - \lambda _{1})\bigr) \cap \bigl[q(2 - \lambda _{2}),p(2 - \lambda _{1}) \bigr], $$
(19)

we have \(\lambda _{1} + \lambda _{2} = \lambda \).

Proof

Since \(\hat{\lambda}_{1} = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} = \frac{\lambda - \lambda _{1} - \lambda _{2}}{p} + \lambda _{1}\), \(\hat{\lambda}_{2} = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p} = \frac{\lambda - \lambda _{1} - \lambda _{2}}{q} + \lambda _{2}\), we find \(\hat{\lambda}_{1} + \hat{\lambda}_{2} = \lambda \). In view of (19), for \(\lambda - \lambda _{1} - \lambda _{2} \in ( - p\lambda _{1},p(\lambda - \lambda _{1}))\), we have \(\hat{\lambda}_{1} \in (0,\lambda )\), \(\hat{\lambda}_{2} = \lambda - \hat{\lambda}_{1} \in (0,\lambda )\), and then \(B(\hat{\lambda}_{1},\hat{\lambda}_{2}) \in \mathrm{R}_{ +} \); for \(\lambda - \lambda _{1} - \lambda _{2} \le p(2 - \lambda _{1})\), we have \(\hat{\lambda}_{1} \le 2\); for \(\lambda - \lambda _{1} - \lambda _{2}\ \ge q(2 - \lambda _{2})\), we have \(\hat{\lambda}_{2} \le 2\). Then, for \(\lambda _{i} = \hat{\lambda}_{i}\) (\(i = 1,2\)) in (18), we still have

$$\begin{aligned} \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} >{}& \frac{1}{\lambda} B(\hat{\lambda}_{1},\hat{\lambda}_{2})\Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\hat{\lambda}_{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(20)

In view of the reverse Hölder’s inequality (cf. [30]), we find

$$\begin{aligned} B(\hat{\lambda}_{1},\hat{ \lambda}_{2}) &= k_{\lambda} \biggl(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q}\biggr) \\ &= \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} - 1}\,du = \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} \bigl( u^{\frac{\lambda - \lambda _{2} - 1}{p}} \bigr) \bigl( u^{\frac{\lambda _{1} - 1}{q}} \bigr)\,du \\ &\ge \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda - \lambda _{2} - 1}\,du \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda _{1} - 1}\,du \biggr]^{\frac{1}{q}} \\ &= \biggl[ \int _{0}^{\infty} \frac{1}{(1 + v)^{\lambda}} v^{\lambda _{2} - 1}\,dv \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda}} u^{\lambda _{1} - 1}\,du \biggr]^{\frac{1}{q}} \\ &= \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}} \bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}}. \end{aligned}$$
(21)

If the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (17) is the best possible, then, comparing with the constants in (17) and (20), we have

$$ \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}}\ge \frac{1}{\lambda} B(\hat{\lambda}_{1}, \hat{\lambda}_{2}) (\in \mathrm{R}_{ +}), $$

namely, \(B(\hat{\lambda}_{1},\hat{\lambda}_{2}) \le (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\), and then (21) attains the form of an equality.

Inequality (21) becomes an equality if and only if there exist constants A and B such that they are not both zero and (cf. [30]) \(Au^{\lambda - \lambda _{2} - 1} = Bu^{\lambda _{1} - 1}\) a.e. in \(\mathrm{R}_{ +} \). Supposing that \(A \ne 0\), we have \(u^{\lambda - \lambda _{2} - \lambda _{1}} = \frac{B}{A}\) a.e. in \(\mathrm{R}_{ +} \). It follows that \(\lambda - \lambda _{2} - \lambda _{1} = 0\), namely, \(\lambda _{1} + \lambda _{2} = \lambda \).

This proves the theorem. □

4 Equivalent forms and some particular inequalities

Theorem 4

The following reverse inequality equivalent to (17) is valid:

$$\begin{aligned} J&: = \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{p\hat{\lambda}_{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &> \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(22)

Particularly, for \(\lambda _{1} + \lambda _{2} = \lambda \), the following reverse inequality equivalent to (18) is valid:

$$\begin{aligned}& \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{p\lambda _{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\& \quad > \frac{1}{\lambda} B(\lambda _{1},\lambda _{2}) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \lambda _{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(23)

Proof

Assuming that (23) is valid, by the reverse Hölder’s inequality, we have

$$ I = \sum_{n = 2}^{\infty} \Biggl[ \frac{\ln ^{ - \frac{1}{p} + \hat{\lambda}_{2}}n}{n^{\frac{1}{p}}}\sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr] \biggl( \frac{\ln ^{\frac{1}{p} - \hat{\lambda}_{2}}n}{n^{ - 1/p}}b_{n} \biggr) \ge J \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(24)

In view of (23), we have (17). Assuming that (17) is valid, we set

$$ b_{n}: = \frac{\ln ^{p\hat{\lambda}_{2} - 1}n}{n} \Biggl[ \sum _{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p - 1}, \quad n \in \mathrm{N}\backslash \{ 1\}. $$

