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1 Introduction

Ifp>1, —+— =1, ay, b, > 0 are such that 0 < >~ <ooand0<Zn 1bq<o<>,then
we have the followmg Hardy—Hilbert’s inequality w1th the best value 7= /p) (cf. [1, Theo-
rem 315]):
0o o0 ab T 9] }7 00 %
2 P b1 . 1
;;m+n<sin(n/p) ;am ; " o

With regards to a similar assumption, the well-known Mulholland’s inequality was given
as follows (cf. [1, Theorem 343]):

S

1
oo 00 a,, [ee] afn [ee] bz q
Zzz ; mnlnmn sin n/p) Z m ; n) @

For A; € (0,2] (i =1,2), A1 + Ao = A € (0,4], a generalization of (1) was obtained (see [2])

in 2016 as follows:
oo o0 am p| oo %
Z Z < B(A1,A2) Z mPU-r0)-1g0 Z pd1=-2-1pd | (3)
=1 n= m=1 n=1
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where the constant B(A1, A5) is the best value and

Y ol T
B(u,v):= /0 s dt = T v) (u,v>0)

is the Beta function related to the Gamma function. For A = 1, A; = %, Aoy = 1%, (3) reduces
to(1);forp=g=2,A1=2Ay = %, (3) reduces to an inequality published in [3].
In 2019, by means of (3), Adiyasuren et al. [4] gave a generalization of (3) as follows: For

A €(0,11N(0,A) (A €(0,2];i=1,2), A1 + Ay = A, a4y, b, > 0, we have

00 00 ah 00 %7 00 %
E E _men . A AaB(ry, As) (E m Pl qp ) (E nq?»leq> , (4)
A m n
(m + n) ot =l

m=1 n=1

where A112B(A1, A2) is the best value, and two partial sums A, := Y ., @;and By, := Y y_; bi
(m,ne{1,2,...}) satisfy

o0 oo
0< E mPNIAL <00 and 0< E w271 B < oo,

m=1 n=1

Some generalizations of (1) and (2) were obtained in [5-15]. In 2021, Gu and Yang [16]
gave an improvement of (4) with the kernel m, But we find that the constant is not
the best possible unless « = 8 = 1.In 2016, Hong et al. [17] gave a few equivalent conditions
of the parameters related to the best value in the general form of (1). Some further works
were provided in [18-29].

In this article, following the methods of [16, 17], by means of the techniques of analysis,
several basic inequalities and formulas, a new reverse Mulholland’s inequality with one
partial sum in the kernel is given. The equivalent conditions of the parameters related to
the best value in the new inequality are obtained. We also deduce the equivalent forms
and a few equivalent inequalities for particular parameters.

2 Some lemmas
In what follows, we assume that 0 < p < 1 (g < 0), 117 + é =1,A>0,4;€(0,21N(0,A) (i =1,2),

=2 B Gy = B B N = (1,2, myn € N\{L), @by 2 0, Ay = Y, ax =

o(e!™™) (t > 0; m — 00), and

© qppl-h)-1 X pdi-i2)-1,
0< —ab, < oo, O<E ——— bl <oo.
ml-p nl-1
m=2 n=2

Lemma 1 (cf. [5, (2.2.3)]) (i) D’(—l)i%h(t) >0, t e [moo) (meN), ' (c0) =0 (i =

0,1,2,3), Pi(¢), B; (i € N) are the Bernoulli functions and numbers, then

o B
/ Pay 1 (Dh(t) dt = —8q2—2qh(m) O<ey<lig=12,...). )
m q
Forg=1,B; = %, we have
1 oo
~ 5 htm) < / Pi(O)h(t)dt < 0. )
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If(—l)’dﬂh(t) >0, t € [m,o0), h(00) = 0 (i = 0, 1), then we still have (cf. [5, (2.2.13)])
—%h(m) < fmoo Pi(t)h(t) dt < 0. 7)

(ii) (cf. [5, (2.1.14)]) If n > m € N, f(£)(> 0) € C'[m,00), f?(c0) = 0 (i = 0,1), then the
following Euler—Maclaurin summation formulas are valid:

Zf(z) - ] (de+ 5 (om) +f0) + [ i ) ®)

IOE / ” ft)de+ %f(m) + / ooPl(t)f’(t) dt. )

Lemma?2 Ifs>0,s; € (0,2]N(0,s), Ks(sz) := B(sa, s—S$3), and the weight coefficient is defined

as follows:
o ns2~ ln
T mz prmp— (m e N\(1}), (10)
then we have the following inequalities:
1
0< 1<S(s2)(1 - O(W)) <wy(s2,m) <K(s2) (meN\{1}), (11)
In2 2l
where O(i m) ks(l ) ]nm P dv>0.

