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Abstract
In continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this
paper discusses the geometric characterization of the normalized form of the
generalized Bessel function defined by

Vρ ,r(z) := z +
∞∑

k=1

(–r)k

4k(1)k(ρ)k
zk+1, z ∈U,

for ρ , r ∈ C
∗ :=C \ {0}. Precisely, we will use a sharp estimate for the Pochhammer

symbol, that is, �(a + n)/�(a + 1) > (a + α)n–1, or equivalently (a)n > a(a + α)n–1, that
was firstly proved by Baricz and Ponnusamy for n ∈N \ {1, 2}, a > 0 and
α ∈ [0, 1.302775637 . . .] in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and
then proved in our paper by another method to improve it using the partial
derivatives and the two-variable functions’ extremum technique for n ∈N \ {1, 2},
a > 0 and 0≤ α ≤ √

2, and used to investigate the orders of starlikeness and
convexity. We provide the reader with some examples to illustrate the efficiency of
our theory. Our results improve, complement, and generalize some well-known
(nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.

Mathematics Subject Classification: 30C45; 30C50
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1 Introduction and preliminary results
It is well known that classical special functions theory has found applications in different
branches of mathematics, physics, engineering, and other sciences more than ever. In-
deed, these functions were discovered through the study of physical problems involving
vibrations, heat flow, equilibrium, and so on. This branch of mathematics has a respectable
history with great names like Gauss, Bessel, Fourier, Euler, Legendre, Riemann, etc. The
majority of special functions are solutions of certain second-order linear differential equa-
tions, and the associated equations are partial differential equations of second order.

We will restrict our present study to the generalized Bessel function. Bessel functions
appear in several problems such as heat conduction in a cylindrical object, electromag-
netic waves in a cylindrical waveguide, probability density function of a product of two
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normally distributed random variables, solutions to the radial Schrödinger equation for a
free particle, etc.

Complex analysis constitutes a well-developed and active subject in mathematics to
solve some physical problems. One of the important branches of complex analysis is the
geometric function theory, which studies the geometric properties of the analytic and har-
monic functions. Naturally, the foundation of geometric function theory was supplied by
Cauchy, Weierstrass, and Riemann in their pioneering work. Then, in 1851, Riemann re-
placed an orbital domain with the open disc centered at the origin, and this made this
direction of mathematics exceptional. He was the leader in investigating the analyticity
and univalence of complex variable functions inside the open unit disc, which are in fact
necessary and fundamental thoughts in this field, and led to the well-know Riemann map-
ping theorem, which is considered one of the most useful theorems in complex analy-
sis and states that if � ⊂ C is a simply connected set and � �= C, then there exists a
univalent mapping f that maps � onto the disk |z| < 1. This function is known as the
Riemann mapping. Nevertheless, his proof was incomplete, and the full proof was given by
Carathéodory only in 1912 using Riemann surfaces. It was simplified by Koebe two years
later in a way that did not require these preliminaries (see, for example, [1, 6, 7, 11, 14]).

The hypergeometric functions of one complex variable have long been successfully used
in different fields of pure and applied mathematics, as well as physics, due to their im-
portance in proving the well-known Bieberbach conjecture for the coefficients of the
normalized univalent functions (see De Branges [5]). There is a comprehensive liter-
ature dealing with the geometric properties of several kinds of hypergeometric func-
tions and other functions such as the Bessel function, the generalized Struve function,
the Lommel function, the generalized Lommel–Wright function, and the Fox–Wright
function. For more extensive information in this direction, see the previous studies
[2, 4, 9, 10, 12, 15–17, 20–25] and the references therein.

The contents of the paper is summarized as follows: we first outline that �(a + n)/�(a +
1) > (a + α)n–1, or equivalently (a)n > a(a + α)n–1, which was firstly proved by [4] for
n ∈ N \ {1, 2}, a > 0 and 0 ≤ α ≤ 1.302775637 . . . , and then proved in our paper by an-
other method to improve it using the partial derivatives and the two-variable functions’
extremum technique for n ∈ N \ {1, 2}, a > 0 and 0 ≤ α ≤ √

2. Then, the previous results
were used to determine the orders of starlikeness and convexity of the normalized form
of the generalized Bessel function that will be defined later. One can show by elementary
reasoning that our results complement, improve, and generalize some familiar (nonsharp)
estimates.

Let S denote the class of univalent functions f in the open unit disc U := {z ∈C : |z| < 1},
satisfying the conditions f (0) = 0 = f ′(0) – 1. Such functions have a power series expansion
of the form

f (z) =
∞∑

k=1

fkzk , z ∈U, with f1 = 1. (1.1)

It is worth noting that the class of functions that have the expansion (1.1) for some func-
tion f that is analytic will be denoted by A.

The class S has an important property that it is compact (i.e., locally bounded and
closed), and the proof of this fact is made by using of the growth and distortion theo-
rems, which control, as their names indicate, the distortion of any function of the class
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S and its derivative by sharp bounds. The most classic example of a function in S is the
so-called Koebe function, that is,

k(z) = z(1 – z)–2 =
1
4

[(
1 + z
1 – z

)2

– 1
]

=
∞∑

k=1

kzk .

