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Abstract
Mixing is not much used in the high-frequency literature so far. However, mixing is a
common weakly dependent property of continuous and discrete stochastic
processes, such as Gaussian, Ornstein–Uhlenberck (OU), Vasicek, CIR, CKLS, logistic
diffusion, generalized logistic diffusion, and double-well diffusion processes. So,
long-span high-frequency data typically have weak dependence, and using mixing to
study them is also an alternative approach. In this paper, we give some moment
inequalities for long-span high-frequency data with φ-mixing, ρ-mixing, and
α-mixing. These inequalities are effective tools for studying asymptotic properties.
Applying these inequalities, we investigate the strong consistency of parameter
estimation for the OU-integrated diffusion process. We also derive the mean square
error of the estimation of the OU process and the optimal interval for the drift
parameter estimator.

Keywords: Long-span high-frequency data; Mixing property; Moment inequality;
OU-integrated diffusion process; Strong consistency

1 Introduction
Let Xi�n (i = 0, 1, 2, . . . , n) be the observation data of the continuous-time stochastic pro-
cess {Xt , t ≥ 0} at time points ti�n = i�n (i = 0, 1, 2, . . . , n) over an interval [0, T] with
�n > 0 and T = n�n. These data are called high-frequency if �n → 0 as n → ∞ and low-
frequency if �n = c.

High-frequency data are commonly used in many fields, especially in finance. For ex-
ample, in studying the asymptotic properties of the estimation of diffusion processes, it
is often necessary to assume the basic condition �n → 0, i.e., high-frequency samples.
For details, one can refer to Andersen and Bollerslev [1], Barndorff-Nielsen and Shephard
[6, 7], Christensen and Podolskij [13], Bandi and Russell [5], Fan and Wang [17], Fan et al.
[16], Li et al. [31], Li and Guo [30], Chang et al. [11], and Yang et al. [50]. In these stud-
ies, the observation time intervals of high-frequency data have both fixed and increasing
intervals. In the case of increasing time interval [0, T] with T → ∞, the high-frequency
data is called long-span high-frequency data, which typically has weak dependence and is
usually described as mixing dependence.
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Assume that {Xt , t ≥ 0} is a continuous-time stochastic process, Fb
a represents a σ -

algebraic field generated by (Xt : a ≤ t ≤ b). For τ > 0, let

α(τ ) = sup
s≥0

sup
A∈F s

0,B∈F∞
s+τ

∣
∣P(A ∩ B) – P(A)P(B)

∣
∣, (1.1)

φ(τ ) = sup
s≥0

sup
A∈F s

0,B∈F∞
s+τ ,P(A)>0

∣
∣P(B|A) – P(B)

∣
∣, (1.2)

ρ(τ ) = sup
s≥0

sup
X∈L2(F s

0),Y∈L2(F∞
s+τ )

|Cov(X, Y )|
√

E(X – EX)2E(Y – EY )2
. (1.3)

If α(τ ) → 0,φ(τ ) → 0,ρ(τ ) → 0 as τ → ∞, then the process is called to be α-mixing,
φ-mixing, and ρ-mixing, respectively. The long-span high-frequency data Xi�n (i =
0, 1, 2, . . . , n) are said to be α-mixing (φ-mixing, or ρ-mixing) if the corresponding pro-
cess {Xt , t ≥ 0} is α-mixing (φ-mixing, or ρ-mixing).

Mixing is not much used in the high-frequency literature so far. One reason might be
that it seems very difficult to establish the mixing properties of the models of interest.
However, the mixing properties of many stochastic processes have been studied. Kol-
mogorov and Rozanov [29] first proved that ρ-mixing and α-mixing are equivalent for
the stationary Gaussian process, and the process is ρ-mixing under appropriate condi-
tions on the spectral density. Gorodetskii [22] discussed that linear processes are α-mixing
under certain conditions. Later, Withers [44] improved the conclusions and gave suffi-
cient conditions that are easier to verify. From that, it is not difficult to know that the
stationary and reversible ARMA processes with normal white noise are α-mixing. The
stationary GARCH process and the stationary Markov chain are both α-mixing processes
(Carrasco and Chen [10]; Fan and Yao [18]), and the vector autoregressive (VAR) process,
multivariate ARCH process and multivariate GARCH process are also α-mixing processes
(Hafner and Preminger [23]; Boussama et al. [9]; Wong et al. [45]). Recently, Chen et al.
[12] also gave some sufficient conditions for diffusion processes to be β-mixing, ρ-mixing
and α-mixing, which provide us with an effective method to verify the mixing proper-
ties of some interesting diffusion processes, such as Ornstein–Uhlenberck (OU), Vasicek,
Cox–Ingersoll–Ross (CIR), Chan–Karolyi–Longstaff–Sanders (CKLS), logistic diffusion,
generalized logistic diffusion, double-well diffusion processes (Sect. 3). Therefore, mixing
property can provide a selection method to study long-span high-frequency data of these
interesting models.

In addition, although diffusion processes are semi-martingale and have Markov prop-
erties, integrated diffusion processes (see (4.2) below) no longer have these properties
(Ditlevsen and Sørensen [15]). However, if diffusion processes are mixing, then the in-
tegrated diffusion processes also have the same mixing properties. So, mixing provides a
new method for studying integrated diffusion processes, as we did in Sect. 4.

For mixing low-frequency data, moment and maximal inequalities are very useful for
statistics to prove the asymptotic theory. These inequalities have been established be-
fore Billingsley [8], Yokoyama [51], Peligrad [34–36], Roussas and Ioannides [37], Shao
[38, 39], Shao and Yu [40], Yang [47–49], Zhang [52], Wei et al. [43], and Xing et al. [46].
However, there is currently no literature on moment inequalities for mixing long-span
high-frequency data. This article will provide such inequalities and apply them to study
the uniformly strong consistency of parameter estimation of the OU-integrated process.
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In Sect. 2, we give some moment inequalities for mixing long-span high-frequency data.
To show that some long-span high-frequency data have mixing properties, in Sect. 3, we
summarize some conclusions about the mixing of continuous-time stochastic processes
from the existing literature, and verify the mixing properties of some interesting diffu-
sion processes. As a simple application of the moment inequalities, we study the strong
consistency of parameter estimates for the OU-integrated diffusion process in Sect. 4 and
discuss the optimal sampling interval for the estimates. The last section is the conclusion
of this paper.

2 Inequalities for mixing long-span high-frequency data
In this section, we give some moment inequalities for mixing long-span high-frequency
data with �n → 0 and n�n → ∞ as n → ∞. Let

τn = [1/�n] + 1, λn =
[

n/(2τn)
]

+ 1,

ξj =
(jτn)∧n
∑

i=((j–1)τn)∧n+1

Xi�n , j = 1, 2, . . . , 2λn,

where [x] denotes the integer part of x, a ∧ b = min{a, b}. If (j – 1)τn ≥ n, we redefine ξj = 0.
Clearly,

2(λn – 1)τn ≤ n < 2λnτn,

and

n
∑

i=1

Xi�n =
2λn∑

j=1

ξj.

Theorem 2.1 Suppose that {Xt , t ≥ 0} is a φ-mixing stochastic process with EXt = 0 and
E|Xt|r < ∞ where r ≥ 2. Let �n → 0 and n�n → ∞ as n → ∞.

(1) If

∞
∑

k=0

φ1/2(2k) < ∞, (2.1)

then there exists a positive constant C = C(r,φ) independent of n such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ C
{

E max
1≤j≤2λn

|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

. (2.2)

(2) If

∞
∑

k=1

φ1/2(k) < ∞, (2.3)
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then there exists a positive constant C = C(r,φ) independent of n such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ C

{

E max
1≤j≤2λn

|ξj|r +

( 2λn∑

j=1

E|ξj|2
)r/2}

. (2.4)

Remark 2.1 Obviously, the second inequality (2.4) implies the first inequality (2.2), but the
condition (2.1) with logarithmic decay mixing coefficient is weaker than the condition (2.3)
with polynomial decay mixing coefficient. So, the first inequality is suitable for processes
with longer dependence, while the second inequality is suitable for processes with shorter
dependence.

There are also various inequalities for the cases of ρ-mixing and α-mixing, as shown in
Theorem 2.2–2.5 below, which are suitable for different types of dependency processes.