Proof For a fixed m € N\{1}, we set g,,,(¢) as follows: g, (¢) := In*2 (t>1).

lnm+lnt)5t
(i) Forsy € (0,11 N(0,s), in view of the decreasingness property of series, we have

/2 gn(t)dt < ggm(n) < /1 gn(t)dt. (12)

(ii) For sy € (1,2] N (0, s), in view of (9), we have

(o) 1 o0 , B o0
>l - /2 G0t + g2+ /2 P, (0) dt = / () dt - him),

2 00
h(m) = /1 gm(t)dt—%gma)— /2 Pi(t)g, () dt.

—InS2—
4(In m+1n2

2 In2 V32—1 In2 dv?
[atan [ g [
1 o (Inm+v)s o Say(lnm+v)s

v ln2 /-1n2 v d 1
sz(lnm+v)‘ o S (Inm+v)

We obtain — ng( )=
find

. Setting v = In¢ and using integration by parts, we
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In®2 2 s 2 gys2+l
= +
So(Inm +1n2)5  so(so + 1) /0 (Inm + v)s+l
In*2 2 s In®2+1 2

> + .
So(Inm +1n2)5  so(s2 + 1) (Inm + In2)s+1
Since 1}’;‘—; >0, (1?—{)/ = %?,I“t <0 (¢>2), by (7), we have

(sy —1)In*>2¢ sln®2¢  Int In22¢  Int

2,(t) = -

T (nm+nep (nm+Ingt 2 (nm+Ine)y 2

% —1)In®27%¢
_/ pl(t)wdt
2

(Inm + Int)st?

1 )/oop(t)ilnsr% dt>0 (s, €(1,2))
= -8 > S ’ ’
> 2 ! (Inm + Int)st? >

/OOP 0 sln272¢  Int In2%t  Int dt
- v v T
2 ! (Inm +1Ing)s*l 2 (Inm+1ng)s 2

1 |: sn®2712 In*2712 ]

>

) 4(Inm + In2)s+1 " 4(Inm + In2)$
o sln®2712 In®2712
- Pi(t)g (t)dt >~ - .
/2 (g, (D) dt > 32(Inm +In2)s*1  32(Inm + In2)*

Hence, for s; € (1,2] N (0, s), we obtain

In®2 2 s In®2*12
h(m) > +
ss(Inm +1n2)s  s5(sp + 1) (Inm + In2)s+1
212 sIn®27t2 In®2712

“4(lnm+1n2)  32(Inm+1n2)*1  32(Inm +In2)

22 /In2 1 1 sIn®2712 In*2
= —_— = — —+
(Inm+1n2)*\ s 4 32 (Inm + In2)5+1 | s,

- In27'2  /In2 9 sin®2712 In?2 1
— —— — + — —_— i —
“(nm+1In2s\ 2 32 (Inm +1In2)s*1\ 6 32

>0 (In2=0.6931%).
Therefore, we have h(m) > 0. We still have
0 00 1 00
> el = [ audt+ 30,0+ [ Piog, 0
n=2 2 2

- [ e i),
In(m) = 2an(@) + ]2 Py, (0) dt.