Then we find

$$ \sum_{n = 2}^{\infty} \frac{\ln ^{q(1 - \hat{\lambda}_{2}) - 1}n}{n^{1 - q}} b_{n}^{q} = J^{p} = I. $$
(25)

If \(J = \infty \), then (23) is valid; if \(J = 0\), then it is impossible that makes (23) valid, namely, \(J > 0\). Assuming that \(0 < J < \infty \), by (17), it follows that

$$\begin{aligned}& J^{p} = I > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2})\bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum _{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}J^{p - 1},\\& J > \frac{1}{\lambda} \bigl(k_{\lambda} (\lambda _{2}) \bigr)^{\frac{1}{p}}\bigl(k_{\lambda} (\lambda _{1}) \bigr)^{\frac{1}{q}} \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl(\frac{1}{\ln ^{\lambda _{2}}m}\biggr)\biggr)\frac{\ln ^{p(1 - \hat{\lambda}_{1}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$

Hence, (23) is valid, which is equivalent to (17).

This proves the theorem. □

Theorem 5

Assume that \(\lambda _{1} \in (0,2) \cap (0,\lambda )\), \(\lambda _{2} \in (0,2] \cap (0,\lambda )\). If \(\lambda _{1} + \lambda _{2} = \lambda \), then the constant \(\frac{1}{\lambda} (k_{\lambda} (\lambda _{2}))^{\frac{1}{p}}(k_{\lambda} (\lambda _{1}))^{\frac{1}{q}}\) in (23) is the best possible. On the other hand, if the same constant in (23) is the best possible, then for \(\lambda - \lambda _{1} - \lambda _{2} \in [q(2 - \lambda _{2}),p(2 - \lambda _{1})]\), we have \(\lambda _{1} + \lambda _{2} = \lambda \).

Proof

We show that the constant \(\frac{1}{\lambda} B(\lambda _{1},\lambda _{2})\) in (24) is the best possible. Otherwise, by (25) (for \(\lambda _{1} + \lambda _{2} = \lambda \)), we would reach a contradiction that the same constant in (18) is not the best possible.

On the other hand, if the constant in (23) is the best possible, then the same constant in (17) is also the best possible. Otherwise, by (26) (for \(\lambda _{1} + \lambda _{2} = \lambda \)), we would reach a contradiction that the same constant in (24) is not the best possible.

This proves the theorem. □

Remark 1

For \(\lambda \in (0,4)\), \(\lambda _{1} = \lambda _{2} = \frac{\lambda}{2}( < 2)\) in (18) and (24), we have the following equivalent forms with the best value \(\frac{1}{\lambda} B(\frac{\lambda}{ 2},\frac{\lambda}{2})\):

$$\begin{aligned}& \begin{aligned}[b] \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{\lambda + 1}m} >{}& \frac{1}{\lambda} B\biggl(\frac{\lambda}{2},\frac{\lambda}{ 2}\biggr) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda /2}m}\biggr)\biggr)\frac{\ln ^{p(1 - \frac{\lambda}{2}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &{}\times \Biggl[ \sum _{n = 2}^{\infty} \frac{\ln ^{q(1 - \frac{\lambda}{2}) - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned} \end{aligned}$$
(26)
$$\begin{aligned}& \begin{aligned}[b] &\Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{p\lambda}{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{\lambda + 1}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}}\\ &\quad > \frac{1}{\lambda} B\biggl(\frac{\lambda}{ 2},\frac{\lambda}{2}\biggr) \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{\lambda /2}m}\biggr)\biggr)\frac{\ln ^{p(1 - \frac{\lambda}{2}) - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned} \end{aligned}$$
(27)

Particularly, for \(\lambda = 1\), we have the following equivalent inequalities with the best value π:

$$\begin{aligned}& \sum_{m = 2}^{\infty} \sum _{n = 2}^{\infty} \frac{A_{m}b_{n}}{(\ln mn)^{2}m} > \pi \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O\biggl( \frac{1}{\ln ^{1/2}m}\biggr)\biggr)\frac{\ln ^{ - \frac{p}{2} - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{q}{2} - 1}n}{n^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(28)
$$\begin{aligned}& \Biggl\{ \sum_{n = 2}^{\infty} \frac{\ln ^{\frac{p}{2} - 1}n}{n} \Biggl[ \sum_{m = 2}^{\infty} \frac{A_{m}}{(\ln mn)^{2}m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} > \pi \Biggl[ \sum_{m = 2}^{\infty} \biggl(1 - O \biggl(\frac{1}{\ln ^{1/2}m}\biggr)\biggr)\frac{\ln ^{\frac{p}{2} - 1}m}{m^{1 - p}} a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(29)

5 Conclusions

In this article, by means of the techniques of analysis, applying the basic inequalities and formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given in Theorem 1. The equivalent conditions of the best value related to parameters are obtained in Theorems 2 and 3. As applications, we deduce the equivalent forms in Theorems 4 and 5, and some new inequalities for particular parameters in Remark 1.

