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Abstract
In this note, we study some approximation properties on a class of special
Lototsky–Bernstein bases. We focus on approximation of |x| on [–1, 1] by an
approximation process generated from fixed points on Lototsky–Bernstein bases. Our
first result shows that the approximation procedure pn(x) to |x| preserves good shapes
on [–1, 1]. Moreover, some convergence results and inequalities are derived. Our
second main result states that the rate convergence of the approximation is O(n–2).
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1 Introduction
Let {pi(x), 0 ≤ i ≤ n} denote a sequence of real-valued functions on [0, 1]. Lototsky–
Bernstein basis functions bn,k(x) for 0 ≤ x ≤ 1 are defined as follows

bn,k(x) =
∑

K∪L={1,2,...,n}
|L|=n–k,|K |=k

∏

m∈L

(
1 – pm(x)

)∏

l∈K

pl(x). (1.1)

The Lototsky–Bernstein operators Ln are defined for each function f ∈ C[0, 1] by (see
[11])

Ln(f ; x) =
n∑

k=0

f
(

k
n

)
bn,k(x). (1.2)

Throughout this paper, we always assume that pi(x) ∈ C[0, 1] (1 ≤ i ≤ n), 0 < pi(x) < 1
for x ∈ (0, 1), and that pi(0) = 0, pi(1) = 1. When pi(x) = x, the operators Ln become the
classical n-th order Bernstein operators (see [5]).

The class of Lototsky–Bernstein operators is of particular interest since the Lototsky–
Bernstein basis functions bn,k(x) (0 ≤ k ≤ n) are generated by special pi(x) (1 ≤ i ≤ n). In
this case, given a strictly increasing function p1(x) such that p1(0) = 0, p1(1) = 1, all the
pj(x) (j ≥ 2) are determined recursively by (see [10])

pn+1(x) =
∑n

k=0[p1(k/n) – p1(k/(n + 1))]bn,k(x)∑n
k=0[p1((k + 1)/(n + 1)) – p1(k/(n + 1))]bn,k(x)

. (1.3)
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Set

Qk :=
p1(k/n) – p1(k/(n + 1))

p1((k + 1)/(n + 1)) – p1(k/(n + 1))
∈ (0, 1), 0 ≤ k ≤ n.

These special Lototsky–Bernstein operators possess the following properties ([10, 11]):
(a) Ln(f ; x) preserve 1 and p1(x).
(b) limn→∞ Ln(f ; x) = f (x) uniformly on [0, 1] for any f ∈ C[0, 1].
(c) pn(x) (n ≥ 2) are increasing on [0, 1] with limn→∞ pn(x) = x uniformly in [0, 1] if

Qk+1 ≥ Qk , for 0 ≤ k ≤ n – 1.
From (a) and (b) we know that there exist Lototsky–Bernstein operators Ln(f ; x) that can

fix any increasing function p1(x) on [0, 1] with p1(0) = 0, p1(1) = 1 and still approximate
all continuous functions uniformly on [0, 1]. In (c), we give monotonicity and convergence
of pn(x) with condition Qk+1 ≥ Qk , for 0 ≤ k ≤ n – 1. A natural question we want to ask
is how fast of the limit limn→∞ pn(x) = x in (c) shall be. Since the form of the pn(x) from
(1.3) is quite complicated for general p1(x), it therefore not easy to get the rate of the limit
limn→∞ pn(x) = x.

In this note, we shall consider a special p1(x) = x2 to solve above question to some extent.
In this case, the recursive formula of pn(x) is as follows(see [11] Remark 7.8)

pn+1(x) =:
(2n + 1)x2

1 + 2
∑n

k=1 pk(x)
. (1.4)

It is not difficult to inductively prove that all the pn(x) are even functions on [–1, 1], which
entails that limn→∞ pn(x) = |x| uniformly on [–1, 1].