The idea to prove the theorem is to transition from moment inequalities for mixing low-
frequency data to moment inequalities for mixing long-span high-frequency data. So, we
first give the following moment inequalities for φ-mixing low-frequency data.

Let Sn =
∑n

i=1 Xi, where {Xi; i ≥ 1} is a sequence of random variables.

Lemma 2.1 (Shao [38]) Let {Xi; i ≥ 1} be a sequence of φ-mixing random variables, r,η
be positive real numbers satisfying r > 1 and 0 < η < 1/(1 + 4r). If there exist An > 0 and an
integer p ≥ 1 such that

φ(p) + max
p≤m≤n

P
(|Sn – Sm| > An

)

< η, ∀n ≥ p, (2.5)

then, for any n ≥ p,

E max
1≤i≤n

|Si|r ≤ (

1 – η – 4rη
)–1

{

(8An)r + 2(4p)rE max
1≤i≤n

|Xi|r
}

. (2.6)

Lemma 2.2 Let {Xi; i ≥ 1} be a sequence of φ-mixing random variables with E|Xi|r < ∞
where r ≥ 2. If there exists a sequence of real numbers Cn > 0 such that

E

( a+m
∑

i=a+1

Xi

)2

≤ Cn, ∀1 ≤ m ≤ n, a ≥ 0, (2.7)

then there exists a positive constant C = C(r,φ) independent of n such that

E max
1≤i≤n

|Si|r ≤ C
{

E max
1≤i≤n

|Xi|r + Cr/2
n

}

. (2.8)

Proof Let A2
n = 4(1 + 4r)Cn. For any n ≥ m ≥ p ≥ 1, we have

P
(|Sn – Sm| > An

)≤ A–2
n E|Sn – Sm|2 ≤ A–2

n Cn =
1

4(1 + 4r)
.

Since φ(p) → 0 as p → ∞, there exists p > 1 such that φ(p) < 1
4(1+4r) . Thus,

φ(p) + max
p≤m≤n

P
(|Sn – Sm| > An

)

<
1

2(1 + 4r)
=: η, ∀n ≥ p.
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Note that η < 1/(1 + 4r). By Lemma 2.1, we have, for any n ≥ p,

E max
1≤i≤n

|Si|r ≤ (

1 – η – 4rη
)–1

{(

16
√
(

1 + 4r
))rCr/2

n + 2(4p)rE max
1≤i≤n

|Xi|r
}

≤ C
{

Cr/2
n + E max

1≤i≤n
|Xi|r

}

.

When n < p, it is obvious that

E max
1≤i≤n

|Si|r ≤ prE max
1≤i≤n

|Xi|r .

Combining the above two equations leads to the conclusion. This completes the proof. �

Lemma 2.3 (Ibragimov [24], Lemma 1.1) Let {Xi; i ≥ 1} be a sequence of φ-mixing random
variables, F l

k = σ (Xi, k ≤ i ≤ l). Suppose that X and Y are F k
1 measurable and F∞

k+n mea-
surable, respectively, random variables with E|X|p < ∞ and E|Y |q < ∞, where p > 1, q > 1
and 1/p + 1/q = 1. Then

∣
∣E(XY ) – (EX)(EY )

∣
∣≤ 2φ1/p(n)

(

E|X|p)1/p(E|Y |q)1/q.

Lemma 2.4 Let {Xi; i ≥ 1} be a sequence of φ-mixing random variables with EXi = 0 and
E|Xi|r < ∞ where r ≥ 2. If

∑∞
k=0 φ1/2(2k) < ∞, then there exists a positive constant C =

C(r,φ) independent of n such that

E max
1≤i≤n

|Si|r ≤ C
{

E max
1≤i≤n

|Xi|r +
(

n max
1≤i≤n

E|Xi|2
)r/2}

. (2.9)

Proof Denote ‖X‖r = (E|X|r)1/r and

Sa(m) =
a+m
∑

i=a+1

Xi, σm = sup
a≥1

∥
∥Sa(m)

∥
∥

2, σ1 = sup
i≥1

‖Xi‖2.

Obviously

Sa(2m) = Sa(m) + Sa+m
([

m1/3]) + Sa+m+[m1/3](m) – Sa+2m
([

m1/3]).

By Minkowski’s inequality, we have

∥
∥Sa(2m)

∥
∥

2 ≤ ∥
∥Sa(m) + Sa+m+[m1/3](m)

∥
∥

2 +
∥
∥Sa+m

([

m1/3])∥∥
2 +

∥
∥Sa+2m

([

m1/3])∥∥
2

≤ ∥
∥Sa(m) + Sa+m+[m1/3](m)

∥
∥

2 + 2
[

m1/3]σ1.

From Lemma 2.3, we have

E
(

Sa(m) + Sa+m+[m1/3](m)
)2

= ES2
a(m) + ES2

a+m+[m1/3](m) + 2E
(

Sa(m)Sa+m+[m1/3](m)
)

= 2σ 2
m + 2φ1/2([m1/3])∥∥Sa(m)

∥
∥

2

∥
∥Sa+m+[m1/3](m)

∥
∥

2
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≤ 2
(

1 + φ1/2([m1/3]))σ 2
m.

Therefore,

σ2m ≤ 21/2(1 + φ1/2([m1/3]))1/2
σm + 2

[

m1/3]σ1.

Let m = 2k–1 for any integer k ≥ 1, we have

σ2k ≤ 21/2(1 + φ1/2([2(k–1)/3]))1/2
σ2k–1 + 2

[

2(k–1)/3]σ1.

Using the above formula to iterate repeatedly, we get

σ2k ≤ 21/2(1 + φ1/2([2(k–1)/3]))1/2
σ2k–1 + 2

[

2(k–1)/3]σ1

≤ 22/2(1 + φ1/2([2(k–2)/3]))1/2(1 + φ1/2([2(k–1)/3]))1/2
σ2k–2

+ 2 × 21/2(1 + φ1/2([2(k–1)/3]))1/2[2(k–2)/3]σ1 + 2
[

2(k–1)/3]σ1

· · ·

≤ 2σ1

k
∑

j=1

2(j–1)/2[2(k–j)/3]
j–1
∏

i=1

(

1 + φ1/2([2(k–i)/3]))1/2

≤ 2k/3+1/2σ1

k
∑

j=1

2j/6
k–1
∏

i=1

(

1 + φ1/2([2(k–i)/3]))1/2

≤ C2k/2σ1

{k–1
∏

i=1

(

1 + φ1/2([2(k–i)/3]))
}1/2

.

Since log(1 + x) < x for any x > 0, so

log

(k–1
∏

i=1

(

1 + φ1/2([2(k–i)/3]))
)

=
k–1
∑

i=1

log
(

1 + φ1/2([2(k–i)/3]))

≤
k–1
∑

i=1

φ1/2([2(k–i)/3])

≤
k
∑

j=1

φ1/2([2j/3]).

For the integer [2j/3], there exists an integer s ≥ 1 such that 2s–1 ≤ [2j/3] < 2s. Obviously,
2s–1 ≤ 2j/3 < 2s. Thus, s – 1 ≤ j/3 < s, i.e., 3s – 3 ≤ j < 3s. Therefore, there are only three
values of j that meet the condition 2s–1 ≤ [2j/3] < 2s. By the monotonicity of φ(n), we have

k
∑

j=1

φ1/2([2j/3])≤ 3
∞
∑

i=0

φ1/2(2i) < ∞.

Thereby,
∏k–1

i=1 (1 + φ1/2([2(k–i)/3])) ≤ C < ∞. Hence, σ2k ≤ C2k/2σ1, i.e.

ES2
2k ≤ C2k sup

i≥1
EX2

i .
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For any n ≥ 1, there exists an integer k > 0 such that 2k–1 ≤ n < 2k . Let Xi = 0 for i > n.
Then, we have

ES2
n = ES2

2k ≤ C2k max
1≤i≤n

EX2
i ≤ 2Cn max

1≤i≤n
EX2

i .