Looking at the second expression, one can see that it involves the square of the Cayley
transform z 
→ (1 + z)/(1 – z), and belongs to S since it is normalized. It maps U onto C

slit along the negative half-line of the real axis connecting –1/4 to –∞, i.e., k(U) = C \
(–∞, –1/4]. This function has an essential role since it is extremal in many problems in
the theory of univalent functions.

At this stage, if h ∈A, then h has the expansion h(z) =
∑∞

k=1 hkzk , z ∈U, with h1 = 1 and
the convolution of f and h is given by (f ∗ h)(z) :=

∑∞
k=1 fkhkzk , z ∈ U. One can show that

the convolution definition follows from (see [6])

(f ∗ h)
(
r2eiθ ) =

1
2π

∫ 2π

0
f
(
rei(θ–t))h

(
reit)dt, r < 1.

We are now in a position to consider the families of starlike and convex functions, and
that is why we shall start with the starlike domain with respect to a point and the convex
domain, that have particular interest since the image domain of U under a univalent func-
tion has interesting geometric properties. If f (U) is a starlike domain with respect to the
origin, then f ∈ S is called starlike with respect to the origin (or briefly, starlike); the set
of such functions is denoted by S∗. Hereby, a domain � ⊂ C is starlike with respect to an
interior point z0 ∈ � if the line segment that joins z0 to any other point of � lies totally in
�. Particularly, if z0 = 0, then � is called a starlike domain. A function f ∈ S∗ if and only
if f ∈ A and Re(zf ′(z)/f (z)) > 0, z ∈ U. The Koebe function and its rotations provide an
example of starlike functions and this function is extremal for the class S∗.

Moreover, if f (U) is a convex domain, then f ∈ S is called convex; the collection of such
sets is denoted by K. It is well-known that a domain � ⊂ C is convex if the line segment
joining any two points of � lies totally in �. Analytically, convex functions f ∈ A can be
characterized as satisfying Re(zf ′′(z)/f ′(z)) + 1 > 0, z ∈U. The main branch of the function
f (z) = – log(1 – z) ∈K since 1 + Re(zf ′′(z)/f ′(z)) = 1 + Re(z/(1 – z)) > 1/2 > 0 for all z ∈U.

Additionally, f ∈ A is starlike of order α, 0 ≤ α ≤ 1, with the set of such functions de-
noted by S∗(α), if and only if Re(zf ′(z)/f (z)) > α, z ∈ U. Also, it belongs to the class of
convex functions of order α, denoted by K(α), if and only if Re(zf ′′(z)/f ′(z)) + 1 > α, z ∈ U.
It is well-known that S∗(α) ⊂ S∗(0) =: S∗, K(α) ⊂K(0) =: K, and K ⊂ S∗ ⊂ S .

It is obvious that if 0 ≤ α < 1, then S∗(α) ⊂ S∗(0) =: S∗
� S . For α < 0, we have S∗(α) �⊂

S , and for proving this fact let us consider the function f̂ (z) = z + az2 with a = 0.6. A simple
computation show that

Re
ẑf ′(z)
f̂ (z)

> –
1
2

, z ∈U,

that is, f̂ ∈ S∗(–1/2), but f̂ is not univalent in U because f̂ ′(z) = 0 for z = –1/1.2 ∈U.
The Marx–Strohhäcker theorem [8, 19] shows that K ⊂ S∗(1/2), but K(α) �⊂ S∗ for α <

0. Thus, in [13] the authors show that for each α ∈ [–1/2, 0) there exists a function f̃α ∈A
such that f̃α ∈K(α) but f̃α /∈ S∗.
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A well-known homogeneous differential equation of the second-order is given explicitly
by (see, for details, [3])

z2ζ ′′(z) + qzζ ′(z) +
[
rz2 – p2 + (1 – q)p

]
ζ (z) = 0, (1.2)

whose solutions are generalized Bessel functions, with r ∈ C and p, q ∈ R. A particular
solution of (1.2) is the generalized Bessel function of order p that has the series expansion

ζp,q,r(z) =
∞∑

k=0

(–r)k

�(p + k + q+1
2 )�(k + 1)

(
z
2

)2k+p

. (1.3)

It is worth of note that (1.2) has a particular interest because it enables us to know exten-
sive information concerning the Bessel, spherical Bessel, and modified Bessel functions.
Additionally, the series (1.3) converges everywhere, while it is not univalent in U. Bear
in mind that special values of p, q, and r will give us the famous Bessel, spherical Bessel,
and modified Bessel functions. For example, setting q = r = 1, we get the Bessel function,
which can be defined as

Jp(z) :=
∞∑

k=0

(–1)k

�(k + p + 1)�(k + 1)

(
z
2

)p+2k

, z ∈C.

For q = 1 = –r, the modified Bessel function will follow that can be expanded as

Ip(z) :=
∞∑

k=0

1
�(k + p + 1)�(k + 1)

(
z
2

)p+2k

, z ∈C,

whilst for r = –1 and q = 2, we obtain the spherical Bessel function given by

Sp(z) :=
∞∑

k=0

1
�(k + p + 3

2 )�(k + 1)

(
z
2

)p+2k

, z ∈C.