The function |x| has been the focus of much research in approximation theory over the
years. Its fundamental role in polynomial approximation is well illustrated by Lebesgue’s
proof of the Weierstrass approximation theorem, which is based solely on the fact that the
single function |x| can be approximated. For progress on approximation of |x| by polyno-
mials and rational functions, we refer to see [1–4, 6–9].

The primary goal of this paper is to study convergence properties of pn(x). The paper is
organized as follows. In Sect. 2, we present some basic properties of pn(x). The inequalities
pn(x) ≤ pn+1(x) (0 ≤ x ≤ 1/2, n ≥ 2) and pn(x) ≥ pn+1(x) (1/2 ≤ x ≤ 1, n ≥ 2) are derived.
Also we deduce two inequalities

∑n
k=1(x – pk(x)) ≤ 1–x

2 (0 ≤ x ≤ 1/2) and
∑n

k=1(x – pk(x)) ≥
1–x

2 (1/2 < x ≤ 1), and one limit
∑∞

k=1(x – pk(x)) = 1–x
2 (0 < x ≤ 1). In Sect. 3, we prove

the estimate ||x| – pn(x)| ≤ max{e2δ+1/δ–4/3, 4} · ||x|–p2(x)|
n2 on [–1, δ] ∪ [δ, 1] for some fixed

0 < δ < 1/2.

2 Some preservation properties of pn(x)
This section is devoted to some basic properties on pn(x). In [11] we prove that pn( 1

2 ) = 1
2

for n ≥ 2. Thus pn(x) (n ≥ 2) interpolates |x| at the following set of 5 points: {–1, – 1
2 , 0, 1

2 , 1}.
Since pn(x) as well as |x| are even functions, the study of the approximation may be re-
stricted to the interval [0, 1].

Theorem 2.1 Let pn(x) be defined in (1.4) for x ∈ [0, 1]. Then for n ≥ 2, we have pn(x) ≤
pn+1(x) ≤ x when 0 ≤ x ≤ 1/2, and pn(x) ≥ pn+1(x) ≥ x when 1/2 < x ≤ 1.
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Proof We need only to prove the desired result for 0 < x ≤ 1. It is obvious to deduce from
(1.4) that

pn+1(x)
pn(x)

=
(2n + 1)x2

2p2
n(x) + (2n – 1)x2 , (2.1)

and

pn+1(x) – x =
(pn(x) – x)[(2n – 1)x2 – 2xpn(x)]

2p2
n(x) + (2n – 1)x2 , (2.2)

with p2(x) = 3x2

2x2+1 . Note that the following two inequalities p2(x) ≤ x for 0 < x ≤ 1/2 and
p2(x) ≥ x for 1/2 < x ≤ 1 hold. Setting an(x) := (2n – 1)x2 – 2xpn(x) ≥ 0, we now divide the
proof into two cases.

Case I, 0 < x ≤ 1/2. It is easy to see that a2(x) = 3x2 – 2xp2(x) ≥ 3x2 – 2x2 > 0. Thus from
(2.2) we know that the sign of p3(x) – x is the same as the sign of p2(x) – x, which means
that p3(x) ≤ x. Along this idea of deduction, by noting an(x) ≥ 0, we can prove inductively
from (2.2) that pn(x) ≤ x. Thus from (2.1) and pn(x) ≤ x, we have pn+1(x)/pn(x) ≥ 1, i.e.,
pn(x) ≤ pn+1(x).

