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Abstract
In this paper, we present sufficient conditions to ensure the stochastic asymptotic
stability of the zero solution for a specific type of fourth-order stochastic differential
equation (SDE) with constant delay. By reducing the fourth-order SDE to a system of
first-order SDEs, we utilize a fourth-order quadratic function to derive an appropriate
Lyapunov functional. This functional is then employed to establish standard criteria
for the nonlinear functions present in the SDE. The stability result obtained in this
study is novel and extends the existing findings on stability in fourth-order differential
equations. Additionally, we provide an illustrative example to demonstrate the
significance and accuracy of our main result.
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1 Introduction
The growing utilization of differential equations in a wide range of fields, including the
natural, engineering, and social sciences, has sparked significant research efforts in vari-
ous branches of this subject. In this context, numerous techniques have been developed
by authors to analyze the characteristics and behavior of solutions of differential equa-
tions. These techniques include Pontryagin’s theory for quasi-polynomials, the Riccati
technique, the averaging functions method, the contraction mapping principle, the coinci-
dence and Leary–Schauder degree theory, and the Lyapunov direct method. Additionally,
researchers have conducted background studies on systems of ordinary and functional
differential equations see Ademola and Ogundiran [3], Burton [6, 7], Driver [9], Hale [11],
Lakshmikantham et al. [16], Yoshizawa [26, 27]. Based on our examination of the perti-
nent literature, the researchers who have investigated stability, boundedness, square in-
tegrability, and the existence of unique periodic solutions for fourth-order ordinary and
delay differential equations encompass, but are not restricted to: Ademola [1, 2], Adesina
and Ogundare [4], Balamuralitharan [5], Cai and Meng [8], Kang and Si [12], Korkmaz
and Tunç [15], Korkmaz [13, 14], Okoronkwo [17], Rahmane and Remili [19], Sadek [20],
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Sinha [21], Tejumola and Tchegnani [22], Tunç [23–25]. These researchers utilized the
direct method of Lyapunov, with the exception of [5] and [17], where the continuation
theorem of coincidence degree theory with Banach space lemma techniques and Razu-
mikhin type theorem were employed, respectively.

In 2021, the author of [2] provided conditions for the stability, boundedness, and exis-
tence of a unique periodic solution to a fourth-order differential equation.
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γ > 0 being a constant, the derivatives h′(x), gx(x, y), gy(x, y), fx(x, y, z), fy(x, y, z) and fz(x, y, z)
exist and are continuous for all x, y, z. A significant tool employed in [2] is the renowned
Lyapunov’s functional, specifically designed for this purpose. Recently, Fatmi et al. [10]
investigated and established standard criteria for the stability, boundedness, and square
integrability of solutions for neutral type differential equations with variable delay. The
specific form of the studied equation is given by:
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where r represents a bounded delay, with 0 ≤ r(t) ≤ r1, –r3 ≤ r′(t) ≤ r2, 0 < r2 < 1, and
r3 > 0. The functions a, b, c, d are continuously differentiable, while the functions f , g , h,
and φ are also continuously differentiable.

Without a doubt, the two equations are significantly more comprehensive compared
to prior research on fourth-order differential equations with variable delay. Furthermore,
equation (1.1) stands out due to its inclusion of an extra term (stochastic term), mak-
ing it more valuable than any previously documented fourth-order differential equations.
Therefore, this research work possesses a novelty factor. The motivations behind this re-
search can be found in [1, 2, 4, 5, 8, 10, 12–15], where ordinary, delay, and neutral differ-
ential differential equations were discussed.