For s, € (1,2] N (0,s), in view of (7), we find

o (sy—1)In*272¢ s5—1  In2722
Pl (t) > = ’
2 (Inm + Int)s¢? 32 (Inm+1n2)s

1

(sz+1)_§

)
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o sIn272¢  Int sIn272¢  Int
- Pi() —+ — | dt >0,
9 (Inm +1Ing)y*t 2 (Inm +1ng)s 2

-1 In2722
32 (Inm+1n2)*’

o) In2712 s5—1  In2722 N In2722 ma-Nso
m) > - n2-—1]>0.
! 4(Inm + In2)s 32 (Inm+1In2)* ~ 4(lnm +In2)* 8

/ Oopl(t)g;n(t) dt> -2
2

Hence, we have (12).
(ili) For sy €(0,2] N(0,s), by (12), setting v = Int ‘it follows that

Inm
o 00
wi(so, m) = In°* 2 m ng(n) < In*2 m/ gn(t)dt
n=2 1

< pa-ldy
— / - :B(Sz,S —Sz) = ks(52)7
o ([@+vy

o o ya-ldy 1
S—82 _ — _ R
(89, m) > In m/2 gn(t)dt = /M T ks(sz)(l O<lns2 m)) >0,

Inm

n

2 -1
where we indicate that O(;) = %SZ) Joo (Vlsi—v)s dv, satisfying

In2

In2
mm 5271 Tnm 1/In2\*%
0<f dv < velgy=—(—=) .
o (Q+v) 0 s \Inm

Therefore, inequalities (11) follow.

This proves the lemma. O

Lemma 3 Ifa e (-1,1), m € N\{1}, then there exists a constant C such that

S In“k  In"*! 1
§ ne_m m+C+O(—1n“m) (m — 00). (13)
e k a+1 m

Proof We set f(t) := 2 In®t (¢t > 2). Then we find

t

! a a— 1 a
£ = t—zln Ly t—zln t =ag(t) — g(¢),

where g1(£) = 5 In“' £, go(¢) = %2 In“t (¢ >2).
We obtain (—l)igli)(t) >0 (t>2;i=0,1). Since

a-2Int
a<1<2In2 <2lnt,g)(t) = 3 n“1t<0 (t>2),

it follows that (—l)igg)(t) >0(i=0,1). Inview of (2.2.12) in [5], we have

/ Pl(t)g(t)dt:égj(t)rzﬂ (0<g<1;j=0,1).
2
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By (8), we have

m m 1 m
k) = dt + - "(t)d
Sor0= [ sdes 3G ss@)+ [ s

- / f(t)dt+%(f(m) +f2) +a / Pi(Og(t)dt - / Pi(t)g>(¢) dt.
2 2

2

By simplification, we obtain (13), where

1 1 ¢ 3
Come— 24 -4+ 2 1n“2—1—dln“_12 and
a+1 4 32 32

1 Inm ¢€a e
ol —n*m ) := + - 2 nfm (m— o00).
m 2m  8m? 8m?

This proves the lemma. d

Lemma 4 For ¢t > 0, the following inequality is valid:

00 1 00
Ze—tlnmm—lAm > ; Ze—tlnmam. (14)
m=2 m=2

Proof Since A,,e™!™"" = o(1) (m — 00), by Abel’s summation by parts formula, it follows

that

) )

§ :e—tlnmam - lim Ame—tlnm + § :Am[e—tlnm _ e—tln(m+1)]
m—>00

m=2 m=2
00

_ ZAm[e—tlnm _ e—tln(m+l)]'

m=2

For a fixed m € N\{1}, we set f(x) := e*!"*, x € [m,m + 1]. Since f'(x) = —th(x), where
h(x) := x~le7!"* is decreasing in [, m + 1], by the differentiation intermediate value the-

orem, there exists a constant 6 € (0, 1) such that

Ze—t]nmam _ _ZAm(f(m +1) - f(m))
m=2 m=2

==Y Auf(m+0)=tY hm+0)A,
m=2

m=2

oo o0
< ch(m)Am = th‘le_““mAm,
m=2

&) m=2

namely, inequality (14) follows.

This proves lemma. d

Page 6 of 14



Huang et al. Journal of Inequalities and Applications (2024) 2024:9

Lemma 5 For0<p <1 (q<0), the following reverse inequality is valid:

(k. (2)? (ks (1)) ¥
X;Z;lnmn))\ '\2)('\ 1)

. 1 R 1
200: 1 In?-A1-1 4, Pl X pdi-*2)-1, q
- P - "iq
) |: ~ <1 O(ln)‘zm)> ml-p D ZZ: nl-a bl . (15)

m=2

Proof In view of the symmetry, for s; € (0,2] N (0,s), s > 0, we set and obtain the next

weight coefficient as follows:

[e¢]

1 5 "1™
0 <k3(S1)(1 —O(m)) <Cl)s(Sl,Vl) =In*S1n ZZ W
< ky(s1) = B(s1,5 — s1) (neN\{l}), (16)
where O(1n51n) ks(lm 01"" V;ivl dv>0.