According to the series expansion ζp,q,r , we have ζp,q,r /∈ S , therefore we consider the
following transformation:

vp,q,r(z) := 2p�

(
p +

q + 2
2

)
z– p

2 ζp,q,r(
√

z). (1.4)

From (1.4), the series of vp,q,r has the representation

vp,q,r(z) =
∞∑

k=0

(–r)k

4k(1)k(p + q+2
2 )k

zk ,

where p + (q + 2)/2 /∈ {0, –1, –2, . . . } and (σ )k stands for the Pochhammer symbol defined
by

(σ )k :=

⎧
⎨

⎩
1 if k = 0,

σ (σ + 1)(σ + 2) · · · (σ + k – 1) if k ∈N.
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Having in mind the prior representations, it can be easily seen the following definition:

Definition 1.1 For p, q ∈ C and r ∈C
∗ := C \ {0}, the normalization of the of vp,q,r is given

explicitly by

Vρ,r(z) := z · vp,q,r(z) = z +
∞∑

k=1

(–r)k

4k(1)k(ρ)k
zk+1, z ∈U, (1.5)

where ρ := p + (q + 2)/2 ∈ (0, +∞).

We will require the next technical lemma in our investigation. This lemma was first
proved in [4] for n ∈ N \ {1, 2}, a > 0, and 0 ≤ α ≤ α0, where α0 � 1.302775637 . . . is the
greatest root of the equation α2 + α – 3 = 0. Here, we employ another method to improve
it using the partial derivatives and the two-variable functions’ extremum technique. It is
shown that for n ∈N \ {1, 2}, a > 0, and 0 ≤ α ≤ √

2, the following inequality is satisfied.

Lemma 1.1 If a > 0, 0 ≤ α ≤ α0 =
√

2 � 1.4142 . . . , and n ∈ N \ {1, 2}, then the following
sharp result holds:

(a)n > a(a + α)n–1. (1.6)

Proof Let f : (0, +∞) × [3, +∞) →R be defined by

f (a, n) =
�(a + n)
�(a + 1)

(a + α)1–n – 1, (1.7)

where 0 ≤ α ≤ 2 is a given number. It is easy to check that

∂

∂n
f (a, n) =

(a + α)1–n�(a + n)(�(a + n) – ln(a + α))
�(a + 1)

,

(a, n) ∈ (0, +∞) × [3, +∞). (1.8)

Using that

�(z) =
∫ +∞

0
tz–1e–t dt, Re z > 0,

it follows that �(a + 1) > 0, �(a + n) > 0 for all (a, n) ∈ (0, +∞) × [3, +∞). Therefore, since
α ≥ 0, according to (1.8), the sign of ∂

∂n f (a, n) will match the sign of

G(a, n) := �(a + n) – ln(a + α).

Since it is well-known that

ln x –
1
x

≤ ψ(x) ≤ ln x –
1

2x
, x > 0, (1.9)

from the above definition we get

G(a, n) ≥ ln(a + n) –
1

a + n
– ln(a + α) = ln

a + n
a + α

–
1

a + n
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≥ ln
a + 3
a + α

–
1

a + 3
=: H(a), a > 0, n ≥ 3. (1.10)

Hence

H ′(a) =
1

a + 3

(
α – 3
a + α

+
1

a + 3

)
, a > 0, 0 ≤ α ≤ 2,

and we have the following equivalences:

H ′(a) < 0 ⇐⇒ α – 3
a + α

< –
1

a + 3
⇐⇒ α < 2 +

1
a + 4

, a > 0, 0 ≤ α ≤ 2.

Because

inf

{
2 +

1
a + 4

: a > 0
}

= 2,

if α ≤ 2, the last inequality above is satisfied, i.e., H ′(a) < 0 for all a > 0 whenever 0 ≤ α ≤ 2.
Thus, the function H is strictly decreasing on (0, +∞), which implies

H(a) > lim
x→+∞ H(x) = 0, a > 0.

This inequality, combined with (1.8) and (1.10), implies that

∂

∂n
f (a, n) > 0, (a, n) ∈ (0, +∞) × [3, +∞),

hence f (a, n) is a strictly increasing function on n if n ∈ [3, +∞) for all a > 0, that is,

f (a, n) ≥ f (a, 3) =
�(a + 3)

(a + α)2�(a + 1)
– 1 =

(a + 1)(a + 2)
(a + α)2 – 1, a > 0. (1.11)

Using the facts that a > 0 and α ≥ 0, we obtain

(a + 1)(a + 2)
(a + α)2 – 1 > 0 ⇐⇒ |a + α| <

√
(a + 1)(a + 2)

⇐⇒ α <
√

(a + 1)(a + 2) – a =: h(a), (1.12)

and it is easy to check the inequality

h′(a) =
2a + 3

2
√

(a + 1)(a + 2)
– 1 =

2a + 3 – 2
√

(a + 1)(a + 2)
2
√

(a + 1)(a + 2)

=
1

2
√

(a + 1)(a + 2)(2a + 3 + 2
√

(a + 1)(a + 2))
> 0, a > 0.