It follows the desired conclusion by Lemma 2.2. This completes the proof. �

Lemma 2.5 Let {Xi; i ≥ 1} be a sequence of φ-mixing random variables with EXi = 0 and
E|Xi|r < ∞ where r ≥ 2. If

∑∞
k=1 φ1/2(k) < ∞, then there exists a positive constant C = C(r,φ)

independent of n such that

E max
1≤i≤n

|Si|r ≤ C

{

E max
1≤i≤n

|Xi|r +

( n
∑

i=1

EX2
i

)r/2}

. (2.10)

Proof From Lemma 2.3, we have

E

( n
∑

i=1

Xi

)2

=
n
∑

i=1

EX2
i + 2

n–1
∑

i=1

n
∑

j=i+1

E(XiXj)

≤
n
∑

i=1

EX2
i + C

n–1
∑

i=1

n
∑

j=i+1

φ1/2(j – i)
(

EX2
i
)1/2(EX2

j
)1/2

=
n
∑

i=1

EX2
i + C

n–1
∑

i=1

n–i
∑

k=1

φ1/2(k)
(

EX2
i
)1/2(EX2

i+k
)1/2

≤
n
∑

i=1

EX2
i + C

n–1
∑

i=1

n–i
∑

k=1

φ1/2(k)
(

EX2
i + EX2

i+k
)

≤
n
∑

i=1

EX2
i + C

n
∑

k=1

φ1/2(k)
n
∑

i=1

EX2
i + C

n–1
∑

k=1

n–k
∑

i=1

φ1/2(k)EX2
i+k

≤
(

1 + C
∞
∑

k=1

φ1/2(k)

) n
∑

i=1

EX2
i ,

This implies that the condition (2.7) in Lemma 2.2 holds, which leads to the desired con-
clusion. This completes the proof. �

Proof of Theorem 2.1 Let

Yj = ξ2j–1, Zj = ξ2j, j = 1, 2, . . . ,λn.

Obviously,

n
∑

i=1

Xi�n =
λn∑

j=1

Yj +
λn∑

j=1

Zj.

As the subscript time interval τn�n between random variables Yj and Yj+1 satisfies τn�n ≥
1, {Y1, Y2, . . . , Yλn} are low-frequency φ-mixing random variables. Thus, using Lemma 2.4,
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we have

E

∣
∣
∣
∣
∣

λn∑

j=1

Yj

∣
∣
∣
∣
∣

r

≤ C
{

E max
1≤j≤λn

|Yj|r +
(

λn max
1≤j≤λn

E|Yj|2
)r/2}

≤ C
{

E max
1≤j≤2λn

|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

.

Similarly,

E

∣
∣
∣
∣
∣

λn∑

j=1

Zj

∣
∣
∣
∣
∣

r

≤ C
{

E max
1≤j≤2λn

|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

.

Therefore, conclusion (2.2) holds. Conclusion (2.4) is easily obtained by using Lemma 2.5
and the similar procedure as above. This completes the proof. �

Theorem 2.2 Suppose {Xt , t ≥ 0} is a ρ-mixing stochastic process with EXt = 0 and
E|Xt|r < ∞ where r > 1. Let �n → 0 and n�n → ∞ as n → ∞.

(1) If r ≥ 2 and

∞
∑

k=0

ρ2/r(2k) < ∞, (2.11)

then there exists a positive constant C = C(r,ρ) independent of n such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ C
{

λn max
1≤j≤2λn

E|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

. (2.12)

(2) If

ρ(τ ) = O
(

τ–θ
)

, θ > 0, (2.13)

then for any given ε > 0, there exists a positive constant C = C(r,ρ(·), θ , ε) independent of n
such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ Cλε
n

2λn∑

j=1

E|ξj|r , 1 < r ≤ 2, (2.14)

and

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ Cλε
n

{ 2λn∑

j=1

E|ξj|r +

( 2λn∑

j=1

E|ξj|2
)r/2}

. (2.15)

Proof It is easy to obtain (2.12) using the proof process of Theorem 2.1 and Theorem
1.1 in Shao [39], while (2.14) and (2.15) are obtained using Theorem 1 in Yang [47]. This
completes the proof. �
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Theorem 2.3 Suppose {Xt , t ≥ 0} is an α-mixing stochastic process with EXt = 0 and
E|Xt|r+δ < ∞ where r > 2, δ > 0, 2 < v ≤ r + δ. Let �n → 0 and n�n → ∞ as n → ∞. If

α(τ ) = O
(

τ–θ
)

, θ > 0, (2.16)

then for any given ε > 0, there exists a positive constant K = K(ε, r, δ, v, θ , C) < ∞ such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K
{

(λnCn)r/2 max
1≤j≤2λn

‖ξj‖r
v + λ(r–δθ/(r+δ))∨(1+ε)

n max
1≤j≤2λn

‖ξj‖r
r+δ

}

, (2.17)

where Cn = (
∑λn

i=0(i + 1)2/(v–2)α(i))(v–2)/v.
In particular, if θ > v/(v – 2) and θ ≥ (r – 1)(r + δ)/δ, then for any given ε > 0,

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K
{

λr/2
n max

1≤j≤2λn
‖ξj‖r

v + λ1+ε
n max

1≤j≤2λn
‖ξj‖r

r+δ

}

; (2.18)

If θ ≥ r(r + δ)/(2δ), then

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ Kλr/2
n max

1≤j≤2λn
‖ξj‖r

r+δ . (2.19)

Proof The conclusion is derived from Theorem 4.1 in Shao & Yu [40]. This completes the
proof. �

Theorem 2.4 Suppose {Xt , t ≥ 0} is an α-mixing stochastic process with EXt = 0 and
E|Xt|r+δ < ∞ where r > 2, δ > 0, 2 < v ≤ r + δ. Let �n → 0 and n�n → ∞ as n → ∞. If

α(τ ) = O
(

τ–θ
)

, θ > 0, (2.20)

and θ satisfies

θ > max
{

v/(v – 2), (r – 1)(r + δ)/δ
}

, (2.21)

then for any given ε > 0, there exists a positive constant independent of n K = K(ε, r, δ, v, θ ,
C) < ∞ such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K

{

λε
n

2λn∑

j=1

E|ξj|r +
2λn∑

j=1

‖ξj‖r
r+δ +

( 2λn∑

j=1

‖ξj‖2
v

)r/2}

. (2.22)

Proof The conclusion is obtained from Theorem 2.1 in Yang [49]. This completes the
proof. �

Theorem 2.5 Suppose {Xt , t ≥ 0} is an α-mixing stochastic process with EXt = 0 and
E|Xt|r+δ < ∞ where r > 2, δ > 0. Let �n → 0 and n�n → ∞ as n → ∞. If the condition
(2.20) holds and θ satisfies

θ > r(r + δ)/(2δ), (2.23)
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then for any given ε > 0, there exists a positive constant independent of n K = K(ε, r, δ, θ , C) <
∞ such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K

{

λε
n

2λn∑

j=1

E|ξj|r +

( 2λn∑

j=1

‖ξj‖2
r+δ

)r/2}

. (2.24)

Proof The conclusion is obtained from Theorem 2.2 in Yang [49]. This completes the
proof. �

From Theorem 2.4 and Theorem 2.5 the following corollary is immediately obtained.

Corollary 2.1 Suppose {Xt , t ≥ 0} is an α-mixing stochastic process with EXt = 0,
E|Xt|r+δ0 < ∞ and α(τ ) = O(e–θτ ) where r > 2, δ0 > 0, θ > 0. Let �n → 0 and n�n → ∞
as n → ∞. Then for any given ε > 0 and δ ∈ (0, δ0], there exists a positive constant inde-
pendent of n K = K(ε, r, δ, θ , C) < ∞ such that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K

{

λε
n

2λn∑

j=1

E|ξj|r +
2λn∑

j=1

‖ξj‖r
r+δ +

( 2λn∑

j=1

‖ξj‖2
2+δ

)r/2}

, (2.25)

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi�n

∣
∣
∣
∣
∣

r

≤ K

{

λε
n

2λn∑

j=1

E|ξj|r +

( 2λn∑

j=1

‖ξj‖2
r+δ

)r/2}

. (2.26)

Remark 2.2 (1) The inequalities given in Theorems 2.1–2.5 and Corollary 2.1 use the mo-
ments of ξj as the upper bounds. ξj is a sum of τn random variables in which the time
subscript interval between any two variables Xi�n and Xk�n is less than 2. Therefore, the
mixing (i.e., asymptotic independence) property cannot be used to calculate the moments
of ξj. In this sense, using the moments of ξj as the upper bound control terms for the mo-
ment inequalities of mixing high-frequency random variables is appropriate. Moreover,
in the application, to calculate the moments of ξj, we can no longer use mixing properties
but can only use other properties of random processes, as shown in the proofs of 4.2 and
Theorem 4.3 later.