In view of the reverse Holder’s inequality (cf. [30]), we find

B i i mMa1n*2-Dip nt/p 1n 10 )
- (Inmn)* | ple [nf®*1-/a mﬂ’” mbap®2-Dir ;"

n=2 m:2
00 o0 p—l ]n)q l P ]nxl lm %
bq
B r;; (lnmn))‘ nn@1-De-D ZZ lnmn))\mlnkz Dig-1) 5,

o, \}
) (wa()»h”) 11n ) .

By (11) and (16) (for s = A, s; = 1; € (0,2] N (0, 1) (i = 1,2)), we obtain (15).

This proves the lemma. O

Il
gk
g
&
S

3 Main results
Theorem 1 The following reverse Mulholland’s inequality with A,, in the kernel is valid:

> i e 1 1
I:= (k)\()nz));’ (kn(r1))®
Al
— - (Inmn)**m A
0 (1-A1)-1 5[ oo (1-hg)-1 i
1 P01y 1P In?d=22)=1y 14
2 _ p 2 :7 a
* |: <1 O(lnlzm)) mip a’”:| |: nl-a b”:| ‘ (17)
m=2 n=2
In particular, for A1 + Ay = A, we have
o0 — — oo — -
In?1-20-1 4, [n91-*2)-1
0< Tufn<oo, O<E Tb2<oo,

m=2 n=2

Page 7 of 14
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and the following reverse inequality:

1

oo oo oo — - P
1 InPA-*1)-1 4, P

P

ZZ lnmn “lm A Blr,22) |:2;<1_ ( m)) mip

m=2 n=2
1
0o o 1
nd-22)-1, 74
n=2

Proof In view of the following expression related to the Gamma function:

1

— —(Inm+Inn)t dt
(Inm + In n)*+1 F(A +1) Jo

’

by (14), it follows that

m=2 n=2
1 © (& 1 >
_ tk e—tlnm_A e—tlnnb dt
1 00 1 o0 o0
A —tIlnm —tlnn
- e a e b, dt
_F()\+1)/0‘ (t; m) n=2 ’
1 e R (Inm+Inn)e
_ a b / t —nm+inn dt
T'(A+1) ;; "
F'A) = — 1
= b
r(xA+1) ; ; (In mn)* "

Then by (15), in view of I'(% + 1) = AI'(A), we have (17). For A1 + A, = A in (17), we have
(18).
This proves the theorem. O

Theorem 2 Assume that A1 € (0,2) N (0,A), Ay € (0,2) N (0, X). If A1 + Ay = A, then the
1 1
constant %(k)\ (A2))? (ky.(A1))7 in (17) is the best possible.

Proof We now show that %B()\ 1,A2) in (18) is the best value under the assumptions of this
theorem.
For any 0 < ¢ < min{pA1, |¢](2 — A,)}, we set

1 _e) ~ 1 _e)_
R Zln()‘1 P, b, = . In*2 a1y (m,n € N\{l}).

Fora =X, - 1% —-1€(-1,1), by (13), we have

satisfying A, = o(e"™") (¢ > 0; m — ).
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If there exists a constant M(> 2B(X1,X2)) such that (18) is valid when we replace
XB()\,l,)\.z) by M, then for a,, = a,,, b,, =b,,and A,, = A,,, we have

~ 0o oo A b,
I:= Z Z (lnm:)kﬂm

n=2 m=2
1 1
oo _ _ » 00 _ _ =
In?1-20-1 4, P Ing-22)-1,, _ |4
~p I o,
M S0 o) e | 2 )
=
We obtain
o0 -&-1 p [ © 1 -e-1 q
- 1 In"*"'m In n
1>M[Z<1—o<lnhm)> —~ } ( . )
m=2 n=2
> 11’1_6_1}’1’1 o0 1 1 [l? 1n—€—12 S ln—s—lm %
(XS o)) (Pt R
m=2 m=2 m=3
1 1
00 1 —e—-1 7 /1 —e—1 2 o0 1 —e—1 7
>M(/ 1 xdx—O(l)) (n +/ i xdx)
2 X 2 2 X
1
q