The objective of this study is to analyze the stochastic asymptotic stability of the zero
solution for a fourth-order SDE with a constant delay. The equation can be expressed as
follows:

x(4)(t) + a...x (t) + h
(
ẍ(t)

)
+ φ

(
ẋ(t – r)

)
+ f

(
x(t – r)

)
+ σx(t)ω̇(t) = 0. (1.1)

We transform (1.1) to a system of first-order differential equation as follows

ẋ = y, ẏ = z, ż = u,

u̇ = –au – h(z) – φ(y) – f (x) – σx(t)ω̇(t) +
∫ t

t–r
φ′(y(ρ)

)
z(ρ) dρ

+
∫ t

t–r
f ′(x(ρ)

)
y(ρ) dρ,

(1.2)
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where a and σ are two positive constants, r is a positive constant delay whose value will
be determined later, the functions h, φ and f are continuous in their respective arguments
of R with φ(0) = f (0) = 0, ω̇(t) is m-standard Brownian motion defined on the probability
space. In addition, it is also supposed the derivatives φ′(y) and f ′(x) are continuous for all
x and y.

2 Main result
We will express and demonstrate the stability result of (1.1) in this section. The results of
the stability test are shown below.

Theorem 2.1 In addition to the fundamental presumptions that apply to the functions h,
φ and f , assume that there are positive constants b, c, d, 	, m, c1, M, and δ such that satisfy
the following requirements:

(i) h(z)
z ≥ b, for all z �= 0;

(ii) φ(0) = 0, c ≤ φ(y)
y ≤ c1, for all y �= 0 and |φ′(y)| ≤ M, for all y;

(iii) f (0) = 0, 	 ≤ f (x)
x ≤ m, for all x �= 0 and f ′(x) ≤ |f ′(x)| ≤ d, for all x;

(iv) c < ab, δ ≤ abc – c2 – a2d;
(v) a	 > 2(1 + d1)σ 2;

(vi) δ
2acδ0

≤ ε ≤ min{ 2ab
c , 2c

a }.
Then the zero solution of (1.1) is stochastically asymptotically stable, provided that

r < min

{
a	 – 2(1 + d1)σ 2

4a(M + b)
,

(a + c)b
4M1

,
δ

8acM2
,

a + c
4(M + b)(1 + d1)

}
,

where

M1 := (M + b)(b + d2) + b(a + b + c + d1 + d2 + 2),

M2 := (M + b)(1 + c) + M(a + b + c + d1 + d2 + 2),

d1 := ε +
1
a

, d2 := ε +
d
c

, δ0 := ab + bcd–1 > 0.

(2.1)

Remark 2.1 Upon comparing with the existing literature, we have observed various simi-
larities and differences:

(i) If h(ẍ(t)) = bẍ(t), φ(ẋ(t – r)) = cẋ, f (x(t – r)) = dx and σx(t)ω̇(t) = 0, equation (1.1)
reduces to a fourth-order linear ordinary differential equation

x(4)(t) + a...x (t) + bẍ(t) + cẋ(t) + dx(t) = 0, (2.2)

and hypotheses (i)-(vi) of Theorem 2.1 Routh–Hurtwitz conditions a > 0, b > 0,
c > 0, ab > c, abc – c2 > a2d and d > 0 for asymptotic stability of the trivial solution
of (2.2);

(ii) Hypotheses (i), (ii), (iv), (vi) of Theorem 2.1 coincide with hypotheses (ii), (iv), (v),
and (3.6) Theorem 3.1 in [2], respectively;

(iii) If the double integrals

2
∫ t

–r

∫ t

t+s
μ3u2(θ )) dθ ds = 0,
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in equation (3.3) of [2], then the functional defined by (2.3) coincide with the one in
[2];

(iv) Substantial parts of our hypotheses in Theorem 2.1 coincide with the hypotheses in
Theorem 5 of [1], as seen in items (ii) and (iii) above;

(v) In the recent publication by [10], only a few of our hypotheses align, primarily
because of the intricate nature of the main tools employed in both studies; and

(vi) The inclusion of the stochastic term in equation (1.1) enhances numerous
exceptional research works already present in the literature.