This implies that h is strictly increasing on (0, +∞), hence

lim
x→0+

h(x) =
√

2 < h(a) < lim
x→+∞ h(x) =

3
2

, a > 0. (1.13)
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Consequently, if α ≤ √
2, by using the inequalities (1.11) and (1.12), it follows that

f (a, n) > 0, a > 0, n ≥ 3. (1.14)

The left-hand side of the latter inequality could not be improved because

inf

{
ψ(x) – ln x +

1
x

: x > 0
}

= 0,

where we used the fact that x 
→ ψ(x)– ln x+ 1
x is strictly decreasing and positive on (0, +∞)

and, using the inequality (1.9), we have

lim
x→+∞

(
ψ(x) – ln x +

1
x

)
= 0.

From here, using the inequalities (1.10), (1.11), and (1.13), the value
√

2 is the maximum
possible such that the inequality (1.14) holds, hence our result is sharp (i.e., the best pos-
sible) and the proof is complete. �

2 Sufficient conditions for starlikeness and convexity of order β

The first two theorems of the present section have a particular interest. They provide the
reader with the orders of starlikeness and convexity of Vρ,r that slightly improve the results
given in [23], as seen in Sect. 5, items 2 and 3.

Theorem 2.1 Assume that ρ > 0, and let r ∈C
∗ with

0 < |r| <
4ρ

1 + ρ
=: r∗. (2.1)

If

β ≤ 1 –
|r|

ρ(4 – |r|) – |r| =: β∗, (2.2)

then Vρ,r ∈ S∗(β).

Proof To prove that Vρ,r ∈ S∗(β), it is sufficient to show that

∣∣∣∣
z(Vρ,r(z))′

Vρ,r(z)
– 1

∣∣∣∣ < 1 – β , z ∈U, (2.3)

where β ≤ 1. From the familiar triangle inequality and the maximum modulus theorem
for an analytic function, we get

∣∣∣∣
(
Vρ,r(z)

)′ –
Vρ,r(z)

z

∣∣∣∣ =

∣∣∣∣∣

∞∑

k=1

k(–r)k

4kk!(ρ)k
zk

∣∣∣∣∣ < sup
θ∈[0,2π ]

∣∣∣∣∣

∞∑

k=1

k(–r)k

4kk!(ρ)k
eikθ

∣∣∣∣∣

≤ �(ρ + 1)
ρ

∞∑

k=1

k|r|k
4k�(k + ρ)�(k + 1)

, z ∈U, (2.4)

where ρ > 0.
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Letting the function φ : [1, +∞) →R be defined by

φ(s) :=
s

�(s + ρ)�(s + 1)
,

a simple computation shows that

φ(k + 1) – φ(k) =
1 – k2 – kρ

�(k + 1 + ρ)�(k + 1)
< 0, k ∈ N,

for all ρ > 0. Consequently, φ is a strictly decreasing function on N, hence

s
�(s + ρ)�(s + 1)

≤ φ(1) =
1

�(ρ + 1)
, s ∈N,

and, using this inequality, from (2.4), we get

∣∣∣∣
(
Vρ,r(z)

)′ –
Vρ,r(z)

z

∣∣∣∣ <
1
ρ

∞∑

k=1

( |r|
4

)k

=
|r|

ρ(4 – |r|) , z ∈U. (2.5)

Also, we should assume for the above result that |r|/(ρ(4– |r|)) > 0, equivalent to 0 < |r| < 4,
which holds because of (2.9) and the assumption 0 < |r| < 4ρ/(1 + ρ). We mention that the
case |r| = 0 is trivial because Vρ,0(z) = z is the identity function.

On the other hand, by using the theorem of the maximum of the modulus for an analytic
function, we have

∣∣∣∣
Vρ,r(z)

z

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

k=1

(–r)k

4kk!(ρ)k
zk

∣∣∣∣∣ > 1 – sup
θ∈[0,2π ]

∣∣∣∣∣

∞∑

k=1

(–r)k

4kk!(ρ)k
eikθ

∣∣∣∣∣

≥ 1 –
�(ρ + 1)

ρ

∞∑

k=1

|r|k
4k�(k + 1)�(k + ρ)

, z ∈ U, (2.6)

where θ ∈R, ρ > 0. The function 1/(�(k +1)�(k +ρ)) is strictly decreasing for k ∈N, which
leads to

∣∣∣∣
Vρ,r(z)

z

∣∣∣∣ > 1 –
�(ρ + 1)

ρ

∞∑

k=1

( |r|
4

)k

· 1
�(ρ + 1)�(2)

=
ρ(4 – |r|) – |r|

ρ(4 – |r|) , z ∈U, (2.7)

where

ρ(4 – |r|) – |r|
ρ(4 – |r|) > 0. (2.8)

Note that (2.8) holds because ρ > 0 and

|r| < min

{
4;

4ρ

1 + ρ

}
=

4ρ

1 + ρ
(2.9)

for all ρ ∈C, hence this inequality holds by the assumptions of the theorem. Since

∣∣∣∣
zV′

ρ,r(z)
Vρ,r(z)

– 1
∣∣∣∣ =

∣∣∣∣V
′
ρ,r(z) –

Vρ,r(z)
z

∣∣∣∣ ·
∣∣∣∣

z
Vρ,r(z)

∣∣∣∣, z ∈U,
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from (2.5) and (2.7), according to the assumption (2.2), we deduce that

∣∣∣∣
zV′

ρ,r(z)
Vρ,r(z)

– 1
∣∣∣∣ <

|r|
ρ(4 – |r|) – |r| ≤ 1 – β , z ∈U.