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  2. Krnić, M., Pečarić, J.: Extension of Hilbert’s inequality. J. Math. Anal. Appl. 324(1), 150–160 (2006)

    Article  MathSciNet  Google Scholar 

  3. Yang, B.C.: On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. Biq. 18(1), 145–152 (2001)

    MathSciNet  Google Scholar 

  4. Adiyasuren, V., Batbold, T., Azar, L.E.: A new discrete Hilbert-type inequality involving partial sums. J. Inequal. Appl. 2019, 127 (2019)

    Article  MathSciNet  Google Scholar 

  5. Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Book  Google Scholar 

  6. Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005)

    MathSciNet  Google Scholar 

  7. Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011)

    Article  MathSciNet  Google Scholar 

  8. Huang, Q.L.: A new extension of Hardy–Hilbert-type inequality. J. Inequal. Appl. 2015, 397 (2015)

    Article  MathSciNet  Google Scholar 

  9. He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 889–902 (2015)

    Article  MathSciNet  Google Scholar 

  10. Xu, J.S.: Hardy–Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007)

    MathSciNet  Google Scholar 

  11. Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree-2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013)

    MathSciNet  Google Scholar 

  12. Zeng, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)

    Google Scholar 

  13. Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010)

    MathSciNet  Google Scholar 

  14. Azar, L.E.: The connection between Hilbert and Hardy inequalities. J. Inequal. Appl. 2013, 452 (2013)

    Article  MathSciNet  Google Scholar 

  15. Adiyasuren, V., Batbold, T., Krnić, M.: Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18, 111–124 (2015)

    MathSciNet  Google Scholar 

  16. Gu, Z.H., Yang, B.C.: An extended Hardy–Hilbert’s inequality with parameters and applications. J. Math. Inequal. 15(4), 1375–1389 (2021)

    Article  MathSciNet  Google Scholar 

  17. Hong, Y., Wen, Y.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 37A(3), 329–336 (2016)

    MathSciNet  Google Scholar 

  18. Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017)

    Google Scholar 

  19. Xin, D.M., Yang, B.C., Wang, A.Z.: Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, 2691816 (2018)

    MathSciNet  Google Scholar 

  20. He, B., Hong, Y., Li, Z.: Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with non-homogeneous. J. Inequal. Appl. 2021, 64 (2021)

    Article  Google Scholar 

  21. Chen, Q., He, B., Hong, Y., Li, Z.: Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 7414861 (2020)

    MathSciNet  Google Scholar 

  22. He, B., Hong, Y., Chen, Q.: The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 19, 400–411 (2021)

    Article  MathSciNet  Google Scholar 

  23. Hong, Y., Huang, Q., Chen, Q.: The parameter conditions for the existence of the Hilbert-type multiple integral inequality and its best constant factor. Ann. Funct. Anal. https://doi.org/10.1007/s43034-020-00087-5

  24. Hong, Y.: Progress in the Study of Hilbert-Type Integral Inequalities from Homogeneous Kernels to Nonhomogeneous Kernels. J. Guangdong Univ. Educ. (2020)

  25. Hong, Y., Chen, Q.: Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non-homogeneous kernels. J. South China Normal Univ. Natur. Sci. Ed. 52(5), 124–128 (2020)

    Google Scholar 

  26. Liao, J.Q., Wu, S.H., Yang, B.C.: A multi parameter Hardy–Hilbert-type inequality containing partial sums as the terms of series. J. Math. 2021, 5264623 (2021)

    Article  Google Scholar 

  27. You, M.H.: More accurate and strengthened forms of half-discrete Hilbert inequality. J. Math. Anal. Appl. 512(2), 126–141 (2022)

    Article  MathSciNet  Google Scholar 

  28. You, M.H., Sun, X., Fan, X.S.: On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions. Open Math. 20(1), 544–559 (2022)

    Article  MathSciNet  Google Scholar 

  29. Rassias, M.Th., Yang, B.C., Raigorodskii, A.: An equivalent form related to a Hilbert-type integral inequality. Axioms 12, 677 (2023)

    Article  Google Scholar 

  30. Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2021)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referees for useful comments which have improved this paper.

Funding

This work was supported by the National Natural Science Foundation (No. 11561019), Guangxi Natural Science Foundation (No. 2020GXNSFAA159084), the National Natural Science Foundation of China (No. 12071491), and School-Level Quality Engineering Project (No. 2022ckjjd02).

Author information

Authors and Affiliations

Authors

Contributions

B.Y. and L.R. carried out the mathematical studies, participated in the sequence alignment, and drafted the manuscript. X.Y.H. and X.S.H. participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ricai Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Luo, R., Yang, B. et al. A new reverse Mulholland’s inequality with one partial sum in the kernel. J Inequal Appl 2024, 9 (2024). https://doi.org/10.1186/s13660-024-03080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03080-x

Mathematics Subject Classification

Keywords