Proof of Theorem 2.1 Let Xt = (xt , yt , zt , ut) be any solution of the system (1.2). We define
a Lyapunov functional W (Xt) = W (xt , yt , zt , ut) as follows to demonstrate the Theorem 2.1

2W (Xt) = 2d2

∫ x

0
f (ζ ) dζ + 2

∫ y

0
φ(η) dη + (1 + d1)u2 +

(
a – d2 + bd1 + c2)z2

+
(
bd2 – d1d + b2)y2 + a2x2 + 2f (x)y + 2d1f (x)z + 2(d2 + b)yu

+ 2(ad2 + cd1 + bc)yz + 2(1 + c)zu + 2abxy + 2acxz + 2axu

+ 2
∫ t

–r

∫ t

t+s

(
λy2(ϑ) + μz2(ϑ)

)
dϑ ds,

(2.3)

where λ and μ are two positive constants, which will be established later in the proof.
Since the above Lyapunov functional 2W (Xt) clearly meets the condition W (0, 0, 0, 0) =

0, then we may rewrite (2.3) as follows

2W (Xt) = 2d2

∫ x

0
f (ζ ) dζ –

1
c

f 2(x) + 2
∫ y

0
φ(η) dη – cy2 +

(
d1 –

1
a

)
u2

+
(
bd1 – d2 – cd2

1
)
z2 +

(
bd2 – d1d – ad2

2
)
y2 +

1
a

(ad2y + az + u)2

+
1
c
(
f (x) + cy + cd1z

)2 + (ax + by + cz + u)2

+ 2
∫ t

–r

∫ t

t+s

(
λy2(ϑ) + μz2(ϑ)

)
dϑ ds.

The equation above can be rearranged to take the following form

2W (Xt) =
5∑

i=1

Wi +
1
a

(ad2y + az + u)2 +
1
c
(
f (x) + cy + cd1z

)2

+ (ax + by + cz + u)2 + 2
∫ t

–r

∫ t

t+s

(
λy2(ϑ) + μz2(ϑ)

)
dϑ ds,

(2.4)

where

W1 := 2d2

∫ x

0
f (ζ ) dζ –

1
c

f 2(x), W2 := 2
∫ y

0
φ(η) dη – cy2,

W3 :=
(
bd2 – d1d – ad2

2
)
y2, W4 :=

(
bd1 – d2 – cd2

1
)
z2, W5 :=

(
d1 –

1
a

)
u2.



Mahmoud et al. Journal of Inequalities and Applications        (2023) 2023:148 Page 5 of 15

Using the criterion (iii), (2.1), and the fact that f ′(x) ≤ d, we have

W1 = 2
(

ε +
d
c

)∫ x

0
f (ζ ) dζ –

1
c

f 2(x) = 2
∫ x

0

[(
ε +

d
c

)
–

1
c

f ′(ζ )
]

f (ζ ) dζ

≥ 2ε

∫ x

0
f (ζ ) dζ ≥ ε	x2.

from condition (ii) and c ≤ φ(y)
y , we have

W2 = 2
∫ y

0

(
φ(η)
η

– c
)

η dη ≥ 0, for all y.

From (2.1) and assumption (iv) of Theorem 2.1, we get

b – ad2 – cd1 = b – a
(

ε +
d
c

)
– c

(
ε +

1
a

)
=

1
ac

(
abc – a2d – c2) – ε(a + c)

≥ δ

ac
– ε(a + c).

Keep in mind that, abc > abc – c2 > a2d indicates that a < bcd–1 and c < ab, so

b – ad2 – cd1 ≥ δ

ac
– ε

(
bcd–1 + ab

)
=

δ

ac
– εδ0, (2.5)

where δ0 := ab + bcd–1 > 0. We can determine the coefficient of y2 in W3 as a result of the
estimates (2.5) and (2.1) mentioned before

bd2 – d1d – ad2
2 = d2(b – ad2 – cd1) + d1(cd2 – d) ≥ d2

(
δ

ac
– εδ0

)
+ cεd1.

Since cεd1 > 0, it tends that

bd2 – d1d – ad2
2 ≥ d2

(
δ

ac
– εδ0

)
.

Create the constant ε = δ
2acδ0

now, so that

bd2 – d1d – ad2
2 ≥

(
δ

2acδ0
+

d
c

)(
δ

2ac

)
=

δ

4a2c2δ0
(δ + 2adδ0).