Finally, from (2.3), it follows that Vρ,r ∈ S∗(β). �

Theorem 2.2 Assume that ρ ≥ 1/2 and let r ∈C
∗ with

0 < |r| <
4ρ

2 + ρ
=: rc. (2.10)

If

β ≤ 1 –
2|r|

ρ(4 – |r|) – 2|r| =: βc, (2.11)

then Vρ,r ∈K(β).

Proof We could check immediately that the condition

∣∣∣∣
zV′′

ρ,r(z)
V′

ρ,r(z)

∣∣∣∣ < 1 – β , z ∈ U, (2.12)

implies Vρ,r ∈K(β), where 0 ≤ β < 1.
Using the triangle inequality and the theorem of the maximum of the modulus for an

analytic function, we get

∣∣zV′′
ρ,r(z)

∣∣ =

∣∣∣∣∣

∞∑

k=1

k(k + 1)(–r)k

4kk!(ρ)k
zk

∣∣∣∣∣ < sup
θ∈[0,2π ]

∣∣∣∣∣

∞∑

k=1

k(k + 1)(–r)k

4kk!(ρ)k
eikθ

∣∣∣∣∣

≤ �(ρ + 1)
ρ

∞∑

k=1

k(k + 1)|r|k
4k�(k + ρ)�(k + 1)

, z ∈U, (2.13)

where ρ > 0.
Defining the function ω : [1, +∞) →R by

ω(s) :=
s(s + 1)

�(s + ρ)�(s + 1)
,

we get

ω(k + 1) – ω(k) = –
ϕ(k)

�(k + 1 + ρ)�(k + 1)
, k ∈N, (2.14)

where

ϕ(k) := k3 + (ρ + 1)k2 + (ρ – 1)k – 2.

Since it is easy to check that if ρ > 0,

ϕ′(s) = 3s2 + 2(ρ + 1)s + ρ – 1 > 0, s ∈ [1, +∞),
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it follows that

min
{
ϕ(s) : s ≥ 1

}
= ϕ(1) = 2ρ – 1 ≥ 0

wherever ρ ≥ 1/2. Therefore, according to (2.14), we get

ω(k + 1) – ω(k) ≤ 0, k ∈N,

hence ω is a decreasing function on N and

k(k + 1)
�(ρ + k)�(k + 1)

≤ ω(1) =
2

�(ρ + 1)
, k ∈N.

Using this inequality, from (2.13) we get

∣∣zV′′
ρ,r(z)

∣∣ <
2
ρ

∞∑

k=1

( |r|
4

)k

=
2|r|

ρ(4 – |r|) , z ∈U. (2.15)

In the above inequality, we have 2|r|/(ρ(4 – |r|)) > 0, equivalent to 0 < |r| < 4, which holds
because of our assumptions.

Furthermore, from the theorem of the maximum of the modulus for an analytic func-
tion, we have

∣∣V′
ρ,r(z)

∣∣ =

∣∣∣∣∣1 +
∞∑

k=1

(k + 1)(–r)k

4k(1)k(ρ)k
zk

∣∣∣∣∣ > 1 – sup
θ∈[0,2π ]

∣∣∣∣∣

∞∑

k=1

(k + 1)(–r)k

4k(1)k(ρ)k
eikθ

∣∣∣∣∣

≥ 1 –
�(ρ + 1)

ρ

∞∑

k=1

(k + 1)|r|k
4k�(k + 1)�(k + ρ)

, z ∈U,

where θ ∈ R. Since the function k(k + 1)/(�(k + 1)�(k + ρ)) is strictly decreasing for k ∈N,
it follows that the function (k + 1)/(�(k + 1)�(k + ρ)) is also strictly decreasing for k ∈ N,
thus

∣∣V′
ρ,r(z)

∣∣ > 1 –
�(ρ + 1)

ρ

∞∑

k=1

( |r|
4

)k

· 2
�(ρ + 1)�(2)

=
ρ(4 – |r|) – 2|r|

ρ(4 – |r|) , z ∈ U, (2.16)

where

ρ(4 – |r|) – 2|r|
ρ(4 – |r|) > 0. (2.17)

It is worth noting that (2.17) holds because ρ > 0 and

|r| < min

{
4;

4ρ

2 + ρ

}
=

4ρ

2 + ρ
, (2.18)

for all ρ > 0, hence this inequality holds by the assumptions of the theorem. Since

∣∣∣∣
zV′′

ρ,r(z)
V′

ρ,r(z)

∣∣∣∣ =
∣∣zV′′

ρ,r(z)
∣∣ ·

∣∣∣∣
1

V′
ρ,r(z)