M, _ 1/In*712 _
>—(lnE2—£O(1))” 5 e+Inf2) .
e

In view of (11) (fors=A +1>0, 53 = Ay — 2 € (0,2) N (0,1)), we obtain

S ) In (kz—g)—l

3 n 1 )»1_5 1 )Ll_é
1= Zz(lnmn)* 177171[)»1—1%111 Pm+C+O(mln » m

n=2 m=
1 S tm It o A
_ lIl 1+1+ Wl + -
TN W D B0
P m=2 n=2 m=2
0o o0 (Az——')—l
In n 1 ;¢
2 "o =ms
LY O )
n=2 m=2
1 e\ Al S, & C
< k Ay —— +
-t “1< ’ q)% o 2 et 2 Gy
o (h2-%)-1 ©
ln 1 n 1 1 )Ll,i
D D e (1 pm)
- (Inn) 1 e (Inm)™ P m
1 e\ [In12 S In'm
= k)L 1<)L2 — —> + +
A_l _[% + q 2 r; ; (hln +2 Z (lnm))‘vlm
o0 o0
1 1
Y o 20 )
n=2 m=2

1 1 —s—12 0 ] —&-1
< —h[r- S (2 +/ T Tdx)+0:1) + 05(1)
- q 2 2 X

1 In™"12
= 7&)]()‘*1 <)L2 - E) <8 1 5 +In~° 2) + Ol(l) + 02(1)
p
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Then we have

1 In712
——kal A — g £ 1 +In7°2 ) +£0:(1) + £0,(1)
)\,1 —;—; q 2

1
. 1/In~*72 q
>el >M(ln_£ 2— 80(1))1’ ( 5 e+In”? 2) .
Setting ¢ — 0%, in view of the continuity of the Beta function, we obtain

1 1
—B(A1,A2) = —B(Ay + 1,A2) = M.
A M

Therefore, M = %B()\,l,)\g) is the best value in (18).
This proves the theorem. d

Theorem 3 Assume that ) >0, 11 € (0,2] N (0,1), A € (0,2) N (0,)). If the constant
1 1
%(kk()»z))?’ (kx(A1))4 in (17) is the best possible, then for

A= A1 — Ay € (—=pAr,p(A = 11)) N [q(2 - 12), p(2 - M1)], (19)

we have A + Ay = A.

Proof Since):l = %+% = A_Ap%”+)q,)t2 = %+%2 = %+Az,weﬁndil+izz)\.
Inview of (19), for A— A1 — Ay € (—pA1, p(A— 1)), we have i1 € (0,1), Ay = A— A1 € (0,4),and
then B(il,ig) € Ry;for A — A1 — Ay < p(2—1q), we have A <2fordA—Ap —hy > q(2 — Ap),

we have A, < 2. Then, for A; = A; (i=1,2) in (18), we still have

1

00 00 00 )=
Aub,, 1 . = 1 A0y, P
Z Z (In mn)*1m > XB()‘I’)‘Z)[ZO - O( A >> P a,

m=2 n=2 m=2 ln)hz m
A 1
0 _Ao)—
In91-%2)-1,, 4
n=2

In view of the reverse Holder’s inequality (cf. [30]), we find

~ A A=A A
B(A1,12) =kx( 25 —1)
p q

B 1 Ap-1 T 1 Ap-1 1
[/0 RPN ”’”} Uo T d”]

= (ko (12))? (ks (01)) 7. (21)
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If the constant %(kk()»z))% (kk()q))‘li in (17) is the best possible, then, comparing with the

constants in (17) and (20), we have

2 (6.02)) (6:0) = S BG B R,),

>»

namely, B(A1, k) < (/q()»z)) (k. (Al))q and then (21) attains the form of an equality.