Case II, 1/2 < x ≤ 1. Similarly, we have a2(x) = 3x2 – 2xp2(x) = 3x2(2x2–2x+1)
2x2+1 > 0. It follows

as well that the sign of p3(x) – x is the same as the sign of p2(x) – x, i. e., p3(x) ≥ x. From
(2.1) we now have p3(x)/p2(x) ≤ 1, i.e., p3(x) ≤ p2(x). The inequality a3(x) = 5x2 –2xp3(x) ≥
5x2 – 2xp2(x) ≥ a2(x) > 0 follows. Along this idea, we can deduce inductively that pn(x) ≥ x
and pn(x) ≥ pn+1(x). �

Theorem 2.2 Let pn(x) be defined in (1.4) for x ∈ [0, 1]. Then
(1)

∑n
k=1(x – pk(x)) ≤ 1–x

2 , for 0 ≤ x ≤ 1
2 and

∑n
k=1(x – pk(x)) ≥ 1–x

2 , for 1
2 < x ≤ 1;

(2)
∑∞

k=1(x – pk(x)) = 1–x
2 , for 0 < x ≤ 1 and

∑∞
k=1(x – pk(x)) = 0, for x = 0.

Proof (1) It is trivial for x = 0. From (1.4) we have for 0 < x ≤ 1

2
n∑

k=1

(
x – pk(x)

)
– 1 = 2nx –

(2n + 1)x2

pn+1(x)
, (2.3)

which, combined (2.3) with Theorem 2.1, implies that the first two inequalities follow.
(2) In the case of 0 < x ≤ 1/2, we know from (1) that

∑n
k=1(x – pk(x)) ≤ 1–x

2 . Since
x – pk(x) ≥ 0, the series

∑∞
k=1(x – pk(x)) converges. Now by noting pn(x) ≤ pn+1(x) from

Theorem 2.1, it follows that bn(x) := x – pn(x) is decreasing in n. Then

b[n/2](x) + b[n/2]+1(x) + · · · + bn(x) ≥ nbn(x)/2, (2.4)

which entails that nbn(x) = n(x – pn(x)) → 0 as n → ∞. In another case 1/2 ≤ x ≤ 1, we
know from (1) that

∑n
k=2(pk(x) – x) ≤ (1 – x)(x – 1/2). By noting pn+1(x) ≥ pn(x) from The-

orem 2.1, pn(x) – x is decreasing in n. It follows similarly that n(pn(x) – x) → 0 as n → ∞.
Thus, from (2.3), we have for 0 < x ≤ 1

2
n∑

k=1

(
x – pk(x)

)
– 1 =

2nx(pn+1(x) – x) – x2

pn+1(x)
→ –x, n → ∞. (2.5)

The case of x = 0 is also trivial. �
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Corollary 2.2.1 Let pn(x) be defined in (1.4) for x ∈ [0, 1]. Then
(1) x – pn(x) = o( 1

n );
(2) pn(x) – pn+1(x) = o( 1

n2 ).

Proof The first result follows from (2.4) and the second one can be verified by the fact that

pn+1(x) – pn(x) =
2pn(x)(x + pn(x))(x – pn(x))

2p2
n(x) + (2n – 1)x2 . (2.6)

�

3 Approximation estimate of pn(x)
In this section, we shall give an estimate of the approximation of pn(x) to |x| on [–1, 1].

Theorem 3.1 For x ∈ [–1, –δ] ∪ [δ, 1] with some fixed 0 < δ < 1
2 , let pn(x) (n ≥ 2) be defined

in (1.4). Then

∣∣|x| – pn(x)
∣∣ ≤ max

{
e2δ+1/δ–4/3, 4

} · ||x| – p2(x)|
n2 . (3.1)

Proof We need only to prove for x ∈ (0, 1]. It follows from (2.2) that

pn+1(x) – x =
(
pn(x) – x

) 2n – 1 – 2 pn(x)
x

2n – 1 + 2( pn(x)
x )2

. (3.2)

In the following, we divide the proof into two cases.
Case I, 1

2 ≤ x ≤ 1. We have from Theorem 2.1 that x ≤ pn(x) ≤ p2(x) = 3x2

2x2+1 (n ≥ 2).
Thus 1 ≤ pn(x)

x ≤ 3
2 . Now the equality (3.2) can deduce that for n ≥ 2

pn+1(x) – x ≤ (
pn(x) – x

)2n – 1 – 2
2n – 1 + 2

=
(
pn(x) – x

)2n – 3
2n + 1

. (3.3)