∣∣∣∣, z ∈U,
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from (2.15) and (2.16), by using the assumption (2.11), we deduce that

∣∣∣∣
zV′′

ρ,r(z)
V′

ρ,r(z)

∣∣∣∣ <
2|r|

ρ(4 – |r|) – 2|r| ≤ 1 – β , z ∈U,

and, according to (2.12), it follows that Vρ,r ∈K(β). �

3 Special cases and examples
Remark 3.1 The above two theorems could be summarized as follows:

(i) Suppose that ρ > 0 and let r ∈C
∗ be such that the conditions (2.1) and (2.2) are satis-

fied. Then, Vρ,r ∈ S∗(β).
(ii) Suppose that ρ ∈ C with ρ ≥ 1/2, and let r ∈ C

∗ be such that the conditions (2.10)
and (2.11) are satisfied. Then, Vρ,r ∈K(β).

Remark 3.2 We could make the following remarks regarding the restrictions for the pa-
rameters r and ρ in both theorems:

(i) The restriction ρ ≥ 1/2 in Theorem 2.2 is stronger than the condition ρ > 0 in Theo-
rem 2.1.

(ii) Regarding the assumptions (2.1) and (2.10) for the upper bound of the parameter
r ∈C

∗, for all ρ > 0 we have

0 < rc < r∗.

(iii) According to (2.9) and (2.18), we get

max

{
4;

4ρ

1 + ρ
;

4ρ

2 + ρ

}
= 4,

hence each assumption (2.1) or (2.10) implies |r| < 4. Consequently, for all r,ρ > 0, we
obtain that

0 < βc < β∗.

Next we will show a few particular cases for Theorems 2.1 and 2.2 obtained for different
choices of the parameters r, ρ , and β .

Example 3.1 (i) Taking ρ = 1.2591, r = 1.5453, and β = 0 in Theorem 2.1, both assump-
tions (2.1) and (2.2) are satisfied, hence V1.2591,1.5453 ∈ S∗(0) =: S∗, and the image of the
open unit disc U is shown in Fig. 1(A).

(ii) For the values ρ = 1.259, r = 1.9, and β = –1.555, all assumptions of Theorem 2.1 are
satisfied, therefore V1.259,1.9 ∈ S∗(–1.555). As seen in Fig. 1(B), the function V1.259,1.9 is not
convex, but, according to this theorem, it is starlike of order β = –1.555.

(iii) If we take ρ = 1.259, r = 6, and β = 0.9 in Theorem 2.1, then it is easy to check that the
assumption (2.1) is not satisfied. As seen in Fig. 1(C), the function V1.259,6 /∈ S∗(0.9) ⊂ S
because it is not univalent in U. Thus, we could see from the mentioned figure that there
exists a subset of C that it is twice overlapped by V1.259,6(U), therefore form here and item
(ii), we see the assumption (2.1) is essential for the validity of this theorem.
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Figure 1 Illustrations for Example 3.1

Figure 2 Illustrations for Example 3.2

Example 3.2 (i) For ρ = 2.424, r = 1.509, and β = 0 in Theorem 2.2, the assumptions
(2.10) and (2.11) hold for these values, hence V2.424,1.509 ∈ K(0) =: K, while the image of
V2.424,1.509(U) is shown in Fig. 2(A).

(ii) Considering the values ρ = 2.424, r = 7.5, and β = 0.9, it is easy to check that the
assumption (2.10) is not satisfied. Therefore, in this case we cannot use the result of The-
orem 2.2. Moreover, we see from Fig. 2(B) that V2.424,7.5 /∈ K(0) ⊂ K(0.9) because the do-
main V2.424,7.5(U) is not convex.

(iii) If ρ = 2.424, r = 14, and β = 0.9, then we may see that the assumption (2.10) is not
satisfied, hence for these values we cannot use the conclusion of Theorem 2.2. We may see
in Fig. 2(C) that the function V2.424,14 /∈K(0.9) ⊂K because it is not univalent in U. From
this figure we see that there exists a subset of C that it is twice overlapped by V2.424,14(U),
thus form here and item (ii) we see the assumption (2.10) is essential for Theorem 2.2.

4 Sufficient conditions for starlikeness and convexity of order β using
Silverman’s theorem

The theorems of this section allow us to obtain sufficient conditions on the parameters ρ

and r such that Vρ,r is in the classes of starlike and convex functions of order β by making
use of Lemma 1.1 and the well-known result of H. Silverman [18, Theorem 1].
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Theorem 4.1 Let

Wρ,r(β) :=
(

1 –
|r|
4ρ

–
|r|2

32ρ(ρ + 1)

–
|r|3

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|)
)

β

+
|r|
2ρ

+
3|r|2

32ρ(ρ + 1)
+

3|r|3
64ρ(1 +

√
2)(ρ +

√
2)(2 +

√
2 + ρ + ρ

√
2 – |r|)

+
|r|3

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|) – 1,

where ρ > 0 and r ∈C
∗. If there exists a β < 1 such that

Wρ,r(β) ≤ 0, (4.1)

then Vρ,r ∈ S∗(β).