Inequality (21) becomes an equality if and only if there exist constants A and B such that
they are not both zero and (cf. [30]) Au**2! = Bu*1~! g.e. in R,. Supposing that A # 0, we
have " *27%1 = £ ge. in R,. It follows that A — A, — A1 = 0, namely, A; + Ay = A.

This proves the theorem. O

4 Equivalent forms and some particular inequalities
Theorem 4 The following reverse inequality equivalent to (17) is valid:

* el [ & A,y ot
Ji= ; n ;(lnmn)“lm

1| & In?(1-+1)-1 ’
wo | S0-0(i,)) e e

m=2

=

>§wum

Particularly, for 1 + Ay = A, the following reverse inequality equivalent to (18) is valid:

1
ilnph_ln i A, P1»
—~ n —~ (Inmn)**1m

1
1 = 1\ Ity P
>XBQhAﬂ[§:<1_O(hﬁ%n)> — a, | . (23)

m=2

Proof Assuming that (23) is valid, by the reverse Holder’s inequality, we have

1.3 - 1
ln_iﬂz A In? ™2 n © pd(i-42)-1 q
= /|
I= Z|: Z (ln mn))\+1mi| < 1y bn> = ]|:X2: - pi| . (24)

In view of (23), we have (17). Assuming that (17) is valid, we set

Ao-1 o
_ln’”2 n|: A,
n

—~ (Inmn)**1m

p-1
} , neN\{1}.

Then we find

> qllz)l
zf“ “bg=p=1. (25)

n=2

Page 11 of 14
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If ] = 0o, then (23) is valid; if / = 0, then it is impossible that makes (23) valid, namely,
J > 0. Assuming that 0 < J < 00, by (17), it follows that

. 1
> 1 \\ W0, 1P
Z 1-0 In*2 m ml-r G | T

m=2

J=I> %(k,\()xz))’%(k)\()vl))%[

1 1 1| & 1 InP1-4-1 ’
J> x(kx()»z))” (k)\()u))q |:Z(1 - O(ln“ m)) - v maﬁf:| :

m=2

Hence, (23) is valid, which is equivalent to (17).
This proves the theorem. O

Theorem 5 Assume that 11 € (0,2) N (0,1), A3 € (0,2] N (O,A). If A1 + Ay = X, then the
1
constant = (kk()»z))P (k:.(A1))4 in (23) is the best possible. On the other hand, if the same
constant in (23) is the best possible, then for A — A1 — Ay € [q(2 — X2),p(2 — A1)], we have
)\,1 + )»2 =A.

Proof We show that the constant %B(A 1, A2) in (24) is the best possible. Otherwise, by (25)
(for A1 + Ay = 1), we would reach a contradiction that the same constant in (18) is not the
best possible.

On the other hand, if the constant in (23) is the best possible, then the same constant
in (17) is also the best possible. Otherwise, by (26) (for A; + X, = 1), we would reach a
contradiction that the same constant in (24) is not the best possible.

This proves the theorem. O

Remark1 Fora €(0,4), A1 = Ay =% (< 2) in (18) and (24), we have the following equivalent

forms with the best value iB( 515):

1

> > RNEEA 1 P91y, 17
Bl =, = 1-0 P
ZZ(lnmn eTpE) (2 2)|:Z( (lnmm)> iy m
m=2 n=2 m=2
A 1
[ee] _A)_ q
1 q(1-3)-1 q
n=2
> ln%k’ln > A,y b 'l’
; n ; (Inmn)**1m

1
1 /x \[& 1 n?1-5)-1, P
>XB(5’§)|:Z(1_O<IHMZYH)> mi-r G| @7
m=2

Particularly, for A = 1, we have the following equivalent inequalities with the best value

nd ln’g’lm » L ln%’lan 1
> (1 1/2m air Gm > a-q n |

m=2 n=2

T

ZZ (lnmn)2 >7T|:

m=2 n=2
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5 Conclusions

In this article, by means of the techniques of analysis, applying the basic inequalities and
formulas, a new reverse Mulholland’s inequality with one partial sum in the kernel is given
in Theorem 1. The equivalent conditions of the best value related to parameters are ob-
tained in Theorems 2 and 3. As applications, we deduce the equivalent forms in Theo-

rems 4 and 5, and some new inequalities for particular parameters in Remark 1.
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