Next, we obtain

W3 ≥ δ

4a2c2δ0
(δ + 2adδ0)y2.

When (2.5) and (2.1) are combined, then the coefficient of z2 in W4 is obtained

bd1 – d2 – cd2
1 = d1(b – ad2 – cd1) + (ad1 – 1)d2

≥ d1

(
δ

ac
– εδ0

)
, such that aεd2 > 0
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=
(

ε +
1
a

)(
δ

ac
– εδ0

)

=
δ

4a2c2δ0
(δ + 2cδ0), since ε =

δ

2acδ0
.

Therefore, we get

W4 ≥ δ

4a2c2δ0
(δ + 2cδ0)z2.

By using (2.1) and the fact that ε = δ
2acδ0

, we additionally discover

W5 =
(

d1 –
1
a

)
u2 = εu2 =

δ

2acδ0
u2.

Moreover, since a > 0 and c > 0, it follows that

1
a

(ad2y + az + u)2 ≥ 0,
1
c
(
f (x) + cy + cd1z

)2 ≥ 0, (ax + by + cz + u)2 ≥ 0,

for all x, y, z, and u.
Finally, the double integral

2
∫ t

–r

∫ t

t+s

(
λy2(ϑ) + μz2(ϑ)

)
dϑ ds,

is non-negative.
Given the discussion above, a positive constant β1 exists that ensures

W (Xt) ≥ β1
(
x2 + y2 + z2 + u2), for all t ≥ 0, x, y, z, u, (2.6)

where

β1 :=
1
2

min

{
δ	

2acδ0
,
δ(δ + 2adδ0)

4a2c2δ0
,
δ(δ + 2cδ0)

4a2c2δ0
,

δ

2acδ0

}
.

The Lyapunov functional W (Xt) defined by inequality (2.3) is positively semi-definite, as
demonstrated by inequality (2.6).

Due to the fact that for all x > 0 and y > 0, f (x)
x ≤ m and φ(y)

y ≤ c1, it follows that

2W (Xt) ≤ 2d2

∫ x

0
mζ dζ + 2

∫ y

0
c1η dη + (1 + d1)u2 +

(
a – d2 + bd1 + c2)z2

+
(
bd2 – d1d + b2)y2 + a2x2 + 2mxy + 2d1mxz + 2(d2 + b)yu

+ 2(ad2 + cd1 + bc)yz + 2(1 + c)zu + 2abxy + 2acxz + 2axu

+ 2λ

∫ t

t–r
(ϑ – t + r)y2(ϑ) dϑ + 2μ

∫ t

t–r
(ϑ – t + r)z2(ϑ) dϑ .
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Using the estimate 2|u1v1| ≤ u2
1 + v2

1, we may deduce that

2W (Xt) ≤ {
a(a + b + c + 1) + m(d1 + d2 + 1)

}‖x‖2

+
{

d1(c + d) + d2(a + b + 1) + b(a + b + c + 1) + m + c1 + λr2}‖y‖2

+
{

d1(b + c + m) + d2(a + 1) + c(a + b + c + 1) + a + 1 + μr2}‖z‖2

+ (a + b + c + d1 + d2 + 2)‖u‖2.

It follows that

W (Xt) ≤ β2
(
x2 + y2 + z2 + u2),β2 > 0, (2.7)

where

β2 :=
1
2

max
{

a(a + b + c + 1) + m(d1 + d2 + 1), a + b + c + d1 + d2 + 2,

d1(c + d) + d2(a + b + 1) + b(a + b + c + 1) + m + c1 + λr2,

d1(b + c + m) + d2(a + 1) + c(a + b + c + 1) + a + 1 + μr2}.