(2) If ρ(τ ) = O((log τ )–r/2(log log τ )–r) for r ≥ 2, then
∑∞

k=0 ρ2/r(2k) < ∞. It implies that
condition (2.11) in Theorem 2.2 only requires the ρ-mixing coefficient to have logarithmic
decay, while condition (2.13) requires the mixing coefficient to have polynomial decay.
In practice, the mixing coefficient tends to zero at different speeds, see Kolmogorov and
Rozanov [29], Chen et al. [12], and the next section. Hence, it is reasonable to assume
whether the mixing coefficients are short-range- or long-range-dependent.

(3) For each mixing process, we provide multiple inequalities. It is clear that
∑2λn

j=1 E|ξj|r
and (

∑2λn
j=1 E|ξj|2)r/2 are superior to λn max1≤j≤2λn E|ξj|r and (λn max1≤j≤2λn E|ξj|2)r/2, re-

spectively, for nonstationary processes. Therefore, the upper bound of the inequality ob-
tained under the condition that the mixing coefficient approaches zero at a faster rate
is superior to the upper bound obtained under the condition that the mixing coefficient
approaches zero at a slower rate.

3 Mixing property of random process
Since the concept of mixing was proposed, many scholars have studied the mixing proper-
ties of stochastic processes. They mainly discussed the sufficient conditions for stochastic
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processes to have mixing property and the decay rate of mixing coefficient. Since high-
frequency data can be regarded as discretizations of a continuous stochastic process, we
are interested in the mixing property of a continuous-time stochastic process. Therefore,
we summarize some meaningful conclusions about the mixing of continuous stochastic
processes, which can be applied to long-span high-frequency data.

3.1 Mixing property of stationary Gaussian process
In the cases of continuous time and discrete time, Kolmogorov and Rozanov [29] proved
that the α-mixing of the stationary Gaussian process is equivalent to ρ-mixing and de-
rived some sufficient conditions for ρ-mixing. Later, Ibragimov [25] derived the neces-
sary conditions of α-mixing for the discrete stationary Gaussian process and further dis-
cussed some sufficient conditions (Ibragimov [26]). The following conclusions are from
Kolmogorov and Rozanov [29].

Theorem 3.1 Suppose that Xt is a continuous stationary Gaussian process and f (λ) is the
spectral density of the process. Then, the following several statements hold:

(1) α(τ ) ≤ ρ(τ ) ≤ 2πα(τ ).
(2)

ρ(τ ) = inf
ϕ

ess sup
λ

{
∣
∣f (λ) – eiλτϕ(λ)

∣
∣

1
f (λ)

}

,

where infϕ is taken over all functions ϕ(z), which are extended analytically into the lower
semi-plane.

(3) If f (λ) is positive and uniformly continuous and for sufficiently large λ satisfies the
inequality

m
λk ≤ f (λ) ≤ M

λk–1

for some positive m, M, and integral k > 0, then Xt is ρ-mixing.
(4) If there exists an analytic function ϕ0(z) such that |f /ϕ0| ≥ ε > 0, and the derivative

(f /ϕ0)(k) is bounded uniformly, then Xt is ρ-mixing with polynomial decay ρ(τ ) = O(τ–k).
(5) If Xt is a Markov process, then Xt is ρ-mixing with exponential decay.

Remark 3.1 ess sup is the essential supremum of g defined by ess supx g(x) = inf{a ∈ R :
μ({x : g(x) > a}) = 0}, where μ is a measure.

Conclusion (1) implies that α-mixing and ρ-mixing are equivalent for stationary Gaus-
sian process, and both of these mixing coefficients have the same decay rate. So, conclu-
sions (3)–(5) are also valid for α-mixing. Conclusion (2) gives the expression of ρ-mixing
coefficient determined by spectral density. Conclusion (3) gives a sufficient condition for
ρ-mixing, while conclusion (4) provides a sufficient condition for ρ-mixing with poly-
nomial decay. We know from (1) and (5) that a stationary Gaussian–Markov process is
ρ-mixing and α-mixing with exponential decay.
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3.2 Mixing property of time-homogeneous diffusion process
Suppose that Xt is the strong solution of the time-homogeneous stochastic differential
equation (SDE)

dXt = μ(Xt) dt + σ (Xt) dBt (3.1)

with left boundary l and right boundary r, either of which can be infinite. The function
μ(x) is the drift, σ (x) is the diffusion function, and Bt is a standard Brownian motion.

Let s(z) = exp{– ∫ z
z0

2μ(x)
σ 2(x) dx} be the scale density function (z0 ∈ (l, r)), S(u) =

∫ u
z0

s(z) dz
the scale function, and m(x) = (σ 2(x)s(x))–1 the speed density function. From Corollary
4.2 and Remark 4.3 in Chen et al. [12], we have the following conclusion.

Theorem 3.2 Suppose that the following conditions are satisfied.
A.1 μ(x) and σ (x) are continuous on (l, r) with σ (x) strictly positive on this interval.
A.2 S(l) = –∞ and S(r) = +∞.
A.3 lim supx↗r( μ(x)

σ (x) – σ ′(x)
2 ) < 0 and lim infx↘l( μ(x)

σ (x) – σ ′(x)
2 ) > 0.

Then Xt is ρ-mixing and α-mixing with exponential decay, and
∫ r

l m(x) dx < ∞.

The strong solution of the SDE (3.1) has the Markov property by Theorem 5.6 in Kle-
baner [28]. Under the conditions of Theorem 3.2, Xt has an invariant distribution and its
invariant density π (x) = m(x)/

∫ r
l m(x) dx. If the initial distribution is the invariant distri-

bution, then Xt is stationary (Arnold [2]).
Below, we will verify mixing properties for some interesting diffusion processes based

on this theorem.

3.2.1 OU diffusion process
The OU diffusion process Xt is the strong solution of the SDE

dXt = μXt dt + σ dBt , (3.2)

with l = –∞ and r = ∞, where μ < 0 and σ > 0.
For this model, μ(x) = μx and σ (x) = σ are linear functions, which implies that A.1 holds.

As s(z) = exp{–μ(z2 – z2
0)/σ 2} and lim|z|→∞ s(z) = +∞, we have S(l) = –∞ and S(r) = +∞,

so then A.2 holds. Obviously, μ(x)/σ (x) – σ ′(x)/2 = μx/σ , it follows A.3. Thus, the OU
diffusion process is ρ-mixing and α-mixing with exponential decay, and its invariant dis-
tribution is N(0,σ 2/(–2μ)).

3.2.2 Vasicek diffusion process
The Vasicek diffusion process Xt is the strong solution of the SDE

dXt = (μ1Xt + μ0) dt + σ dBt , (3.3)

with l = –∞ and r = ∞, where μ1 < 0, –∞ < μ0 < ∞ and σ > 0.
For this model, μ(x) = μ1x +μ0 and σ (x) = σ are linear functions, which implies that A.1

holds. It is easy to get that

s(z) = exp

{

–
μ1(z2 – z2

0)
σ 2 –

2μ0(z – z0)
σ 2

}

,
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which implies lim|z|→∞ s(z) = +∞, so A.2 holds. Note that μ(x)/σ (x) – σ ′(x)/2 = (μ1x +
μ0)/σ and μ1 < 0, we know that A.3 holds. Therefore, the Vasicek diffusion process
is ρ-mixing and α-mixing with exponential decay, and its invariant distribution is
N(–μ0/μ1, (σ /

√
–2μ1)2).

3.2.3 CIR diffusion process
The CIR diffusion process Xt is the strong solution of the SDE

dXt = (μ1Xt + μ0) dt + σ
√

Xt dBt , (3.4)

with l = 0 and r = ∞, where μ1 < 0, μ0 > 0 and σ > 0. We suppose that 4μ0 > σ 2.
For this model, μ(x) = μ1x + μ0 and σ (x) = σ

√
x, so A.1 holds. And

s(z) = exp
{

–2σ –2μ1(z – z0) – 2σ –2μ0 ln(z/z0)
}

.