Proof A well-known result from [18, Theorem 1] shows that if f has the form (1.1) and
satisfies

∑∞
k=2(k – β)|fk| ≤ 1 – β , then f ∈ S∗(β). Thus, according to (1.5), it sufficient to

show that

A1 :=
∞∑

k=2

(k – β)
∣∣∣∣

(–r)k–1

4k–1(1)k–1(ρ)k–1

∣∣∣∣ ≤ 1 – β .

Since ρ > 0 and r ∈C
∗, we have

A1 =
∞∑

k=2

(k – β)
|r|k–1

4k–1(1)k–1(ρ)k–1
=

∞∑

k=1

(k + 1 – β)
|r|k

4k(1)k(ρ)k

=
(2 – β)|r|

4ρ
+

(3 – β)|r|2
32ρ(ρ + 1)

+
∞∑

k=3

k|r|k
4k(1)k(ρ)k

+ (1 – β)
∞∑

k=3

|r|k
4k(1)k(ρ)k

.

It is easy to show by induction that k ≤ (3/64)4k for all k ∈ N \ {1, 2}. Moreover, using
Lemma 1.1, we have (1)k > (1 + α)k–1, k ∈N \ {1, 2}, and 0 ≤ α ≤ √

2. Since

max
{

(1 + α)k–1 : 0 ≤ α ≤ √
2
}

= (1 +
√

2)k–1,

it follows that (1)k ≥ (1 +
√

2)k–1, N \ {1, 2}. Similarly, (ρ)k ≥ ρ(ρ +
√

2)k–1, ρ > 0, and
k ∈N \ {1, 2}, hence from the assumption (4.1), it follows that

A1 ≤ (2 – β)|r|
4ρ

+
(3 – β)|r|2
32ρ(ρ + 1)

+
3|r|
64ρ

∞∑

k=3

|r|k–1

(1 +
√

2)k–1(ρ +
√

2)k–1

+
(1 – β)|r|

4ρ

∞∑

k=3

|r|k–1

4k–1(1 +
√

2)k–1(ρ +
√

2)k–1

=
(2 – β)|r|

4ρ
+

(3 – β)|r|2
32ρ(ρ + 1)

+
3|r|3

64ρ(1 +
√

2)(ρ +
√

2)(2 +
√

2 + ρ + ρ
√

2 – |r|)
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Figure 3 Illustrations for Example 4.1

+
|r|3(1 – β)

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|) ≤ 1 – β ,

and thus the proof is complete. �

Example 4.1 The next special cases of the above theorem represent two situations that
could treated using the above theorem.

(i) For the case β = 0 and r = 1.1, the inequality (4.1) gives ρ ≥ 0.6240754208 . . . , hence
we could formulate the following result:

If r = 1.1 and ρ ≥ 0.6240754208 . . . , then Vρ,1.1 ∈ S∗(0) = S∗.
(ii) A similar case obtained for the case β = 0.1 and r = 1.2 is the following:
If r = 1.2 and ρ ≥ 0.7229723004 . . . , then Vρ,1.2 ∈ S∗(0.1).
As seen in Fig. 3, in both on the above cases the functions Vρ,r are starlike but not convex

in U.

Theorem 4.2 Let

Tρ,r(β) :=
(

1 –
|r|
2ρ

–
3|r|2

32ρ(ρ + 1)
–

3|r|3
64ρ(1 +

√
2)(ρ +

√
2)(2 +

√
2 + ρ + ρ

√
2 – |r|)

–
|r|3

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|)
)

β

+
|r|
ρ

+
9|r|2

32ρ(ρ + 1)
+

15|r|3
64ρ(1 +

√
2)(ρ +

√
2)(2 +

√
2 + ρ + ρ

√
2 – |r|)

+
|r|3

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|) – 1,

where ρ > 0 and r ∈C
∗. If there exists a β < 1 such that

Tρ,r(β) ≤ 0, (4.2)

then Vρ,r ∈K(β).
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Proof As stated above, if f is of the form (1.1) and satisfies
∑∞

k=2(k – β)|fk| ≤ 1 – β , then
f ∈ S∗(β). From the Alexander duality relation, i.e., for a function f of the form (1.1), we
have f ∈K(β) if and only if zf ′(z) ∈ S∗(β), according to [18, Theorem 1], if a function f of
the form (1.1), satisfies

∑∞
k=2 k(k – β)|fk| ≤ 1 – β , then f ∈K(β). Therefore, it is enough to

prove that

A2 :=
∞∑

k=2

k(k – β)
∣∣∣∣

(–r)k–1

4k–1(1)k–1(ρ)k–1

∣∣∣∣ ≤ 1 – β . (4.3)

Since ρ > 0 and r ∈C
∗, we have

A2 :=
∞∑

k=1

(k + 1)(k + 1 – β)|r|k
4k(1)k(ρ)k

=
(2 – β)|r|

2ρ
+

3(3 – β)|r|2
32ρ(ρ + 1)

+
∞∑

k=3

(k + 1)(k + 1 – β)|r|k
4k(1)k(ρ)k

=
(2 – β)|r|

2ρ
+

3(3 – β)|r|2
32ρ(ρ + 1)

+
∞∑

k=3

k2|r|k
4k(1)k(ρ)k

+ (2 – β)
∞∑

k=3

k|r|k
4k(1)k(ρ)k

+ (1 – β)
∞∑

k=3

|r|k
4k(1)k(ρ)k

.