Inequality (2.7) reveals that the functional W (Xt) of (1.1) is decrescent.
The first partial derivative of the Lyapunov functional W (Xt) with respect to the inde-

pendent variable t, given that (Xt) is any solution of system (1.2), is

2
dW (Xt)

dt
= 2d2f (x)y + 2φ(y)z + 2

(
a – d2 + bd1 + c2)zu + 2

(
bd2 – d1d + b2)yz

+ 2a2xy + 2f ′(x)y2 + 2f (x)z + 2d1f ′(x)yz + 2d1f (x)u

+ 2(d2 + b)zu + 2(ad2 + cd1 + bc)
(
yu + z2) + 2(1 + c)u2

+ 2ab
(
xz + y2) + 2ac(xu + yz) + 2ayu + 2λry2 + 2μrz2

– 2λ

∫ t

t–r
y2(ϑ) dϑ – 2μ

∫ t

t–r
z2(ϑ)) dϑ

+ 2
{

ax + (d2 + b)y + (1 + c)z + (1 + d1)u
} ×

(
–au – h(z) – φ(y)

– f (x) +
∫ t

t–r
φ′(y(ρ)

)
z(ρ) dρ +

∫ t

t–r
f ′(x(ρ)

)
y(ρ) dρ

)
.

It frequently

dW (Xt)
dt

= –axf (x) – (b + d2)yφ(y) +
(
ab + f ′(x)

)
y2 – (1 + c)zh(z)

– a(1 + d1)u2 + (1 + c)u2 + (ad2 + cd1 + bc)z2 – bf (x)y – aφ(y)x

+ a2xy – cf (x)z – ah(z)x + abxz – f (x)u – a2xu + acxu – cφ(y)z

– (b + d2)h(z)y +
(
d1f ′(x) + ac + bd2 – d1d + b2)yz – (1 + d1)φ(y)u

– abyu + (a + cd1 + bc)yu – (1 + d1)h(z)u – aczu +
(
b + bd1 + c2)zu
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+ λry2 + μrz2 – λ

∫ t

t–r
y2(ϑ) dϑ – μ

∫ t

t–r
z2(ϑ)) dϑ

+
{

ax + (d2 + b)y + (1 + c)z + (1 + d1)u
}

×
(∫ t

t–r
φ′(y(ρ)

)
z(ρ) dρ +

∫ t

t–r
f ′(x(ρ)

)
y(ρ) dρ

)
.

The above equation can be rearranged as follows:

dW (Xt)
dt

= –
1
4

12∑

i=6

Wi + W13 + λry2 + μrz2

– λ

∫ t

t–r
y2(ϑ) dϑ – μ

∫ t

t–r
z2(ϑ)) dϑ ,

(2.8)

where

W6 := a
f (x)

x
x2 +

{
(b + d2)

φ(y)
y

–
(
ab + f ′(x)

)}
y2 +

{
(1 + c)

h(z)
z

– (ad2 + cd1 + bc)
}

z2

+
{

a(1 + d1) – (1 + c)
}

u2,

W7 := a
f (x)

x
x2 + 4

{
b

f (x)
x

+ a
φ(y)

y
– a2

}
xy +

{
(b + d2)

φ(y)
y

–
(
ab + f ′(x)

)
}

y2,

W8 := a
f (x)

x
x2 + 4

{
c

f (x)
x

+ b
h(z)

z
– ab

}
xz +

{
(1 + c)

h(z)
z

– (ad2 + cd1 + bc)
}

z2,

W9 := a
f (x)

x
x2 + 4

{(
f (x)

x
+ a2

)
– ac

}
xu +

{
a(1 + d1) – (1 + c)

}
u2,

W10 :=
{

(b + d2)
φ(y)

y
–

(
ab + f ′(x)

)}
y2 +

{
(1 + c)

h(z)
z

– (ad2 + cd1 + bc)
}

z2

+ 4
{

c
φ(y)

y
+ (b + d2)

h(z)
z

–
(
d1f ′(x) + ac + bd2 – d1d + b2)

}
yz,

W11 :=
{

(b + d2)
φ(y)

y
–

(
ab + f ′(x)

)
}

y2 +
{

a(1 + d1) – (1 + c)
}

u2

+ 4
{

(1 + d1)
φ(y)

y
+ ab – (a + cd1 + bc)

}
yu,

W12 :=
{

(1 + c)
h(z)

z
– (ad2 + cd1 + bc)

}
z2 +

{
a(1 + d1) – (1 + c)

}
u2

+ 4
{

(1 + d1)
h(z)

z
+ ac –

(
b + bd1 + c2)

}
zu,

W13 :=
{

ax + (d2 + b)y + (1 + c)z + (1 + d1)u
}(∫ t

t–r
φ′(y(ρ)

)
z(ρ) dρ

+
∫ t

t–r
f ′(x(ρ)

)
y(ρ) dρ

)
.