Hence limz→+∞ s(z) = +∞ and limz→0 s(z) = +∞, it implies the condition A.2 is satisfied.
Moreover,

μ(x)/σ (x) – σ ′(x)/2 =
4μ1x + 4μ0 – σ 2

4σ
√

x
,

which follows the condition A.3 for 4μ0 > σ 2. Therefore, the CIR diffusion process is ρ-
mixing and α-mixing with exponential decay, and its invariant density is

π (x) =
(–2μ1/σ 2)2μ0/σ 2

�(2μ0/σ 2)
x2μ0/σ 2–1e–(–2μ1/σ 2)x,

which is the density of gamma distribution.

3.2.4 Generalized CIR diffusion process
The generalized CIR diffusion process Xt is the strong solution of the SDE

dXt = β(τ – Xt) dt +
√

σ 2 + λ(Xt – μ)2 dBt , (3.5)

with l = –∞ and r = ∞, where β > 0, τ ≥ 0,σ > 0,λ > 0, –∞ < μ < ∞ (Nicolau [33]).
For the case, μ(x) = β(τ – x) and σ (x) =

√

σ 2 + λ(x – μ)2. We have that s(z) = e–g(z)+g(z0),
where

g(z) =
2β(τ – μ)

σ
√

λ
arctan

(√
λ(z – μ)

σ

)

–
β

λ
ln
(

σ 2 + λ(z – μ)2).

Hence limz→±∞ s(z) = limz→±∞ e–g(z)+g(z0) = +∞, it follows condition A.2. Note that

μ(x)
σ (x)

–
σ ′(x)

2
=

2β(τ – μ) + (λ + 2β)(μ – x)
2
√

σ 2 + λ(μ – x)2
,

we have that

lim sup
x→+∞

(
μ(x)
σ (x)

–
σ ′(x)

2

)

= –
λ + 2β

2
√

λ
< 0,
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lim inf
x→–∞

(
μ(x)
σ (x)

–
σ ′(x)

2

)

=
λ + 2β

2
√

λ
> 0.

It implies condition A.3. Therefore, the diffusion process is ρ-mixing and α-mixing with
exponential decay. Its invariant density is

π (x) ∝ eg(x)

σ 2 + λ(x – μ)2 .

3.2.5 CKLS diffusion process
The CKLS diffusion process Xt is the strong solution of the SDE

dXt = (μ1Xt + μ0) dt + σXγ
t dBt (3.6)

with l = 0 and r = ∞, where μ1 < 0, μ0 > 0, σ > 0 and γ > 0.
For this process, μ(x) = μ1x + μ0 and σ (x) = σxγ , so A.1 holds. To verify A.2 and A.3,

we will discuss several situations of γ .
(1) 0 < γ < 1/2. Let

g(z) =
2
σ 2

(
μ1

2(1 – γ )
z2(1–γ ) +

μ0

1 – 2γ
z1–2γ

)

Then, s(z) = exp{–g(z) + g(z0)}. limz→+∞ s(z) = +∞, but limz→0 s(z) = exp{g(z0)} �= +∞,
which implies that S(0) �= +∞. So, A.2 is not satisfied for this case.

(2) γ = 1/2. It is the CIR diffusion process that has discussed before.
(3) 1/2 < γ < 1. At that time, s(z) = exp{–g(z) + g(z0)}. So, limz→+∞ s(z) = +∞ and

limz→0 s(z) = +∞. And

μ(x)
σ (x)

–
σ ′(x)

2
=

μ1x1–γ + μ0x–γ

σ
–

σγ xγ –1

2
=

⎧

⎨

⎩

< 0 as x → +∞,

> 0 as x → 0.
(3.7)

Therefore, the conditions of Theorem 3.2 are satisfied for the case.
(4) γ = 1. For this case, s(z) = z–2μ1/σ 2 e

2μ0
σ2 z–1

z2μ1/σ 2

0 e– 2μ0
σ2 z–1

0 . Then, limz→+∞ s(z) = +∞
and limz→0 s(z) = +∞. And

μ(x)
σ (x)

–
σ ′(x)

2
=

μ1 + μ0x–1

σ
–

σ

2
=

⎧

⎨

⎩

< 0 as x → +∞,

> 0 as x → 0.

Thus, the conditions of Theorem 3.2 are satisfied for the case.
(5) γ > 1. At that time, s(z) = exp{–g(z) + g(z0)}. So limz→+∞ s(z) = exp{g(z0)} > 0 and

limz→0 s(z) = +∞, and (3.7) holds. Hence, the conditions of Theorem 3.2 are satisfied for
the case.

As discussed above, the CKLS diffusion process is ρ-mixing and α-mixing with expo-
nential decay for γ ≥ 1/2.

3.2.6 Logistic diffusion process
The Logistic diffusion process Xt is the strong solution of the SDE

dXt = αXt(1 – βXt) dt + σXt dBt (3.8)
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with l = 0 and r = ∞, where α > 0, β > 0, σ > 0 and σ 2 < 2α. The diffusion process is useful
for modeling the population systems under environmental noise (Bahar and Mao [3]; Mao
[32]).

For this process, μ(x) = αx(1 – βx) and σ (x) = σx. After calculation, we have

s(z) = exp
{

–2α
[

(ln z – βz) – (ln z0 – βz0)
]

/σ 2}∝ z–2α/σ 2
e2αβz/σ 2

.

Hence limz→+∞ s(z) = +∞ and limz→0 s(z) = +∞, it implies that S(l) = –∞ and S(r) = +∞.

μ(x)
σ (x)

–
σ ′(x)

2
=

α(1 – βx)
σ

–
σ

2
=

⎧

⎨

⎩

2α–σ 2

2σ
> 0 as x → 0,

< 0 as x → +∞.

Hence, the conditions of Theorem 3.2 are satisfied. So, the Logistic diffusion process is
ρ-mixing and α-mixing with exponential decay. Its invariant density is

π (x) ∝ x(2α–σ 2)/σ 2–1e–2αβx/σ 2
,

which is the density of gamma distribution.

3.2.7 Double-well diffusion process
The double-well diffusion Xt is the strong solution of the SDE

dXt = αXt
(

γ 2 – X2
t
)

dt + σ dBt (3.9)

with l = –∞ and r = ∞, where α > 0, –∞ < γ < ∞, σ > 0. This diffusion process is er-
godic, and its invariant measure is the bimodal distribution with modes at x = ±γ and
with density

π (x) ∝ exp

{

–
α

4σ 2 x2(x2 – 2γ 2)
}

.

It is a widely used benchmark for nonlinear inference problems. The parameter α gov-
erns the rate at which sample trajectories are pushed toward either mode. If σ is small in
comparison to α, mode-switching occurs relatively rarely.

For this process, μ(x) = αx(γ 2 – x2) and σ (x) = σ , so A.1 holds, and

s(z) = exp

{

–
α

4σ 2

[(

2γ 2z2 – z4) –
(

2γ 2z2
0 – z4

0
)]
}

.

Hence lim|z|→+∞ s(z) = +∞, it implies A.2 is satisfied, and

μ(x)
σ (x)

–
σ ′(x)

2
=

αx(γ 2 – x2)
σ

=

⎧

⎨

⎩

+∞ as x → –∞,

–∞ as x → +∞.

It follows A.3. Thus, the double-well diffusion process is ρ-mixing and α-mixing with
exponential decay.
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3.2.8 Generalized logistic diffusion process
The generalized logistic diffusion process Xt is the strong solution of the SDE

dXt =
{

(θ1 – θ2) cosh(Xt/2) – (θ1 + θ2) sinh(Xt/2)
}

cosh(Xt/2) dt

+ 2 cosh(Xt/2) dBt (3.10)

with l = –∞ and r = ∞, where sinh(x) = (ex – e–x)/2, cosh(x) = (ex + e–x)/2, θ1 > 0 and θ2 > 0.
This diffusion is ergodic, and its invariant measure is the generalized logistic distribution
with density

π (x) = B(θ1 + 1, θ2 + 1)e(θ1+1)x(1 + ex)–(θ1+θ2+2),

here B(a, b) denotes the beta function. It is used in many areas of application, e.g., math-
ematical finance and turbulence (Kessler and Sørensen [27]).