It follows from iterated inequality (3.3) that

pn(x) – x ≤ (
p2(x) – x

) · 1
5

· 3
7

· 5
9

· · · 2n – 9
2n – 5

· 2n – 7
2n – 3

· 2n – 5
2n – 1

≤ 3(p2(x) – x)
(2n – 3)(2n – 1)

=
3(p2(x) – x)

(2 – 3
n )(2 – 1

n )n2
≤ 3(p2(x) – x)

(2 – 3
2 )(2 – 1

2 )n2
=

4(p2(x) – x)
n2 . (3.4)

Case II, δ ≤ x < 1
2 . It follows from (2.1) that

pn+1(x) – x
pn(x) – x

= 1 +
–4

2n + 1
+

(x – pn(x))((4x + 2pn(x)) – 8(pn(x) + x)/(2n + 1))
(2n – 1)x2 + 2p2

n(x)

= 1 +
–2
n

+
2

n(2n + 1)
+

(x – pn(x)) · ((4 + 2 pn(x)
x ) – 8( pn(x)

x + 1)/(2n + 1))
x · ((2n – 1) + 2( pn(x)

x )2)
. (3.5)
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By using Theorem 2.1, p2(x) = 3x2

2x2+1 ≤ pn(x) ≤ x (n ≥ 2). We know that the sign of the last
term of (3.5) is positive for n ≥ 2. By taking logarithm to both sides of (3.5) and using the
inequality log(1 + x) ≤ x (x > –1), it follows that for n ≥ 2

log
(
x – pn+1(x)

)
– log

(
x – pn(x)

)

≤ –2
n

+
2

n(2n + 1)
+

(x – pn(x)) · ((4 + 2 pn(x)
x ) – 8( pn(x)

x + 1)/(2n + 1))
x · ((2n – 1) + 2( pn(x)

x )2)

≤ –2
n

+
2

n(2n + 1)
+

(x – pn(x)) · ((4 + 2 pn(x)
x ))

x · ((2n – 1) + 2( pn(x)
x )2)

≤ –2
n

+
4

(2n – 1)(2n + 1)
+

x – pn(x)
x

· 6
2n – 1

≤ –2
n

+ 2
(

1
2n – 1

–
1

2n + 1

)
+

2(x – pn(x)
x

. (3.6)

Then taking sum of both sides of (3.6), and combining the inequality
∑n

k=1
1
k > log n + 1

2
and (1) of Theorem 2.2, we get

log
(
x – pn(x)

)
– log

(
x – p2(x)

)

≤ –2
n–1∑

k=2

1
k

+ 2
n–1∑

k=2

(
1

2k – 1
–

1
2k + 1

)
+

2
x

n–1∑

k=2

(
x – pk(x)

)

≤ –2(log n – 1/2) +
2
3

+
2
x

·
(

1 – x
2

–
(
x – x2)

)

≤ –2 log n +
5
3

+
(1 – x)(1 – 2x)

x
. (3.7)

It follows from (3.7) that

x – pn(x) ≤ e5/3+(1–x)(1–2x)/x · x – p2(x)
n2 . (3.8)

On the other hand, we have for x ∈ [δ, 1/2)

2
√

2 – 4/3 ≤ 5/3 + (1 – x)(1 – 2x)/x = 2x + 1/x – 4/3 ≤ 2δ + 1/δ – 4/3. (3.9)

Summing (3.4), (3.8), and (3.9)

∣∣|x| – pn(x)
∣∣ ≤ max

{
e2δ+1/δ–4/3, 4

} · ||x| – p2(x)|
n2 , (3.10)

which implies that (3.1) follows. �

Remark 1 When δ → 0+ in (3.1), the constant max{e2δ+1/δ–4/3, 4} may tend to infinity. If the
control constant max{e2δ+1/δ–4/3, 4} can be improved to a constant which is independent
of δ remains open.
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