From conditions (i) – (iii), we have

W6 ≥ a	x2 +
{

(b + d2)c – ab – d
}

y2 +
{

(1 + c)b – (ad2 + cd1 + bc)
}

z2

+
{

a(1 + d1) – (1 + c)
}

u2.
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In light of the fact that d2 = ε + d
c and ε = 2ab

c , then the coefficient of y2 becomes

(b + d2)c – ab – d =
(

2ab
c

+
d
c

+ b
)

c – ab – d = (a + c)b.

Additionally, since ε = δ
2acδ0

and from (2.5), we find the coefficient of z2 as

b – ad2 – cd1 ≥ δ

ac
– εδ0 =

δ

2ac
.

Furthermore, since d1 = ε + 1
a and ε = 2c

a , we may express the coefficient of u2 as follows

a(1 + d1) – (1 + c) =
(

1 + ε +
1
a

)
a – (1 + c) = εa + a – c = a + c.

Using the above analysis, we can

W6 ≥ a	x2 + b(a + c)y2 +
δ

2ac
z2 + (a + c)u2,

for all x, y, z, and u.
Following that, since Wi(i = 7, . . . , 12) are quadratic functions of two variables, we can

normally create a 2×2-symmetric Hassian matrix A, which is positive definite, if and only
if, α > 0 and αγ > β2.

In Wi(i = 7, . . . , 12), the positive coefficients of x2, y2, z2 and u2 are then found for α > 0.
For instance, the discriminant β2 < αγ produces the estimate below

4
{

b
f (x)

x
+ a

φ(y)
y

– a2
}2

<
{

a
f (x)

x

}{
(b + d2)

φ(y)
y

–
(
ab + f ′(x)

)}
.

Applying the aforementioned inequality, we obtain

W7 ≥
{√

a
f (x)

x
|x| –

√

(b + d2)
φ(y)

y
–

(
ab + f ′(x)

)|y|
}2

≥ 0, for all x and y.

Given the reasoning above, we can designate the functions Wi(i = 8, . . . , 12) as W7

W8 ≥
{√

a
f (x)

x
|x| –

√

(1 + c)
h(z)

z
– (ad2 + cd1 + bc)|z|

}2

≥ 0, for all x and z,

W9 ≥
{√

a
f (x)

x
|x| –

√
a(1 + d1) – (1 + c)|u|

}2

≥ 0, for all x and u,

W10 ≥
{√

(b + d2)
φ(y)

y
–

(
ab + f ′(x)

)|y| –
√

(1 + c)
h(z)

z
– (ad2 + cd1 + bc)|z|

}2

≥ 0,

W11 ≥
{√

(b + d2)
φ(y)

y
–

(
ab + f ′(x)

)|y| –
√

a(1 + d1) – (1 + c)|u|
}2

≥ 0,

for all y and u,
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W12 ≥
{√

(1 + c)
h(z)

z
– (ad2 + cd1 + bc)|z| –

√
a(1 + d1) – (1 + c)|u|

}2

≥ 0,

for all z and u.

Since |f ′(x)| ≤ d and φ′(y)| ≤ M, and using the inequality 2|u1v1| ≤ u2
1 + v2

1, then we get

W13 ≤ 1
2

r(M + d)
{

ax2 + (d2 + b)y2 + (1 + c)z2 + (1 + d1)u2}

+
1
2

(a + b + c + d1 + d2 + 2)
∫ t

t–r

(
Mz2(ρ) + dy2(ρ)

)}dρ.