After simple calculation, it can be concluded that

s(z) ∝ e–(θ1–θ2)z/2(ez/2 + e–z/2)θ1+θ2 ,

which follows that lim|z|→+∞ s(z) = +∞. So S(l) = –∞ and S(r) = +∞. Moreover,

μ(x)
σ (x)

–
σ ′(x)

2
=

(θ1 – θ2) cosh(x/2) – (θ1 + θ2 + σ ) sinh(x/2)
2σ

=
–(2θ2 + σ )ex/2 + (2θ1 + σ )e–x/2

4σ

=

⎧

⎨

⎩

+∞ as x → –∞,

–∞ as x → +∞.

Hence, the conditions of Theorem 3.2 are satisfied. Thus, the generalized logistic diffusion
process is ρ-mixing and α-mixing with exponential decay.

4 Contrast estimation of the Ornstein–Uhlenberck (OU) integrated diffusion
process

As an application of the moment inequalities in Sect. 2, we discuss the strong consistency
of parameter estimates for the following OU-integrated diffusion process

⎧

⎨

⎩

Yt =
∫ t

0 Xs ds,

dXt = μXt dt + σ dBt ,
(4.1)

where μ < 0 and σ > 0 are unknown parameters. We assume the initial condition X0 ∼
N(0, –σ 2/2μ), which is the invariant distribution of the diffusion process, to be indepen-
dent of Bt . Generally, the integrated diffusion process

⎧

⎨

⎩

dYt = Xt dt,

dXt = μ(Xt) dt + σ (Xt) dBt ,
(4.2)

where μ(x) and σ (x) are the drift and diffusion coefficients.
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Many scholars have studied the integrated process. Gloter [19] studied the asymptotic
representation of the integrated diffusion process and showed the consistency and asymp-
totic mixed normality of the minimum contrast estimate of the diffusion coefficient. Gloter
[20] proved limit theorems for functionals associated with the observations of the inte-
grated diffusion process, applied these results to obtain a contrast function, and showed
the associated minimum contrast estimators are consistent and asymptotically Gaussian
with different rates for drift and diffusion coefficient parameters. Applying these results
to the OU-integrated diffusion process, the consistency and asymptotic normality of pa-
rameter estimation are obtained. Ditlevsen and Sørensen [15] studied the statistical infer-
ence problem of the integrated diffusion process with some weight function, obtained an
estimation function based on the optimal prediction, and proved that the estimates are
consistent and asymptotically normal. The method is applied to inference based on inte-
grated data from the OU process and from the CIR model, for both of which an explicit
optimal estimating function is found. Nicolau [33] studied the Nadaraya–Watson kernel
estimates of the drift and diffusion coefficients and proved that the estimates are weakly
consistent and asymptotically normal. Yang et al. [50] improved the asymptotic property
of the nonparametric kernel estimate of Nicolau [33] by generalizing weak consistency
to strong consistency under weaker conditions. Gloter and Gobet [21] proved the local
asymptotic mixed normality property for the statistical model given by the observation of
local means of a diffusion process. Using discrete observations of the integrated diffusion
process, Comte et al. [14] established a nonparametric adaptive estimation based on pe-
nalized least squares methods for both the drift function and the diffusion coefficient of
the unobserved diffusion, which is a stationary and β-mixing diffusion. Wang and Lin [41]
proposed a local linear estimation of the diffusion coefficient. Wang at al. [42] proposed a
re-weighted estimator of the diffusion coefficient in the second-order diffusion model and
showed the consistency and the asymptotic normality of the estimator under appropriate
conditions.

In the literature mentioned above, there is relatively little discussion on the strong con-
sistency of estimation. Yang et al. [50] only studied the strong consistency of the nonpara-
metric kernel estimates of the drift and diffusion coefficients for the model (4.2). In this
section, we will provide sufficient conditions for strong consistency of parameter estimates
for the model (4.1).

4.1 Contrast estimation of the OU-integrated diffusion process
We introduce the notation

Xi = �–1
n

∫ i�n

(i–1)�n

Xs ds = �–1
n (Yi�n – Y(i–1)�n ), i ≥ 1. (4.3)

According to Gloter [20], we obtain the contrast function for the OU-integrated diffusion
process

Ln(θ ) =
n
∑

i=1

(
3

2�n

(Xi+1 – Xi – μ�nXi)2

σ 2 +
3μ

4σ 2 (Xi+1 – Xi)2 + log
(

σ 2)
)

. (4.4)

The contrast estimator θ̂n = arginfθ∈�Ln(θ ), where θ = (μ,σ 2).
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The equations are obtained by differentiating the contrast function

⎧

⎨

⎩

∑n
i=1( –3

�n
(Xi+1–Xi–μ�nXi)�nXi

σ 2 + 3
4σ 2 (Xi+1 – Xi)2) = 0,

∑n
i=1(– 3

2�n
(Xi+1–Xi–μ�nXi)2

σ 4 – 3μ

4σ 4 (Xi+1 – Xi)2 + 1
σ 2 ) = 0.

This is equivalent to

⎧

⎨

⎩

4
∑n

i=1(Xi+1 – Xi – μ�nXi)Xi =
∑n

i=1(Xi+1 – Xi)2,
∑n

i=1( 3
2�n

(Xi+1 – Xi – μ�nXi)2 + 3μ

4
∑n

i=1(Xi+1 – Xi)2 = nσ 2.

Hence, the contrast estimators of μ and σ are

μ̂n =
∑n

i=1(Xi+1 – Xi)Xi

�n
∑n

i=1 X2
i

–
∑n

i=1(Xi+1 – Xi)2

4�n
∑n

i=1 X2
i

, (4.5)

σ̂ 2
n =

3
2n�n

n
∑

i=1

(Xi+1 – Xi)2 –
3μ̂n

n

n
∑

i=1

(Xi+1 – Xi)Xi

+
3μ̂2

n�n

2n

n
∑

i=1

X2
i +

3μ̂n

4n

n
∑

i=1

(Xi+1 – Xi)2. (4.6)

From the Itô formula and Xt ∼ N(0, –σ 2/2μ), we can obtain

E
(

X2
i
)

= –
σ 2

2μ
+ O(�), (4.7)

E(Xi+1 – Xi)2 =
2
3
σ 2�n + O

(

�2
n
)

, (4.8)

E
[

(Xi+1 – Xi)Xi
]

= –
1
3
σ 2�n + O

(

�2
n
)

. (4.9)

Therefore,

Eμ̂n = μ + O(�n), (4.10)

That is, μ̂n is an asymptotically unbiased estimator of μ. In (4.6), the first term on the right
is the asymptotically unbiased term of σ 2, and the rest of the terms converge to zero. So,
the estimator of σ 2 can be written as

σ̂ 2
n =

3
2n�n

n
∑

i=1

(Xi+1 – Xi)2. (4.11)

4.2 Mean square error and optimal interval
Theorem 4.1 The mean squared errors of μ̂n and σ̂ 2

n are

MSE(μ̂n) =
2|μ|
n�n

+
25

144
μ4�2

n + o
(

1
n�n

+ �2
n

)

, (4.12)

MSE
(

σ̂ 2
n
)

=
9σ 4

4n
+

9
16

μ2σ 4�2
n + o

(
1
n

+ �2
n

)

. (4.13)
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To prove the theorem, we need the following lemma.

Lemma 4.1 Suppose Xt is the diffusion process in (4.2) and Ft = σ (Xs, s ≤ t), then

E
(

X2
i |F(i–1)�n

)

= X2
(i–1)�n + X(i–1)�nμ(X(i–1)�n )�n +

1
3
σ 2(X(i–1)�n )�n + O

(

�2
n
)

, (4.14)

E
(

(Xi+1 – Xi)2|F(i–1)�n

)

=
2
3
σ 2(X(i–1)�n )�n + μ2(X(i–1)�n )�2

n + f (X(i–1)�n )�2
n + O

(

�3
n
)

, (4.15)

where f (x) = σ 2(x)μ′(x) + 4
3 {μ(x)σ (x)σ ′(x) + 1

2σ 2(x)(σ ′(x))2 + 1
2σ 3(x)σ ′′(x)}.