It is worth noting that by mathematical induction we have k2 ≤ (9/64)4k and k ≤ (3/64)4k ,
k ∈N \ {1, 2}. We shall now proceed to combine the latter inequalities again with the esti-
mates (1)k ≥ (1+

√
2)k–1, (ρ)k ≥ ρ(ρ +

√
2)k–1, k ∈ N\{1, 2}, which follow from Lemma 1.1,

to get

A2 ≤ (2 – β)|r|
2ρ

+
3(3 – β)|r|2
32ρ(ρ + 1)

+
9 + 3(2 – β)

64ρ
· |r|

∞∑

k=3

|r|k–1

(1 +
√

2)k–1(ρ +
√

2)k–1

+
(1 – β)|r|

4ρ

∞∑

k=3

|r|k–1

4k–1(1 +
√

2)k–1(ρ +
√

2)k–1

=
(2 – β)|r|

2ρ
+

3(3 – β)|r|2
32ρ(ρ + 1)

+
3(5 – β)

64ρ
· |r|3

(1 +
√

2)(ρ +
√

2)(2 +
√

2 + ρ + ρ
√

2 – |r|)

+
(1 – β)|r|3

16ρ(1 +
√

2)(ρ +
√

2)(8 + 4
√

2 + 4ρ + 4ρ
√

2 – |r|) ≤ 1 – β ,

where the last inequality holds under the assumption (4.2). Thus, the inequality (4.3) is
satisfied, hence Vρ,r ∈K(β). �

Example 4.2 The next particular cases of Theorem 4.2 represent two situations obtained
for special cases of the parameters.

(i) For the case β = 0 and r = 2.1, the inequality (4.2) leads to ρ ≥ 2.488707149 . . . , thus
the following result gives us a better result for ρ than that of Theorem 2.2 but assuming
that ρ > 0:
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Figure 4 Illustrations for Example 4.2

If r = 2.1 and ρ ≥ 2.488707149 . . . , then Vρ,2.1 ∈K(0) = K.
(ii) A similar case obtained for the case β = 0.1 and r = 1.2 is the following:
If r = 2.1 and ρ ≥ 1.400245864 . . . , then Vρ,1.2 ∈K(–8).
As seen in Fig. 4, in the first case, the image V2.488707149,2.1(U) of the first function is

a convex domain, while in the second case, the image V1.400245864,2.1(U) is not a convex
domain, and it seems to be starlike. This fact is expected because V1.400245864,1.2 ∈K(–8) �⊂
K.

5 Concluding remarks and outlook
The highlights of the present paper are given below:

1. At first, Lemma 1.1 is an improvement of Lemma 2 of [4], showing that (a)n > a(a +
α)n–1 for n ∈N \ {1, 2}, a > 0, and 0 ≤ α ≤ √

2;
2. In Theorem 2.1, we have proved that if ρ > 0, r ∈C

∗ are such that the conditions (2.1)
and (2.2) are satisfied, then Vρ,r ∈ S∗(β). This theorem slightly improves Theorem 2.1 of
[23]. Thus, for the values ρ = 2 and r = 0.05, the conditions of both of these two theorems
are satisfied. Therefore, Theorem 2.1 of [23] implies Vρ,r ∈ S∗(0.9915966387) while the
present Theorem 2.1 gives a better result Vρ,r ∈ S∗(0.9936305732). Also, for ρ = 0.5 and
r = 0.09, the conditions of both of these two theorems are satisfied, and Theorem 2.1 of
[23] gives us Vρ,r ∈ S∗(0.9361702128) while Theorem 2.1 implies a better result Vρ,r ∈
S∗(0.9517426274).

3. In Theorem 2.2, we proved that if ρ ≥ 1/2 and r ∈ C
∗ are such that the conditions

(2.10) and (2.11) are satisfied, then we haveVρ,r ∈ K(β). Like in the above item, The-
orem 2.2 slightly improves Theorem 2.2 of [23]. For example, taking the values ρ = 1
and r = 0.05, the assumptions of both of these theorems hold. Thus, Theorem 2.2 of
[23] implies Vρ,r ∈ K(0.9655172414) while Theorem 2.1 actually gives a better result
Vρ,r ∈ K(0.9740259740). In addition, for ρ = 0.5 and r = 0.09, since all the conditions of
these theorems are satisfied, Theorem 2.2 of [23] implies Vρ,r ∈ K(0.8636363636) while
Theorem 2.1 gives us a better result Vρ,r ∈K(0.8985915493).

4. In Theorems 4.1 and 4.2, and with the help of Lemma 1.1, we have obtained sufficient
conditions on ρ , r, with ρ > 0 and r ∈ C

∗, such that Vρ,r belongs to the sets S∗(β) and
K(β). The proof uses our new Lemma 1.1 that improves Lemma 2 of [4].
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5. We provided the reader with some examples to illustrate the efficiency of our ap-
proach.
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