When estimations Wi(i = 6, . . . , 13) are combined, the result (2.8) is

dW (Xt)
dt

≤ –
1
4

{
a	x2 + b(a + c)y2 +

δ

2ac
z2 + (a + c)u2

}

+
1
2

r(M + d)
{

ax2 + (d2 + b)y2 + (1 + c)z2 + (1 + d1)u2}

+
1
2

(a + b + c + d1 + d2 + 2)
∫ t

t–r

(
Mz2(ρ) + dy2(ρ)

)
dρ

+ λry2 + μrz2 – λ

∫ t

t–r
y2(ϑ) dϑ – μ

∫ t

t–r
z2(ϑ)) dϑ .

(2.9)

The derivative of the Lyapunov functional W (Xt) in equation (2.3) along with any solution
Xt = (xt , yt , zt , ut) of system (1.2) can be calculated using the Itô formula as

LW (Xt) =
dW (Xt)

dt
+

1
2

(1 + d1)σ 2x2.

From (2.9), it follows that

LW (Xt) ≤ –
1
4

{
a	x2 + b(a + c)y2 +

δ

2ac
z2 + (a + c)u2

}
+

1
2

(1 + d1)σ 2x2

+
1
2

r(M + d)
{

ax2 + (d2 + b)y2 + (1 + c)z2 + (1 + d1)u2}

+
1
2

(a + b + c + d1 + d2 + 2)
∫ t

t–r

(
Mz2(ρ) + dy2(ρ)

)
dρ

+ λry2 + μrz2 – λ

∫ t

t–r
y2(ϑ) dϑ – μ

∫ t

t–r
z2(ϑ)) dϑ .

Then we achieve

LW (Xt) ≤ –
1
4
{

a	 – 2ra(M + d) – 2(1 + d1)σ 2}x2

–
1
4
{

b(a + c) – 2r(M + d)(d2 + b) – 4λr
}

y2

–
1
4

{
δ

2ac
– 2r(M + d)(1 + c) – 4μr

}
z2

(2.10)
–

1
4
{

a + c – 2r(M + d)(1 + d1)
}

u2
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+
1
2
{

d(a + b + c + d1 + d2 + 2) – 2λ
}∫ t

t–r
y2(ϑ) dϑ

+
1
2
{

M(a + b + c + d1 + d2 + 2) – 2μ
}∫ t

t–r
z2(ϑ) dϑ .

If we let

λ =
1
2

d(a + b + c + d1 + d2 + 2), and μ =
1
2

M(a + b + c + d1 + d2 + 2).

The disparity (2.10) therefore becomes

LW (Xt) ≤ –
1
4
{

a	 – 2ra(M + d) – 2(1 + d1)σ 2}x2

–
1
4
{

b(a + c) – 2r(M + d)(d2 + b) – 2d(a + b + c + d1 + d2 + 2)r
}

y2

–
1
4

{
δ

2ac
– 2r(M + d)(1 + c) – 2M(a + b + c + d1 + d2 + 2)r

}
z2

–
1
4
{

a + c – 2r(M + d)(1 + d1)
}

u2.

(2.11)

The inequality (2.11) claims that a positive constant β3 exists, such that

LW (Xt) ≤ –β3
(
x2 + y2 + z2 + u2), (2.12)

for all x, y, z, and u, provided that the following inequality hold

r < min

{
a	 – 2(1 + d1)σ 2

4a(M + b)
,

(a + c)b
4M1

,
δ

8acM2
,

a + c
4(M + b)(1 + d1)

}
,

such that

M1 = (M + b)(b + d2) + b(a + b + c + d1 + d2 + 2),

M2 = (M + b)(1 + c) + M(a + b + c + d1 + d2 + 2).

Since from (2.6), (2.7), and (2.12) the Lyapunov functional W (Xt) in (2.3) satisfies all the
following requirements

β1
(|x|) ≤ W (Xt) ≤ β2

(|x|),

LW (Xt) ≤ –β3
(|x|).