Further, if Xt is stationary, then

E
{

(Xi+1 – Xi)Xi
}

= –
1
3
σ 2(Xi�n )�n –

1
2
μ2(Xi�n )�2

n –
1
2

f (Xi�n )�2
n + O

(

�3
n
)

. (4.16)

Proof From Ito’s formula, (4.14) and (4.15) can be derived through some complicated cal-
culations.

E
(

(Xi+1 – Xi)2|F(i–1)�n

)

= E
(

(Xi+1 – Xi)Xi+1|F(i–1)�n

)

– E
(

(Xi+1 – Xi)Xi|F(i–1)�n

)

= E
(

X2
i+1|F(i–1)�n

)

– E(Xi+1Xi|F(i–1)�n ) – E
(

(Xi+1 – Xi)Xi|F(i–1)�n

)

= E
(

X2
i+1|F(i–1)�n

)

– E
(

X2
i |F(i–1)�n

)

– 2E
(

(Xi+1 – Xi)Xi|F(i–1)�n

)

According to the stationary of the process, we have EX2
i+1 = EX2

i . Thus,

E(Xi+1 – Xi)2 = –2E
{

(Xi+1 – Xi)Xi
}

.

From this equation and (4.15), we get (4.16). This completes the proof. �

Proof of Theorem 4.1 Since the OU process is stationary and Xt ∼ N(0, –σ 2/2μ), it follows
from Lemma 4.1 that

E
[

(Xi+1 – Xi)2]

= E
[

2
3
σ 2�n + X2

i�μ2�2
n + μσ 2�2

n + O
(

�3
n
)
]

=
2
3
σ 2�n + (σ /

√

–2μ)2μ2�2
n + μσ 2�2

n + O
(

�3
n
)

,

=
2
3
σ 2�n +

1
2
μσ 2�2

n + O
(

�3
n
)

,

E
{

(Xi+1 – Xi)Xi
}

= E
[

–
1
3
σ 2�n –

1
2

X2
i�μ2�2

n –
1
2
μσ 2�2

n + O
(

�3
n
)
]
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= –
1
3
σ 2�n –

1
4
μσ 2�2

n + O
(

�3
n
)

,

E
(

X2
i
)

= EX2
(i–1)�n + μ�nEX2

(i–1)�n +
1
3
σ 2�n + O

(

�2
n
)

= (σ /
√

–2μ)2 + (σ /
√

–2μ)2μ�n +
1
3
σ 2�n + O

(

�2
n
)

= –
σ 2

2μ
–

1
6
σ 2�n + O

(

�2
n
)

.

So,

Eμ̂n =
– 1

3σ 2�n – 1
4μσ 2�2

n – 1
4 { 2

3σ 2�n + 1
2μσ 2�2

n}
{– σ 2

2μ
– 1

6σ 2�n}�n
+ O

(

�2
n
)

=
– 1

3 – 1
4μ�n – 1

4 { 2
3 + 1

2μ�n}
{– 1

2μ
– 1

6�n} + O
(

�2
n
)

=
μ + 3

4μ2�n

1 + 1
3μ�n

+ O
(

�2
n
)

.

Using the Taylor expansion to expand the function 1
x at x = 1, we get 1

x = 1 – (x – 1) + O(x –
1)2. This yields

Eμ̂n =
{

μ +
3
4
μ2�n

}{

1 –
1
3
μ�n + O

(

�2
n
)
}

+ O
(

�2
n
)

= μ +
3
4
μ2�n –

1
3
μ2�n + O

(

�2
n
)

= μ +
5

12
μ2�n + O

(

�2
n
)

.

Thus, the asymptotic biased term of μ̂n is

Bias(μ̂n) =
5

12
μ2�n + O

(

�2
n
)

.

By Gloter [20],
√

n�n(μ̂n – μ) d→ N(0, 2|μ|). Thus, the asymptotic variance is

Var(μ̂n) =
2|μ|
n�n

+ o
(

1
n�n

)

.

Therefore, we obtain the mean square error (4.12).
On the other hand, by Gloter [20],

√
n(̂σ 2

n –σ 2) d→ N(0, 9σ 4/4). It follows Var(̂σ 2
n ) = 9σ 4

4n +
o(1/n). From the Itô formula, it is easy to get that

E
(

σ̂ 2
n
)

= σ 2 +
3
4
μσ 2�n + O

(

�2
n
)

,

Therefore, we obtain the mean square error (4.13). This completes the proof. �
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Table 1 Simulation estimate values

n �μ,opt μ̂n σ̂n

500 0.2336 –0.9561 (0.1237) 0.9286 (0.0345)
1000 0.1854 –0.9614 (0.0986) 0.9450 (0.0226)
5000 0.1084 –0.9687 (0.0552) 0.9650 (0.0106)
10000 0.0861 –0.9705 (0.0459) 0.9720 (0.0069)

From (4.12), we get the optimal interval for μ̂n as

�μ,opt =
(

–
144

25μ3

)1/3

n–1/3. (4.17)

MSE(̂σ 2
n ) is a monotonically decreasing function with respect to �n. The smaller �n, the

smaller the mean square error. Therefore, there is no optimal interval for σ̂ 2
n .

Now we use numerical simulations to demonstrate the performance of the optimal in-
terval. Consider the Euler discrete form of the OU diffusion process

Xi�n = X(i–1)�n + μX(i–1)�n�n + σ
√

�nεi,

where εi ∼ N(0, 1). Given μ = –1,σ 2 = 1.
In practice, since μ and σ 2 are unknown, the optimal interval �μ,opt cannot be obtained.

Here, we use a simulation method to estimate the optimal interval. Based on the expres-
sion of the optimal interval, we select �n = n–1/3 and n = 10000 and generate samples to
obtain the estimates of μ and σ as follows

μ̂n = –0.9667, σ̂n = 0.9819,

where σ̂n =
√

σ̂ 2
n . As a result, the optimal interval is

�μ,opt =
(

–
144

25μ̂3
n

)1/3

n–1/3 = 1.8543n–1/3.

Let �n = �μ,opt. For different sample sizes n, the samples {Xi�n , i = 1, 2, 3 · · ·n} can be gen-
erated using the Euler discretization model. To obtain the samples Xi�n , each time inter-
val [(i – 1)�n, i�n] is equally divided into some small intervals. Then, we can generate the
sample Xt using the Euler discretization model again and get the approximation of the in-
tegral

∫ i�n
(i–1)�n

Xs ds. Finally, we obtain the estimates μ̂n and σ̂ 2
n , and the simulation results

in Table 1 by repeating simulation, where the numerical values in parentheses are standard
deviations. The results show that as the sample size n gradually increases, the estimated
values μ̂n and σ̂ 2

n are closer to the true values, and the standard deviations gradually de-
crease. It implies that the optimal interval is effective.

4.3 Strong consistency of estimation
Gloter [20] gave weak consistent and asymptotically normal properties for μ̂n and σ̂ 2

n . Let
us now discuss the strong consistency of the estimators.
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Theorem 4.2 Suppose there exist real numbers a ∈ (0, 1) such that �n → 0 and n1–a�n →
∞. Then

σ̂ 2
n

a.s.→ σ 2. (4.18)

Theorem 4.3 Suppose there exist real numbers b ∈ (0, 1) such that �n → 0 and n1–b�2
n →

∞. Then

μ̂n
a.s.→ μ. (4.19)

The conditions of Theorem 4.3 are stronger than those of Theorem 4.2. The optimal
interval �μ,opt of μ̂n satisfies the conditions of Theorem 4.3. The proof of the theorem
requires the following Lévy continuous modulus.

Lemma 4.2 (Lévy modulus of continuity of diffusions)

P
(

lim sup
�n→0

kn

(�n log(1/�n))1/2 = k0

)

= 1,

where k0 is a constant,

kn = max
1≤i≤n

sup
(i–1)�n≤s≤i�n

|Xs – Xi�n |,

or

kn = max
1≤i≤n

sup
(i–1)�n≤s≤i�n

|Xs – X(i–1)�n |.

Proof The conclusion of the lemma is obtained from Theorem 7.2.5 of Arnold ([2], P121),
see also Bandi and Phillips ([4], (7.7)). This completes the proof. �

We can easily generalize the Lévy continuous modulus to integral diffusion processes as
follows.