Then the zero solution of (1.1) is stochastically asymptotically stable.
This completes the proof of Theorem 2.1. �

3 Example
A fourth-order SDE with constat delay r is shown below.

x(4)(t) + 2...x (t) +
(

6 +
1

2 + |ẍ(t)|
)

ẍ(t) + 2ẋ(t – r) + sin
(
ẋ(t – r)

)

+
(

1 +
1

1 + x2(t – r)

)
x(t – r) +

1
2

x(t)ω̇(t) = 0.
(3.1)
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Its analogous first-order differential equation system is stated as

ẋ = y,

ẏ = z,

ż = u,

u̇ = –2u –
(

6 +
1

2 + |z|
)

z – (2y + sin y) –
(

1 +
1

1 + x2

)
x –

1
2

x(t)ω̇(t)

+
∫ t

t–r

{
8 + cos y(ρ)

}
z(ρ) dρ +

∫ t

t–r

{
1 +

1 – x2(ρ)
(1 + x2(ρ))2

}
y(ρ) dρ,

(3.2)

When we contrast the two systems (1.2) and (3.2), we find that
1. The positive constants a and σ have values a = 2 and σ = 1/2.
2. The function

h(z) = 6z +
z

2 + |z| ,

since 2 + |z| ≥ 2, for all z and h(0) = 0, it follows that

h(z)
z

= 6 +
1

2 + |z| ≥ 6,

it tends to b = 6, for all z �= 0. The function h(z)
z is shown in Fig. 1.

3. The function

φ(y) = 2y + sin y, it tends to
φ(y)

y
= 2 +

sin y
y

, for all y �= 0.

Since –1 ≤ sin y
y ≤ 1, then we get 1 ≤ φ(y)

y ≤ 3, and the derivative of the function φ(y)
with respect y becomes

∣∣φ′(y)
∣∣ = |2 + cos y| ≤ 3, for all y �= 0.

Figure 1 The function h(z)
z and its bounds for z ∈ [–20, 20]
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Figure 2 The function φ(y)
y and its bounds for z ∈ [–10π , 10π ]

Figure 3 The function f (x)
x and its bounds for x ∈ [–10, 10]

Then we state that c = 1, c1 = 3, and M = 3. Path of the function φ(y)
y is depicted in

Fig. 2.
4. The function

f (x) = x +
x

1 + x2 , fulfills f (0) = 0 and
f (x)

x
= 1 +

1
1 + x2 , for all x �= 0.

As a result, 1 ≤ f (x)
x ≤ 2, the derivative of the function f with respect to x is

f ′(x) = 1 +
1 – x2

(1 + x2)2 ≤ 1 +
1

1 + x2 ≤ 2, and
∣∣f ′(x)

∣∣ ≤ 2.

It gives that 	 = 1, m = 2, and d = 2. Figure 3 shows the function f (x)
x and its bounds

for x ∈ [–10, 10].
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5. Conditions (iv)–(vi) of Theorem 2.1 have inequalities that are as follows:

ab – c = 11 > 0,

abc – c2 – a2d = 3 ≥ δ.

Choose δ = 2.8, then we can get the subsequent constants

δ0 = ab + bcd–1 = 15 > 0,

0.047 ≤ ε ≤ min{24, 1}, it tends to 0.047 ≤ ε ≤ 1, here ε = 0.05 is chosen.

Also,

d1 = ε +
1
a

= 0.55, and d2 = ε +
d
c

= 2.05.

Therefore, the condition 2 = a	 > 2(1 + d1)σ 2 ∼= 0.775, is satisfied.
6. The value of the constant r is such that

r < 0.00497 = min{0.038, 0.0395, 0.00497, 0.121}.

As a result, all the elements above satisfy all of the requirements of Theorem 2.1.
Therefore, the zero solution of (3.1) is stochastically asymptotically stable.

4 Conclusions
This paper discusses a specific fourth-order nonlinear SDE with a constant delay. The
paper obtains standard criteria for the stochastic asymptotic stability of the equation. The
effectiveness of the functional used in the investigation greatly aids in proving the main
result. The paper’s stochastic stability result enhances, incorporates, and supplements the
existing stability results in the literature. Additionally, a relevant example is provided to
verify the hypotheses.
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