Lemma 4.3 Denoting βn = (�n log(1/�n)1/2), we have

max
1≤i≤n

|Xi�n – X(i–1)�n | = Oa.s.(βn),

max
1≤i≤n

|Xi – Xi�n | = Oa.s.(βn),

max
1≤i≤n

|Xi – X(i–1)�n | = Oa.s.(βn),

max
1≤i≤n

|Xi – Xi| = Oa.s.(βn).

Proof of Theorem 4.2 Since Eσ̂ 2
n = σ 2 + O(�n), we only need to prove that σ̂ 2

n – Eσ̂ 2
n

a.s−→ 0.
Let

Zi�n = (Xi+1 – Xi)2 – E(Xi+1 – Xi)2.
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Then σ̂ 2
n – Eσ̂ 2

n = 3
2n�n

∑n
i=1 Zi�n . In Sect. 3, we have verified that the OU process Xt is a

geometrically decaying ρ-mixing process. It implies that {Xi, 1 ≤ i ≤ n} are ρ-mixing with
geometrical decay. By the moment inequality (2.12) of Theorem 2.2, for any given ε > 0
and r ≥ 2, we have

P
(∣
∣̂σ 2

n – Eσ̂ 2
n
∣
∣ > ε

)≤ C(n�n)–rE

∣
∣
∣
∣
∣

n
∑

i=1

Zi�n

∣
∣
∣
∣
∣

r

≤ C(n�n)–r
{

λn max
1≤j≤2λn

E|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

,

where ξj =
∑jτn∧n

i=(j–1)τn∧n+1 Zi�n . By the Lévy continuous modulus (Lemma 4.3), we know that
|Zi�n | ≤ C�n log(1/�n). Thus,

E|ξj|r ≤ τ r–1
n

jτn∧n
∑

i=(j–1)τn∧n+1

E|Zi�n |r ≤ Cτ r
n
(

�n log(1/�n)
)r ≤ C logr(1/�n).

Therefore,

P
(∣
∣̂σ 2

n – Eσ̂ 2
n
∣
∣ > ε

)≤ C(n�n)–r{λn logr(1/�n) +
(

λn log2(1/�n)
)r/2}

≤ C(n�n)–r{n�n logr(1/�n) +
(

n�n log2(1/�n)
)r/2}

≤ C(n�n)–r(n�n log2(1/�n)
)r/2

≤ C(n�n)–r/2 logr(1/�n).

Since n1–a�n → ∞, so 1/�n ≤ Cn1–a. Thereby,

(n�n)–r/2 logr(1/�n) ≤ Cn–ar/2 logr n.

Taking r > 2/a, then we have
∑∞

n=1 P(|̂σ 2
n – Eσ̂ 2

n | > ε) < ∞. Thereby, we have σ̂ 2
n – Eσ̂ 2

n
a.s−→ 0

by the Borel–Cantelli Lemma. This completes the proof. �

Proof of Theorem 4.3 We introduce the notations

A1n = n–1
n
∑

i=1

X2
i ,

A2n = (n�n)–1
n
∑

i=1

(Xi+1 – Xi)Xi,

A3n = (n�n)–1
n
∑

i=1

(Xi+1 – Xi)2.

Then, μ̂n can be written as

μ̂n =
A2n

A1n
–

A3n

4A1n
.
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By Theorem 4.2, we have A3n
a.s.−→ 2σ 2

3 . Moreover, E(A1n) = σ 2

2|μ| + O(�n), EA2n = – 1
3σ 2 +

O(�n). Therefore, to prove μ̂n
a.s.−→ μ, we only need to prove the following two facts

A1n – EA1n
a.s.−→ 0, A2n – EA2n

a.s.−→ 0.

(1) To prove that A1n – EA1n
a.s.−→ 0. Let Zi�n (1) = X2

i – EX2
i . Then A1n – EA1n =

n–1 ∑n
i=1 Zi�n (1). By the moment inequality (2.12) of Theorem 2.2, for any given ε > 0 and

r ≥ 2, we have

P
(|A1n – EA1n| > ε

)≤ Cn–rE

∣
∣
∣
∣
∣

n
∑

i=1

Zi�n (1)

∣
∣
∣
∣
∣

r

≤ Cn–r
{

λn max
1≤j≤2λn

E|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

,

where ξj =
∑jτn∧n

i=(j–1)τn∧n+1 Zi�n (1). By the integral Cauchy inequality, for any r > 1, we have

E|Xi|r ≤ �–r
n E

{∫ i�n

(i–1)�n

|Xs|ds
}r

≤ �–r
n E

{(∫ i�n

(i–1)�n

|Xs|r ds
)1/r(∫ i�n

(i–1)�n

ds
)(r–1)/r}r

= �–1
n E

(∫ i�n

(i–1)�n

|Xs|r ds
)

= �–1
n

∫ i�n

(i–1)�n

E|Xs|r ds

= E|X0|r .

It follows that E|Zi�n (1)|r ≤ CE|Xi|2r ≤ C < ∞. So,

E|ξj|r ≤ τ r–1
n

jτn∧n
∑

i=(j–1)τn∧n+1

E
∣
∣Zi�n (1)

∣
∣
r ≤ Cτ r

n ≤ C�–r
n .

Thus,

P
(|A1n – EA1n| > ε

)≤ Cn–r{λn�
–r
n +

(

λn�
–2
n
)r/2}

≤ Cn–r{n�–r+1
n +

(

n�–1
n
)r/2}

≤ Cn–r(n�–1
n
)r/2

≤ C(n�n)–r/2

≤ Cn–br/2.

Taking r > 2/b, then we have
∑∞

n=1 P(|A1n – EA1n| > ε) < ∞. Thereby, A1n – EA1n
a.s.−→ 0.

(2) To prove that A2n – EA2n
a.s.−→ 0. Let

Zi�n (2) = (Xi+1 – Xi)Xi – E
{

(Xi+1 – Xi)Xi
}

.
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Then A2n – EA2n = (n�n)–1 ∑n
i=1 Zi�n (2). By the moment inequality (2.12) of Theorem 2.2,

for any given ε > 0 and r ≥ 2, we have

P
(|A2n – EA2n| > ε

)≤ C(n�n)–rE

∣
∣
∣
∣
∣

n
∑

i=1

Zi�n (2)

∣
∣
∣
∣
∣

r

≤ C(n�n)–r
{

λn max
1≤j≤2λn

E|ξj|r +
(

λn max
1≤j≤2λn

E|ξj|2
)r/2}

,

where ξj =
∑jτn∧n

i=(j–1)τn∧n+1 Zi�n (2). By the Lévy continuous modulus, we have

E
∣
∣Zi�n (2)

∣
∣
r ≤ CE

∣
∣(Xi+1 – Xi)Xi

∣
∣
r ≤ C

(

�n log(1/�n)
)r/2,

and

E|ξj|r ≤ τ r–1
n

jτn∧n
∑

i=(j–1)τn∧n+1

E
∣
∣Zi�n (2)

∣
∣
r

≤ Cτ r
n
(

�n log(1/�n)
)r/2

≤ C
(

�–1
n log(1/�n)

)r/2.

Hence,

P
(|A2n – EA2n| > ε

)≤ C(n�n)–r{λn
(

�–1
n log(1/�n)

)r/2 +
(

λn�
–1
n log(1/�n)

)r/2}

≤ C(n�n)–r{n�n
(

�–1
n log(1/�n)

)r/2 +
(

n log(1/�n)
)r/2}

≤ C(n�n)–r(n log(1/�n)
)r/2

≤ C
(

n�2
n
)–r/2(

log(1/�n)
)r/2.

Since n1–b�2
n → ∞, so 1/�n ≤ Cn(1–b)/2. It follows that

(

n�2
n
)–r/2(

log(1/�n)
)r/2 ≤ Cn–br/2 logr/2 n.

Taking r > 2/b, we have
∑∞

n=1 P(|A2n – EA2n| > ε) < ∞. Thereby, A2n – EA2n
a.s.−→ 0. This

completes the proof. �

5 Conclusion
This paper provides some moment inequalities for mixing long-span high-frequency data
and verifies some interesting diffusion processes with mixing properties. These results
indicate that mixing is feasible for studying long-span high-frequency data of some inter-
esting models.
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